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Abstract. It is proven that the pressure, density and correlation functions of a
classical charge symmetric Coulomb system are asymptotic as the plasma
parameter ε tends to zero to the approximations predicted by the Debye-
Hύckel theory. These approximations consist of the ideal gas term plus a term
of one lower order in ε. The sine-Gordon transformation and some new
correlation inequalities for the associated functional integrals are used.

1. Introduction

We study a classical charge symmetric system in three dimensions in the limit that
ε tends to zero, ε is the plasma parameter

* = β/'D, (1-1)

where β is the inverse temperature, and £D is the Debye length

SD = (2βzΓ1/2. (1.2)

z is the chemical activity. Debye and Huckel [4] gave a non-rigorous study of this
limit. We will prove that certain predictions of their theory are rigorously correct
in this limit.

The Debye-Hϋckel theory gives an approximation for the pressure P as a
function of the density σ

(For example, see p. 229 of [1 1].) We work in the grand canonical ensemble, so the
pressure and density are both functions of z and β. We will show that as ε tends
to zero the pressure and density are asymptotically given by

3' ff~*+'«3 (1 4)

Research in partial fulfillment of the requirements of the Ph.D. degree at the University of Virginia



270 T. Kennedy

Combining these approximations yields (1.3).
We will also find the first two terms in the asymptotic behavior of the

correlation functions. For example, the correlation function for particles at y1 and
3/2 with charges δ1 and δ2 is given by

(1.5)
L ^πίβJ

and

e(2)(yιA;3>2Λ)-e^

The Debye-Hϋckel theory predicts that correlation functions of this form should
decay exponentially. This is known as Debye screening. Brydges [1] proved that
for sufficiently small ε the correlation functions do indeed decay exponentially.
This work was generalized by Brydges and Federbush [2] and by Imbrie [8]. Our
result implies that as ε tends to zero the correlation functions converge to
functions with exponential decay, but this does not imply Debye screening for
nonzero ε.

To make the Coulomb system stable we must add a short range potential, e.g.,
hard cores, to the Coulomb potential. No such short range potential appears in the
Debye-Hϋckel theory, so we will let the short range potential tend to zero
as ε tends to zero.

One of the main tools we use is the sine-Gordon transformation. It says that
the partition function can be expressed as a functional integral

(1.6)

where dμ is a Gaussian measure whose covariance is essentially - - - . In units
\χ-y\

with £D = 1, ε->0 implies jS-^0 and z-»oo with βz fixed. So

The Debye-Hϋckel approximations all follow from this approximation.
The use of the sine-Gordon transformation introduces functional integrals that

must be controlled. We do this using some new correlation inequalities. These
inequalities give bounds on the moments of the measures that arise from the sine-
Gordon transformation.

A natural approach to the problems studied here would be to use the cluster
expansion of Brydges and Federbush [2]. Our approach has advantages and
disadvantages with respect to the cluster expansion. Our approach is simpler than
the cluster expansion. Moreover, we can allow several types of boundary
conditions while the cluster expansion has only been carried out for Dirichlet
boundary conditions. The disadvantage of our approach is that it requires charge
symmetry. The cluster expansion does not.

This paper is organized as follows. We define the Coulomb system and
observables in Sect. 2. In Sect. 3 we state our results. The sine-Gordon transfor-
mation and Mayer expansion are used in Sect. 4 to express the observables as
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functional integrals. Then we give non-rigorous derivations of the results of Sect. 3
using these functional integrals. In Sect. 5 we state and prove the correlation
inequalities. Finally, the results stated in Sect. 3 are proved in Sect. 6.

2. Definitions

We consider a system which consists of two species of particles with equal
e2

chemical activities z. The species have charges ± e. Let β = — , where k is the
rv i.

Boltzmann constant and T is the temperature.
The particles interact via the two-body potential

, ,, > ' > >4π\x-y\

where x,;yeR3 are the positions of the particles and y,<5e{— 1,+!} are their
charges. The potential vε is a short range potential depending on ε. As ε tends to
0, vε tends to zero. [The precise meaning of this statement is given by hypotheses
(HI) and (H2) in Sect. 6.]

The potential - - - is the kernel of - , where A has free boundary
\x-y\ -A

conditions. Physically this means that the box containing the particles is an
insulator. Our results are true for other boundary conditions, e.g., Dirichlet and
periodic. The kernels of operators involving A are simplest with free boundary
conditions, so we use free boundary conditions throughout this paper. We leave it
to the reader to check that our proofs work for other boundary conditions.

Two examples of vε are
I. Hard cores :

oo if \x-y\<2c0εtD,
0 otherwise (2.2)

II. Yukawa potential :

c0 is a constant. £Ό is included in the definitions so that c0 will be dimensionless.
For a volume ΛcIR3 the grand canonical partition function is

Z(Λ) = Σ 4 Σ J^expC-jSl/^,...,^;^,...,^]. (2.4)
n = 0 n- γι ..... yn Λ

Each of y1 5 ...,yn is summed over ± 1, and

The potential energy is
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The pressure is

(2.5)

where \Λ\ is the volume of A.
The correlation functions are

βγ(y1,...,ym,δ1,...,δm)=z"'Z(ΛΓ1 Σ 4 Σ
«=0 n' V i , ...,

βUH+Jx19...9xn9y19...9ym'9y19...9γlpδ19...9δJ\9 (2.6)
A

where yί9 ..9ym are distinct points in IR3 and δv ...,δme{ — 1, +1}.
Because of the charge symmetry the two species have the same density (average

number of particles per unit volume). It is given by

(y9±l). (2.7)
\Λ\ A

We will denote the infinite volume limits of the pressure, correlation functions
and density by the same letters without a A. For example,

P= lim P(A). (2.8)
yl-»IR3

For simplicity we take the volumes A to be boxes with the ratios of the dimensions
of the boxes bounded as yl-*R3.

Lebowitz and Lieb [10] established the existence of the infinite volume limit of
the pressure and density. For certain choices of the short range interaction vε the
existence of the infinite volume limits of all the observables was proven by
Frohlich and Park [6]. With Dirichlet boundary conditions and an essentially
arbitrary short range interaction vε these limits were shown to exist by Brydges
and Federbush [2]. The existence of some infinite volume limit can always be
established by a compactness argument.

3. Results

In the theorems of this section the short range potential vε can be given by either of
our two examples, (2.2) and (2.3). These theorems are true for other choices of vε.
We state the hypotheses that vε must satisfy in Sect. 6. In all the theorems of this
section the infinite volume limit is taken before the ε-»0 limit.

The first theorem says that the pressure is asymptotic to its Debye-Huckel
approximation.

Theorem 3.1. — P~2z+ : r - 3 in the sense that
K1

o\kT \° 12π
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The correlation functions are also asymptotic to their Debye-Huckel
approximations.

Theorem 3.2. Let yv . . ., ym be distinct points in IR3 and δv . . ., δme {-!,+!}. Then

in the sense that

lίm [ρ(m)(y/D, - . , ymtD δ,, . . .,δm)

Finally, the density is asymptotic to its Debye-Huckel approximation.

Theorem 3.3. σ~z+ — -έ~3 in the sense that
16π

4. The Sine-Gordon Transformation and Mayer Expansion

Following Brydges and Federbush [2] we will apply the sine-Gordon transfor-
mation to the long range part of the interaction and use a Mayer expansion for the
short range part. The details of the Mayer expansion are in Appendix A.

We split the Coulomb interaction into long and short range parts. They are

. <«>

So v = VL + vγ + v ε. We denote the total short range interaction by vs

vs = Vγ + vε. (4.3)

The function

is the kernel of the positive operator

-Δ -
(4.4)
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Hence there exists a Gaussian process with covariance C(x, y\ i.e., there exists a
probability measure dμ and a Gaussian random variable φ(x) for each xeIR3 such
that Sdμφ(x)φ(y) = C(x,y). See pp. 16-17 of [12].

The partition function can now be written as Z=^dμZ(φ\ where

=Σ^ Σn = 0 n- yι,...,yn Λ

with

t>sft j) = %(*i> ? i XP y/) > 2 = z exp (β/SπμέD) . (4.6)

is a partition function with a convergent Mayer expansion

n = l

Kn(φ). (4.7)

See (A.1) and (A.4) for the definition of Kn(φ).
The correlation functions are given by

(4.8)

where

n=0 w! y ι , . . . ,y n ^

(4 9)

i = l

with

= m (4.10)
w

^(*>y)= Σ Vs(χ>y>yj>δj)
j = l

is also a partition function with a convergent Mayer series.

ZW>) = exp[-β£+ X Kn(φ)]. (4.11)
L ιι=l J

Kn(φ) is defined by (A.1) and (A.5).
Using the results of the sine-Gordon transformation we can give a non-

rigorous derivation of the Debye-Hϋckel approximations for the pressure, density
and correlation functions. We will let μ->0 as ε->0. Then vγ-+Q, and hence ι;5-»0.
For n^2, Kn(φ) contains at least one factor of vs and so-^0. Thus the important
term in the Mayer series is K^φ).

We have

]:. (4.12)
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The normal ordering : : is defined by the requirement that : : be linear and the
equation

where ^e(C and Ψ is any Gaussian random variable (see pp. 9-11 of [13]). In
particular

x , x . (4i3)

: cos [ ]/βφ(x)~\: = exp | C(x, x) cos [ ]/βφ(xϊ].

In units with £D = i, β = s and so /?-»0. Hence K^φ) should be approximately

K^(φ)^2z\dx 1 — — :φ2(x): . (4.14)

Thus

1 1
(4.15)

The Gaussian integral in (4.15) can be calculated. We will show in the proof of
Theorem 3.1 in Sect. 6 that

So we have the Debye-Huckel approximation — P^2z +
rC 1

For the correlation functions we note that as us->0, K^ή^^K^φ). So using
(4.14)

7=1

(4.16)

where dμ is a Gaussian measure whose covariance in the infinite volume limit is
(C~ 1 +^2)~ 1(x,y). Some computation shows that as μ->0 (4.16) is approximately

zmι-β Σ VX-^+O-U^
L l ^ i < j g m

This is the Debye-Hίickel approximation for the correlation function ρ(m). The
Debye-Hίickel approximation for the density follows from the case of w = l.
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5. Correlation Inequalities

Z(φ)
The sine-Gordon transformation introduces measures of the form — — dμ, where

Zj

Z(φ) is given by (4.5). We will define a class of measures which includes the above
measures. Then we will prove some correlation inequalities that allow us to bound
the moments of these measures. Our techniques are reminiscent of those of
Frohlich and Park [6]. These bounds will be used in the next section in our proofs
of the theorems of Sect. 3.

Our correlation inequalities hold for any Gaussian process. To state them in
their full generality we will make use of the idea of a Gaussian process indexed by a
Hubert space (see pp. 15-20 of [13]). The reader who is not familiar with such
Gaussian processes should see Remark 1 below. Let Jf be a separable real Hubert
space with inner product ( , ). Then the Gaussian process indexed by Jjf consists of
a measure space Ω, a probability measure dμ and a linear map φ : 3?-^>L2(dμ\ such
that for each ρe ̂  φ(ρ) is a Gaussian random variable and §dμφ(ρ)φ(ρf) = (ρ, ρ') for

In our applications of our correlation inequalities the Gaussian process will
always be the Gaussian process of Sect. 4. This Gaussian process is equivalent to
the Gaussian process indexed by the Hubert space 2tf consisting of all distri-
butions / on R3 whose Fourier transform / is a function with

Let δx be the delta function centered at x. Then φ(δx) is equivalent to the random
variable that was denoted φ(x) in Sect. 4.

Definition 5.1. Let 2tf be a real Hubert space. Let (Ω,dμ,φ) be the Gaussian
process indexed by 2/C. We will say that a measure < > defined on Ω is a sine-
Gordon measure if it can be written in the form

where dv(ρ) is a finite positive measure on ffl. Furthermore the dv measurable
subsets of 3? are such that φ(-) is a jointly measurable function on Ωx J f, and
dv(ρ) is normalized so that

<!> = !. (5.2)
r-f / I \

Remarks. 1. In our applications the measure < > will be of the form dμ, where

Z(φ) is defined by (4.5). This is a sine-Gordon measure. The measure dv(ρ) can be
thought of as a measure on the configuration space

0(IR3x {-1,+!})".
«=o

Given ρ = (x1? y l ... xπ, γn),

n

Φ(Q)= Σ y»0(*i)-
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And if ρ' = (yv ̂  ... ym, δm\ then
n in

(ΛβΉ Σ Σ y^a*,,y,).
i = l 7 = 1

The reader who is unfamiliar with Gaussian processes indexed by a Hubert space
can follow our proofs by interpreting φ(ρ) and (ρ, ρ') in this fashion.

2. In general sine-Gordon measures are complex measures. In the example of
the preceding remark the sine-Gordon measure is positive. This follows from Eq.
(4.7) for Z(φ) and the fact that the Kn(φ) are real. They are real because of the
charge symmetry of the system. We will make frequent use of the positivity of this
sine-Gordon measure. This is why our techniques only work for charge symmetric
systems.

3. The assumption that φ(-) is jointly measurable on Ω x 2tf insures that the
integrals in (5.1) are defined. Given a Hubert space 2tf there exists a version of the
Gaussian process indexed by $f which is jointly measurable when the measurable
subsets of Jf are taken to be the Borel sets. (For a similar theorem see pp. 60-62 of
Doob [5].) So if dv(ρ) is a Borel measure on 2tf then the joint measurability
assumption of the definition is satisfied simply by choosing the right version of the
Gaussian process. This is the case for all the sine-Gordon measures we use in
Sect. 6.

Theorem 5.2. Let < > be a sine-Gordon measure, ρe J f and αeR Then

<cosh[αφ(ρ)]> ̂  Jdμcosh[αφ(ρ)] , (5.3)

and [9]

(-ir<:02"(ρ):>^0. (5.4)

// O is also positive, then

<φ2"(ρ)y^dn^dμφ2(ρ)r = djρ\\2n, (5.5)

and

(-ί)\:φ2n(ρ) .y^d^dμφ2(ρ)γ = dn\\ρ\\2'', (5.6)

where

Proof. To prove the first inequality (5.3) we begin with the calculation

lα 2 1
jαμcosh[α(/>(ρ)]exp[/0(^)] =exp —-(ρ,ρ) —^(ρ',ρ') cos^ρjρ')]. (5.8)

This implies

r fa2 ι II dμ cosh [α0(ρ)] exp [ϊ'0(ρ')] ̂  exp — (ρ, ρ) — i(ρ', ρ')
L 2 \

= (Idμ cosh [αψ(ρ)]} {Jdμ exp [iψ(ρ')]}. (5.9)

Integrating this inequality with respect to dv(ρ') we obtain (5.3), since <!> = !.
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To prove the second inequality (5.4) it suffices to show

(-ITSdμ: Φ2n(ρ) : exp [#(ρ')] £ 0 . (5. 10)

This integral equals

which proves (5.4).
Now we assume that < > is positive. Then

= <cosh[αφ(ρ)]>

α2

= expy(ρ,ρ) . (5.11)

The third inequality (5.5) follows by taking

-1/2
α=hΓ(ρ,ρ) . (5.12)

[2n

To prove the last inequality (5.6), note that by (5.4) each term in

V ^ « 2m

is nonnegative. So

= exP I y to? β) I <cos [α

(2n)l

(ρ,ρ) ,

where the last inequality uses the positivity of < >. Now choose α as before. Π

Remarks. 1. Frohlich and Park [6] proved inequality (5.4) for n = l for a certain
class of sine-Gordon measures.

2. Inequality (5.4) can be used to prove a lower bound on the partition
function and hence on the pressure for a special choice of vε (see [9]).

6. Proofs

In this section we prove the theorems stated in Sect. 3. We begin by giving the
hypotheses that v& must satisfy for these theorems. Both of the examples of vε in
Sect. 2 satisfy these hypotheses.
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We assume that vε = v°ε + vr

ε, where υr

ε is repulsive, i.e.,

(6.1)

and v°B satisfies the stability bound

(6.2)

for μ > ε. B(ε) is a positive function of ε.
We assume that vr

ε is independent of the charges of the particles, and v° is
unchanged if the charges of both particles are changed, i.e., v°ε(x, y y, δ)
= υ°ε(x9 — γ;y,—δ). Introduce the norms

y,δ

,y ,y,δ)']}, (6.3)

- OM. . * . * « / . * , , , ,^)|2 1/2.

y,<5 [ y

Note that
||t;y | |1=2μV2, (6.4)

α/2
) - (6.5)

Hypotheses (HI) and (H2) below say how fast vε must -»0 as ε->0. (H3) says
that we have a uniform stability bound as ε-*0. (H4) and (H5) are weak hypotheses
of a technical nature. £D is included in the hypotheses in various places so that the
inequalities will be dimensionless.

Hypotheses on vε:
(HI) There exist cl9δί>0 such that

(H2) There exist c2,<52>0 such that

f-1 II ..Oil
^D | |^8 | li

(H3) There exists B such that

(H4) There exists c3 such that

/- 1/2 I ) o n
£D H^ ε ί l

(H5) For x + y

In Appendix B we verify that the two examples oίvε given in Sect. 2 satisfy (HI)
through (H5). Using the bounds of Appendix A we see that (HI) through (H3)
imply that the Mayer series of Sect. 4 converge for sufficiently small ε and μ.
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Dimensional considerations suggest that the theory should be invariant under
the scaling β-+β/S, z-*z^> vε-+v*ε, with tfΛ(x9γ;y,δ) = ίυ8(tx9y',Sy,δ)

(6 6)

Here -Λ=\-x\xeΛ\. This in variance is easily checked by a change of variables
I \l }

in the integrals which define the observables.
In our proofs we will "work in units with *fD = l." This simply amounts to

carrying out the above scaling with f = fD since £D-+£DI^ under the above scaling.
Hypotheses (HI) through (H5) were stated in a dimensionless way. Thus they will
continue to hold after the scaling (6.6). In the future we will write υ{ simply
as t;e.

Notation. Following the notation of field theory we will let φ denote a point in the
measure space on which the Gaussian process is defined. F(φ) will be a function on
this measure space, and sup \F(φ)\, the supremum of |F| over the measure space.

Φ
We will use 0(εp) and o(εp) to denote quantities that are 0(εp) and o(εp)

uniformly in Λ. o(Λ) will denote a quantity that ->0 as Λ-*1R3. c, c', and δ will
denote positive constants. The c, c' or δ in one equation is not necessarily the c, c'
or δ in another equation. However, c0, cv c2, and c3 do not change from equation
to equation.

We will often suppress the argument in integrations with respect to Lebesgue
measure on IR3. For example

$dxιp(x)(-A\p)(x) = \\p(-

Proof of Theorem 3.1 (The Pressure). In units with ^D = l the theorem becomes

lim|-4;P-2z
o f c Γ

1

12π'
(6.7)

Recall that P is the infinite volume pressure. We will work with the finite volume
pressure P(Λ) throughout the proof. At the end we will take the infinite volume
limit. Our estimates will be uniform in A and so continue to hold in the infinite
volume limit.

We will let μ-»0 as e-+0. Then vs will ->0. For rc^2, Kn(φ) contains at least one
factor of vs and so will ->0. We would like to let μ-»0 fast so that Kn(φ)-+Q fast.

However, C(x9x)= -—. So C(x,x)-κx) as μ-*0. Thus our bounds on moments of
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sine-Gordon measures from Theorem 5.2 will be useful only if μ does not ->0 too
fast. We let

μ = ε1/4+<54, (6.8)

with 0<(54< 1/4.
We split the proof into two steps. In the first step we estimate the difference

between —P(Λ) and —P(Λ) with vs = Q. Setting vs = 0 is the same as setting
fC L /C JL

Kn(φ) = 0 for n^2. In the second step we estimate the error made by replacing

:cos[j/M*)]: by \-β-'.φ\x)'. in K^φ).

Step 1 (The Short Range Interaction). Define an interpolating function on [0, 1]
by

I(s) = Idμ exp \K^φ) + £ snKn(φ)} . (6.9)
L n = 2 J

Then /(I) is Z(Λ) while J(0) is Z(Λ) with vs set equal to 0. We estimate log [/(I)]
-log[/(0)] by bounding the logarithmic derivative of I(s).

Define a measure by

Then

ΓYo\ / «> \

(6.10)
n = 2

Since Kn(0) is real, < >s is a positive measure. We claim it is a sine-Gordon
measure. Write

exp + 5"Xn(0) = exp [1-5^ exp
L B=2 J Ln=l

The second factor on the right hand side is Z(φ) with z replaced by sz. So by (4.5) it
is of the form Jdv(ρ)exp[ΐ</>(ρ)]. The first factor on the right hand side is Z(φ) with
υs = 0 and z replaced by (1 — s)z. So it is also of the form Jdv'(ρ') exp [î (ρ')] Hence
their product is Jrfv(ρ)Jdv/(ρ')exp[i(/)(ρ + ρ/)]) which proves the claim.

For w^3 we simply bound Kn(φ) as in Appendix A. Using hypotheses (HI),
(H2), (H3) and our choice of μ Eqs. (A. 7) and (A.8) become

-*r»-*\Λ\9 (6.11)

with

Hence

X^^lK^HOί^MI. (6.12)
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When n = 2 there is only one η and

v>v--β
The previous argument shows that the second and third terms contribute
to \K2(φ)\. The vγ term requires a new argument.

Define

g(t,φ)= - -lds Σ μ2xMl,2
^ V i , 7 2 Λ

(6.13)

with Φ = y1φ(x1)+γ2φ(χ2). Then the term to be bounded is g(ί,φ). By the
hypotheses on ve, U(σ) is independent of γt and γ2. But

Σ MU)=0.
r ι » V 2

So<7(0,<£) = 0.
Hence

0(i,4>)=ί<Af,4>)
o αf

0 yi, V2 Λ

+ <(1, 2)]} l/(σ) {βslvj(ί, 2) + ιί(l, 2)] cos(t J/JSΦ)

(6.14)

Our goal is to bound <K2(</>)>5. So we need to bound <g(l, </>)>s. Use

|<cos(ί]/^Φ)>s|^l. (6.15)

Since |sin(x)|^|x|, Theorem 5.2 and the choice of μ (6.8) imply

(6.16)

where δ4 < 1/4.
Next we bound the integrations over x using hypotheses (H3) and (H4), Eqs.

(6.4) and (6.5), and the Cauchy Schwartz inequality. The final result is

(6.17)

Equations (6.10), (6.12), and (6.17) imply

1

So

I I
— P(Λ)-—log{$dμexp[K1(φ)]} =0(εδ). (6.18)
kT \Λ\
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Step 2 (The Long Range Interaction). Define a second interpolating function on
[0,1] by

Then

and

by a dominated convergence argument
Let

where N(t) is defined so that < >f is a probability measure. Then

Expanding :cos(f]/βφ): in a power series this

Using Theorem 5.2 and the choice of μ (6.8) this is

n I Λ \n

Hence

— log limZ(ί)

Combining (6.18), (6.20), (6.21), and (6.24) we have

Since the 0(εδ) is uniform in /I we can let Λ.-»IR3. One can show

lim i-l

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)
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(See pp. 175-177 of [7] for a similar calculation.) A dominated convergence
argument shows that as μ-»0 the above

' (6 26)

which completes the proof. Π

Proof of Theorem 3.2 (The Correlation Functions). The key idea is to do a

complex translation φ-»φ + ij/βφ in the functional integral expression forρ(m),

where i }//? tp is the stationary point of this integral. We will take m = 2. The proof
of the general case is essentially identical.

Throughout the proof we will work with finite volume correlation functions.
We estimate the difference

Our estimate is a sum of two terms. One goes to zero faster than β uniformly in A.
The other term goes to zero as /I—>IR3. So taking the infinite volume limit of our
estimate Droves the theorem.estimate proves the theorem

We let

with 0<(54< 1/6. As always we work in units with /D = 1. The proof is broken up
into seven steps.

Step 1 (Complex Translation). Let C be the covariance operator of dμ (4.4). Let

K = (C~1 + 1Γ1. Let

(6.28)

where δy is the delta function centered at
With

•5"
(6.29)

[ — A + m2_ — A + m+

So K has kernel

+ - . (6.30)

and

(6.31)
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We will need two bounds on ψ(x). Since K(x,y) is a positive definite function

= 2πμ

for sufficiently small μ. As μ->0, m_->l, so (6.30) implies

2π|x-y|

for sufficiently small μ. Thus

(6.32)
πμ

y2\

for sufficiently small μ.

We perform the complex translation φ(x) -^φ(x) + i]/βψ(x) in the functional
integral for ρ^2) [see (4.8) and (4.11)]. The result is

(6.34)

, (6.35)

where

(See p. 171 of [7] for a discussion of translations in Gaussian measures.)
Using the definition of ψ (6.28)

R(φ) = ~Re X KΛ(φ+i]/βψ) - Σ £„((£)-2zJ[cosh03φ)-l], (6.36)
L n = l J n = l A

= lm\ YL,=ι
= Σ κ,(0).
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Note that Z(Λ) = jdμexp[K(0)]. The definitions are arranged so that z2exp(,4)
converges to the approximation while S, R(φ\ and I(φ) converge to zero.

Step 2 (Computing A). Using (6.31),

As μ->0, m+-»oo, and w_->l. So

A little work shows C(y,y) — K(y,y)-+— -. Thus
4π

. (6.37)
π

3 (Bounding S). We want to show that S is o(ε) + o(Λ). From (4.10),

The first term ->0 as μ->0. The second term ->0 as β->0 by hypothesis (H5).
The bounds (6.32) and (6.33) can be used to show

2z f cosh(βιp) — 1 w2\<czβ4 f w4

j \r- T / O τ — J.

A

= 0(ε3/2).

Finally,

y J t/;2->0 as /L->R3. (6.38)

Thus

S = o(s) + o(A). (6.39)

Step 4 (Bounding Kn(φ + i]/rβιp) — Kn(φ)). In this step we show that

Σ \Kn(Φ + i }/βψ) ~ Kn(φ)\ = 0(3). (6.40)

We apply Lemma A.I of Appendix A with

vi(x>yi)=—τ=yΦ(χ), (6.41)
Vβ

), (6.42)
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where

A(x9y) = vs(x9y9y19δ1) + vs(x9y9y29δ2). (6.43)

Hypotheses (HI), (H2), (H3), the choice of μ and Eq. (A.9) imply

r' = o(ε), (6.44)

and

Σ f dx |exp [ - βA(x, y)] - 1| = o(s2) . (6.45)
V

Bounds (6.32) and (6.33) imply

]-l| = 0(e). (6.46)

From (6.32), (6.45), and (6.46),

Σf^lexpC-Mfoy)]-1!^6)- (6.47)
y

Lemma A.1 now implies

\Kn(φ + i J/0φ) - Kn(φ)\ ί£ czθ(ε) [o(ε)]" - 1

^cΈcKe)]"-1,

which implies (6.40).

Sίβp 5 (Bounding R(φ)). We split R(0) into two parts, R(φ) = R1(φ) + R2(φ\
with

/I

R2(φ) = Re [̂ 0̂ + i ]/βψfl - 2z J :cos(]/βφ) : cosh(βψ) (6.48)

Σ [
= 2

Using (6.32) and (6.33),

2z$\cosh(βψ)-l\ = 0(ε), (6.49)
A

SO

sup 1 (̂0)1 = 0(6). (6.50)
Φ

Using (6.45),

= zo(ε2)
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Along with (6.40) this implies

0)| = o(β). (6.51)
Φ

Step 6 (Bounding I(φ)). Let I(φ) = I1(φ) + I2(φ) + I3(φ) + I4(φ)9 with

I3(Φ)=}/]J$ΦΨ, (6.52)
Ac

I4(φ) = z Σ f si*1 ( y β jφ) '• eχp (~~ βyψ) ίeχp [ ~ βA(x, yj] — 1}
y A

4-Im Σ Kn(φ-sτi]/rβ\p) .
U=2 J

The argument that proved (6.51) shows

φ)\ = o(ε). (6.53)

Step 7. Define a probability measure by
Then (6.35) becomes

(6.54)

Equations (6.37) and (6.39) imply that the proof will be completed by showing

<exp lR(φ) + il(φ)-] > - 1 = o(s) + o(Λ) . (6.55)

Since < ) is even in φ and I(φ) is odd in φ9

<exp[Λ(ψ) + i/(0)]> = <exp[R(0)] {cos[J(0}] - 1}> + <exp[K(0)] - 1> .

Using (6.50) and (6.51), proving (6.55) reduces to showing

<exp[R1(φ)]>-l=o(e), (6.56)

and

<|cos[/(φ)]-l|> = o(ε) + ̂ ). (6-57)

Let

and

So

<exp[R1(0)]>-l= //(ίX^ί^Λ. (6.58)
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By (6.50)

sup /(ί) = 0(l)

So (6.56) will follow from

sup |<Λ1(φ)>f| = o(ε). (6.59)

)f is a positive sine-Gordon measure. So Theorem 5.2 implies

By our choice of μ (6.27) this is 0(ε1/2~δ4) with £4 < 1/6. Combining this with (6.49)
proves (6.59).

To prove (6.57) we use

- cos /. + cos

4(φ)\ + ̂ I,(φ}2 , (6.61)

which follows from |cos(α + θ)-cos(α)| ̂ |α|, |cos(θ)- 1| ̂ θ2. So (6.57) will follow
from

<|/ί(0)|> = o(e) + o(Λ) for i = 2,3,4, (6.62)

</1(0)2> = o(ε). (6.63)

< > is a positive sine-Gordon measure so Theorem 5.2 and the Cauchy-
Schwartz inequality imply

= 0(1). (6.64)

Inequalities (6.32) and (6.33) imply

2z J |sinh(j8φ) - Jϊφ| = o(ε) . (6.65)

These two bounds imply (6.62) for i=2.
Using (6.64),

(6.66)

which proves (6.62) for ί = 3. The case of z = 4 follows from (6.53).
To prove (6.63)

= < {[expOS/8πμ) - 1] sin [ ]/βφ(xί] + sin

1 2\

(6.67)
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using |sin(0)|^|θ|, |sin(θ)-0|^|0|3. By Theorem 5.2 the above is

θ(β3/2~3*4), (6.68)

with (54<l/6. (6.32) and (6.33) imply

A

Combining this with (6.68) proves (6.63). Π

Proof of Theorem 3.3 (The Density). The proof is almost immediate from the
proof of the previous theorem for m = 1. We actually wrote out the proof for m = 2,
but we will refer to it as if it were the proof for m = 1.

Recall

σ— lim -—- JdyQ^(yι +1). (6.69)

In the previous proof we estimated a quantity like

Λ '~ 16π'

Our bounds on this expression were independent of A and y except for two terms.

They were (6.38) | f φ2, and (6.66) <|/3W>)|>.

Using (6.66) it suffices to show

lim —-

for p = l,2. (Remember φ depends on y.) This follows from (6.33) and our
conditions on how Λ->IR3. Q

Appendix A. The Mayer Expansion

All the Mayer series in this paper have the same two body interaction υs = υγ

+ v° + v[. They differ in the one body interaction υv Following Brydges and
Federbush [3] these Mayer series are given by

( _ K\n ~ 1 7"

(η,σ) Σ $ d»Xυs(η)
n

exp[-/>»»]l7(σ)exp[-/J t v^ί)}, (A.1)
L ;=ι J
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where
π - l Γ

vSW = Π \vγ(ί+l,η(ί)) + v°ε(i+ l,η(ίf)

M(Ϊ, 7) = exp [ - βιfe(i, j j ] -1,

ifc(*)= Σ sΛ
l ^ i < j ^ n

= Π

i = 2

Empty products are taken to be 1. The sum over η is a sum over all functions
?/:{l,2, ...,rc-l}-»{!,2, ...,n-l}, such that

rtO^i (A.3)

The three Mayer series we use are as follows. Kn(φ) is Jfn(Vι) with

^t (0=^1 (X > y/) = —7= y/0Cχ, ) (A.4)

v^
Kπ(φ) is ^(Vi) with

_ w

— i m

Vi (0 = -/Ξ= y/0(^) + yίψfri) + Σ ^fe y, ^ ̂  )

As shown in [3]

I J^M ̂  z exp [/?!!»! || _ +εB(ε)]2|yl|r"-1

) (A.7)

where

(A.8)

|| II j and || ||r are defined by (6.3). 11̂  || _ is the sup norm of the negative part of the
real part of vv For each of our three Mayer series

β bil l -=0(1). (A.9)
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To see this note that the stability bound (6.2) with n = 2 implies

β Σ %(*> 7 y? δj) ^ ~ 2mε£(ε) ̂  - 2mB
7=1

by hypothesis (H3). And φ is always such that 11/^11^ = 0(1). The condition for
convergence of the Mayer series is r< 1.

In the proof of Theorem 3.2 we need a bound on the difference of two Mayer
series.

Lemma A.I.

with

(A.ll)

Proof. The difference between the two JΓn's is equal to the expression for ^(t^)
with the factor

ίexpf-j8Σ»ι(θ]-l
I L i = l J

included in the integral. We rewrite this factor as

ΠίexpC-^Ol-l + l}-!^ Σ Πίexp[-^ι(0]-l}, (A. 12)
i = l SΦφ ίeS

where S is summed over all nonempty subsets of {1,2, ...,«}.
Each term in this sum contains at least one factor expl-βϋ^ίj]-!. We

bound any other factors of exp[ — βvi(i)'] - 1 by exp(j8 H^ || _)+ 1. Then we bound
the integrations over x in the usual way except that we bound the integration over
xίo last. (Think of i0 as the base of the tree graph η.) This last integration gives a
factor of

Since (A. 12) has 2"- 1 terms, the lemma follows.

Appendix B

In this appendix we verify that the two examples of vε given in Sect. 2 satisfy
hypotheses (HI) through (H5) of Sect. 6.

/. Hard Cores (2.2). Let

vr

ε = vε, v°ε=V; (B.I)
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(HI), (H2), (H4), and (H5) are immediate. Unfortunately (H3) is not true. We must
replace our system with an equivalent one in which (H3) holds.

We do this using a generalization to the Yukawa potential of Newton's
theorem for the Coulomb potential. Let |x1— x2\^2c0s^D. Then the potential
energy due to the Yukawa potential

4n\x-y\

of charges γί and γ2 at xv and x2 is equal to the potential energy due to this
Yukawa potential of two spheres of radius c0ε/D with centers at x± and x2 and
total charges y x and y2 distributed uniformly on their surfaces, where

Λ c0ε

l

Thus we can redefine vγ(x1,γ1 ',x2,y2) to be the potential energy due to the
potential (B.2) of two spheres of radius c0ε/D at x^ and x2 with charges y± and y2

uniformly distributed on their surfaces. For the long range part of the interaction
VL we still treat the charges as point charges. So the sine-Gordon transformation is
not affected by our redefinition of vγ.

vγ is positive definite so the stability bound (6.2) holds with — — equal to 1/2 of
^ D

the self energy of these spheres. (H3) follows by computing this self energy.
Since we have changed the definition of vγ we must recompute ||uy|| 1 and | | fy | | 2

We leave it to the reader to check that these norms behave essentially as before.

//. Yukawa Potential (2.3). Let υ°ε=vB9 1£ = 0; (HI) and (H5) are immediate. (H2)
and (H4) take a little calculation.

We can assume that μ>c0ε, since in the proofs ε->0 faster than μ. Hence
vγ + v°E is positive definite. (H3) follows by computing vγ(i, ί) + v°ε(i, ί).
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