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Stability in Yang-Mills Theories
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Abstract. At a solution of the Yang-Mills equations on S4, or the Yang-Mills-
Higgs equation on IR3, the hessian of the action functional defines a natural
second order, elliptic operator. The number of negative eigenvalues of this
operator is bounded below by a multiple of the relevant topological charge.
The proof of this assertion requires a relative index theorem for Dirac-type
operators on IR", n^3.

I. Introduction

The Yang-Mills equations on S4 and the static Yang-Mills equations on IR4 (the
Yang-Mills-Higgs equations on IR3) are both variational equations of functional
on topologically interesting spaces. A solution to the equations is a critical point of
the functional. At a critical point, the differential of the functional is zero. The
second variation of the functional is called the hessian, and it is a bilinear form on
a suitably defined Hubert space. The index of the critical point is defined to be the
number of eigenvectors of the hessian which have negative eigenvalues. The
purpose of this article is to prove that because of topological considerations,
certain values of the index do not occur for the Yang-Mills functional on S4 and
the Yang-Mills-Higgs functional on IR3.

Consider first the SU(2) Yang-Mills equations on S4 (cf. [1, 2] for reviews). The
function space, 33, is the space of isomorphism classes of pairs (P, A) where P-> S4 is
a principal SU(2)-bundle and A is a smooth connection on P. With respect to the
C°°-topology, 23= (J 23 n is the disjoint union of spaces 23 „ which are indexed by

n

neTL. The integer n is minus the second Chern class of Pχ

Su(2)^2 O t *s *ne

physicist's instanton number.) Bourguignon et al. [3] have shown that every local
minimum of the Yang-Mills functional, 2)9Jl, on 23 n is (anti) self-dual. Non-
minimal critical points of ΪJSDΐ have yet to be discovered, but if one exists, the
following result applies:
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Theorem 1.1. Let P-+S4 be a principal SU(2) bundle of degree n, and let A be a
connection on P9 and a solution to the Yang-Mills equations. Then the index, /c, of the
hessian of ^SDΐ at A satisfies fe^2(|π| + l) or else k = Q and A is (anti) self-dual

A theorem like Theorem 1.1 is suggested by the work of Atiyah and Jones [4].
Results for principal G-bundles over S4 where G is a simple compact Lie group

with rank>l are stated in Theorems 2.1 and 2.2.
For the SU(2) Yang-Mills-Higgs equations on R3 (cf. [5, 6]), the relevant

function space is

93 = {Isomorphism classes of smooth pairs (A, Φ), where A [a connection on
IR3xSU(2)] and Φ [a section of ]R3 x su(2)] are such that (1)

lim |Φ|(;c)-»l. (2) The value of the Yang-Mills-Higgs functional, α of
|x|-«>

Eq. (5.1), is finite at(A,Φ)}.

There is a natural topology for 93 with respect to which 93 = (J 93n, ntTL [6]. The
n

critical set of absolute minima of α on 93 n are the solutions to the BogomoFnyi
equations [Eq. (5.4)], and every local minimum of α on 93 n is an absolute
minimum. A non-minimal critical point of α in 93 0 is known to exist. For this and
other possible critical points, the following a priori result applies:

Theorem 1.2. Let [(4, Φ)] e 93B be a solution to the SU(2) Yang-Mills-Higgs
equations on IR3 in the Prasad-Sommerfield limit. Then the index, k, of the hessian of
α at (A, Φ) satiesfies k ̂  n +1 or else k = 0 and (A, Φ) satisfy the BogomoΓnyi
equations.

The proofs of Theorems 1.1 and 1.2 rely critically on the fact that IR4, and
IR3 x S1 are quaterionic manifolds in the sense that their bundles of anti-self-dual
2-forms admit three orthonormal, covariantly constant cross-sections. The only
compact, oriented 4-manifolds with this property are the 4-torus with its flat
metric and a K3 surface with a Yau-metric [7]. On these manifolds, an analog of
Theorem 1.1 is true. This is stated as Theorem 3.8.

There are non-compact examples of quaternionic manifolds, for example the
self-dual gravitational instanton metrics of Penrose, Gibbons and Hawking, and
Hitchin [8]. An analog of Theorem 1.1 should be true for these manifolds also.

It is of course possible that Theorem 1.1 is empty in the sense that there may
not be any solutions to the Yang-Mills equations on S4 which are not either self-
or anti-self-dual. Nonetheless, Theorem 1.1 may still have implications for the
topology of the instanton moduli spaces. The theorem suggests the following
conjecture:

Conjecture. The inclusion of the moduli space of self-dual connections on a principal
SU(2) bundle P—>*S4 of degree n into 93 n induces an isomorphism of the pointed
homotopy groups πfc( ) for k^2\n\.

Indeed, if the Yang-Mills functional satisfied Palais-Smale Condition C [9],
then the conjecture would be an immediate corollary to Theorem 1.1. However,
the Palais-Smale condition is not satisfied here. A conjecture of this type was made
by Atiyah and Jones [4].
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For the Yang-Mills-Higgs theory, Theorem 1.2 suggests the identical conjec-
ture for the moduli spaces of solutions of the BogomoΓnyi equations, but with the
isomorphisms of πk true for k<\n\. The reader should compare Theorems 1.1 and
1.2 with the results of Eels and Wood on harmonic maps from CP1 to CPn

(Proposition 9.2 of [10]) the conjecture here has an analogy in the harmonic map
problem with the homotopy approximation theorems of Segal in [11].

The first half of this paper, Sects. 2-5, is an investigation into the formal
relationship between the quaternionic structures of IR4 (and IR3 x S 1 ) and the
hessian of the Yang-Mills functional. The principal result is Theorem 3.2. The
consequences of this theorem for the Yang-Mills equations on S4 are discussed in
Sect. 4 the consequences for the Yang-Mills-Higgs equations on IR3 are discussed
in Sect. 5. Sections 6-9 contain the analysis to justify these formal considerations.
Of some independent interest is a relative index theorem on IR", n ̂  3 for Dirac
type operators which is stated as Proposition 7.2. The assumptions involved differ
considerably from the usual weighted, L2 index theorems in the literature they are
tailored for the situations which are typical to gauge theories. The proof occupies
Sects. 6 and 7. In Sect. 8, the index theorem is applied to a specific operator arising
in Yang-Mills theory. In Sect. 9, the index theorem is applied to the analogous
operator in Yang-Mills-Higgs theory on IR3. One auxiliary result is a rigorous
justification of Weinberg's index calculation in [12].

II. The Yang-Mills Hessian

Suppose that M is an oriented Riemannian 4-manifold with no boundary, and
that G is a compact, simple Lie group. Let P->M be a principal G-bundle and
denote g = P x A d g and g = Lie Alg(G). The Yang-Mills action is a functional on
the space of smooth connections on P : For a connection A on P,

(2.1)

Here FA is the curvature of A; it is a section of g x Λ Γ*, where T*-»M is the

cotangent bundle. The L2-norm in Eq. (2.1) is the norm induced by the
Riemannian metric on T* and the Killing form on g.

The curvature of any connection on P satisfies the Bianchi identity,

DAFA = 0. (2.2a)

A solution to the Yang-Mills equations is a smooth connection, A, whose
curvature also satisfies

DA*FA = Q. (2.2b)

Here, DA : Γ (g(χ) Λ Γ*) ->Γ(g® Λ T*) is the co variant exterior derivative that is
P P+ 1

defined by A. The * operator in Eq. (2.2b) is the usual Hodge dual.
The hessian at A is the following bilinear form on Γ(g(x)T*)

ay2. (2.3)
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As *2 = 1 on Λ T* * induces the decomposition Λ T* = P, Λ T*
2 ^ 2 + 2

0 P_ Λ T*, where P+ =£(1 ± *). Write F± = P±FA and define operators

P±DA:Γ(&®T*)^Γ(&®P± Λ T*).

The hessian as defined above may be written as

ξ>A(a, 6) = 2(P±DAa, P±D»2 + 2<F±, α Λ 6 + 6 Λ α>2 . (2.4)

Because the Yang-Mills equations are © = AutP invariant, the hessian has an
infinite dimensional null space : If A is a solution to the Yang-Mills equations, then
ξ>A(a, ) = 0 for all a = DAφ with φeΓ(§).

This pathology can be remedied by considering 9)SDΐ( ) as a functional on the
space 23 of isomorphism classes of pairs (P,A) of principal G-bundles P->M and
connections A on P. When M is compact, one can do this in a straightforward way
by defining 23 as an Lk 2(k^2) Hubert manifold as in [13, 14]. When restricted to
the tangent space to an orbit [4] e 23, ξ>A( , ) defines a bounded, elliptic bilinear
form.

An alternative approach, which is used here, is to consider for a connection A
on P, the bilinear form

§>, b) = ξ)A(a, b) + <DA*a, 1V6>2 . (2.5)

This is an unbounded, symmetric form on L2(g(χ)Γ*); when M is compact, its
dense closed domain is L1 2(g(x)T*). The associated, formally self-adjoint operator
is obtained by integrating by parts in Eq. (2.5): Define ΔA by

(2.6)

HereDί:Γ(g(χ) Λ Γ*)->Γ(§® Λ T*) is the formal L2-adjoint of D.. The zeroth
p p-i

order term in Eq. (2.6) is

P_F(a)= -*(F_ Λ ίz-fl Λ F_) . (2.7)

When M is compact, the index of ξ>A is precisely the number of eigenvectors of ΔA

with negative eigenvalue. If A is irreducible, then the nullity oϊΔA and the nullity of
ξ)A on the tangent space to \_A] e 23 agree.

The index and nullity of ΔA on *S4 are restricted by the two theorems below.

Theorem 2.1. Let G be a compact, simple Lie group, and let P— >S4 be a principal
G-bundle. Let Abe a smooth, irreducible solution to the Yang-Mills equations on P
which is neither self-dual nor anti-self-dual. Then the number of eigenvectors of ξ>A

with nonpositive eigenvalue is bounded below by ^|/?1(g)| + 2 — dimG. Here, p^Q) is
the first Pontrjagin class of g.

Theorem 2.2. Let G = $U(2)or SU(3) and let (P,A) be as in Theorem 2.1. The
number of eigenvectors of ξ>A with negative eigenvalues is bounded below by

ίlPι(9)l + 2.

Recall that when G is simply connected, the number p1(§) classifies, up to
isomorphism, the principal G-bundles on a compact, oriented 4-manifold without
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boundary. For G = SU(2), p1(g) = 8fc, where k is the Pontrjagin (instanton) number
referred to in Sect. 1. Thus, Theorem 2.2 implies Theorem 1.1. In general, /^(g) can
be computed using the Chern-Weil formula:

Pι(§)=AfT r

β(^Λ ί IΛ» (2.8)4π M

where A is any connection on g and Tr is the trace on g given by the Killing form.

III. Formal Aspects

Crucial to the proofs of the theorems in Sects. 1 and 2 are the two facts: (1) The
4-sphere is conformal to R4 and (2) IR3 is IR3 x S^S1. Both IR4 and IR3 x S1 are
"self-dual, gravitational instantons." These are Riemannian 4-manifolds with the
property that the bundle P_ Λ T* admits a global, covariantly constant orthonor-

mal frame. On such a 4-manifold, the Riemannian curvature of the metric factors
through the traceless endomorphisms of P+ Λ T*; i.e., it is Ricci-ίlat with

vanishing anti-self-dual, conformal Weyl tensor. All of the formal manipulations
here for IR4 and IR3 x S1 are possible on such a manifold, cf. Theorem 3.8.

Let M denote IR4 or IR3 x S1. Let G be a simple, compact Lie group, and let
P->M be a principal G-bundle. Let 91 = {Smooth, finite Yang-Mills action
connections on P}. For notational convenience, denote (Px Adg)® Λ T* by gp.

P
For Aetyί, one defines the hessian, ξ>A, by Eq. (2.4) and one defines via Eq. (2.5)

the bilinear form ξ)A. These are both bilinear, symmetric forms which are defined
on /^(g1) - the set of smooth, compactly supported sections.

Let {ω.}?=! be a covariantly constant, orthonormal frame for P_ Λ T*. The ωl

define an action of the imaginary quaternions on T* and hence on g1. This action
is given by

ω ί(α)=]/2*(ω ίΛα), (3.1)

and

ωl(ωj(a)) = - δίja - είjkωk(ά). (3.2)

Here, ε123 = l and εijk is completely antisymmetric. Observe that the action is
point-wise isometric.

The action preserves the global inner-product <F^( )> ^(OX on ^(S1)- Let HA

denote the completion of /^(g1) with respect to this innerproduct. The Hubert
space HA is a space of locally L1 2 sections of g1 (cf. Lemma 6.3). Let 91AQHA be a
domain for ξ>A which is invariant with respect to the action in Eq. (3.1).

When exploring the index and nullity of ξ>A9 it is useful to consider the
restriction of ξ)A to a particular subspace, VA C 9ϊA.

Definitions.!. Let AeM. Define VA by VA = {aeKA:δAa = (}/2P__DAa,D*a) = Q}.

The relationship between VA and ξ>A is described in the next theorem, its proof
is the subject of the remainder of this section.
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Theorem 3.2. Let Ae 91. // dim j^ < oo, then dim VA is divisible by 4. Let EC$iAbe
the maximal subspace on which ξ>A is negative. If dim Erg ^dim VA, then there are at
least ^ dim VA + 3 — dimE eigenvectors of ξ)A with zero eigenvalue. Let G = SU(2) or
SU(3). Suppose that A is a solution to the Yang-Mills equations which is not self-dual.
Then

Proof of Theorem 3.2. As the {ω1} are covariantly constant, ω1 maps VA into itself.
In fact, forαeΓβ1),

ωj(ω\ ]/2P_DAa), (3.3)

and

'α = -(ω\ ]/2P_DAa) . (3.4)

Here, an abuse of notation is used to denote by ( , )(x) the natural pairing
T*®^1-^0 which is induced by the metric. Because the {ω1} acts isometrically,
one readily obtains

Lemma 3.3. Let AeW. Then VA admits an isometric, left action of the unit
quaternions; if dimVA< oo, then it is a multiple of 4.

Consider the restriction of ξ>A to the vector space VA. This restriction defines a
bilinear form h = ξ>A\VA given by

h(a,b) = 2(P_FA,a/\b + bΛay2 for a,beVA. (3.5)

The trick to proving Theorem 3.2 is to average the value of h( , •) over the action
of the quaternions. (Bourguignon et al. use a similar trick in [3].)

Lemma 3.4. Let Ae^Ά. Let h be defined as in Eq. (3.5). Then

Σh(ω\a\ω\ά)}=-h(a,a). (3.6)
7=1

Proof of Lemma 3.4. Observe that for any aeΓ(^\ the following equality holds:

ω' Λ α Λ α = 2~ 1/2α Λ *(ωl(a)) = - 2~ 1/2ωl(a) Λ *α .

Now one uses the previous line and Eq. (3.2) to deduce the sequence of equalities
below :

ω1' Λ ωj(a) Λ ωj(a) = 2~1/2ωj(a) Λ ^(ω^ω^α))) ,

= -2~ 1/2ωl'(α) Λ *α - 2' ί/2είjkωj(a) Λ *α/(α) ,

= - 2" 1/2ωί(a) Λ *α + 2" Il2είjka Λ *(ωj(ωk(a))) ,

= -2~1/2ω ί(α)Λ *a-2-1/2είjkεjklaΛ W(α)

= - 2 ~ 1/2α Λ *ωf(α) = - ω1' Λ α Λ a . (3.7)

As one can expand P_FA = Fi_ωί with Fl_ eΓ(g°), the lemma follows from Eq. (3.7).
Using linear algebra, one can draw from Lemma 3.4 some conclusions about

the eigenvalues of h on VA. The relevant linear algebra is provided in the next
lemma.
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Lemma 3.5. Let V be a real vector space of dimension 41 with metric ( , ). Suppose
that V admits a left action of the unit quaternions which is isometric. Let h be a
symmetric bilinear form which satisfies Eq. (3.6) for all ae V, where {ω7} is an
orthonormal basis for the unit imaginary quaternions. Let m = index of h. If m < I
then h has at least 4(1 — m) eigenvectors with eigenvalue zero.

Proof of Lemma 3.5. Let V1 — Span {eigenvectors with negative eigenvalue},
V2 = Span {orbit of Vl under the left action of the unit quaternions} and let
F3 = F2

1. By assumption, dimF^m, so dimF2^4m and dim F3 ̂  4(m — /). One
must demonstrate that F3Cker/z. Let αeF3. Then necessarily, h(a9a) = Q. Indeed if
h(a, a) φO, then by Eq. (3.6), there exists a unit quaternion q such that h(qa, qa)<Q.
Observe that ae F3 implies qae V±. However, it is assumed that /z^O on Ff1 so one
obtains a contradiction unless h(a,a) = Q. By polarization, h(a,b) = Q for all beV3.
Because V^CV^, h(a,b) = Q for all beV1 as well. Finally, consider h(a,b) for
be V2nV^-. If this were to be nonzero, then by replacing b by — b if necessary, one
would have h(a,b)<0. Therefore one would have h(a + εb, α + εfo)<0 for all ε>0
sufficiently small. However a + εbeV^ so it must be true that /ι(α + εb,α + εfo)^0.
The conclusion is that h(a,b) = 0 for all Z?eF2nF1

1. Therefore, F 3£ker/z and
dimker/z^dimF3^4(; — m) as claimed.

To summarize, Lemmas 3.3-3.5 imply

Lemma 3.6. Let 4e2I5 and let 1= ^dimF^. The quadratic form ξ>A on 9Ϊ A has the
following property: There is an m dimensional subspace of VA on which ξ>A is
negative. If m < /, there is a subspace NA C VA of dimension greater than or equal to

4(1 -m) such that ξ>A(a,b) = Q for all be VA and each aeNA.

In continuing the proof of Theorem 3.2, assume for the sake of argument that
the integers, (mj) of Lemma 3.6 satisfy m<l. Consider ξ>A on any finite dimen-
sional vector space VACVC 9iA. Let nv be the number of eigenvectors of ξ>A\v with
negative eigenvalue. Necessarily, nv^m. If nv — m<4(l — m\ then ξ>A\v has
41— 3m— nv eigenvectors in NA with zero eigenvalue. As F can be taken arbitrarily
large, one obtains the first statement of the theorem with the observation that
when m</, 4/-3m^/ + 3.

To prove the second part of Theorem 3.2, suppose for argument's sake that
there is no vector subspace VC$1A of_dimension greater than k on which ξ>A is
negative and suppose that k<l Let NA = {aeVA:ξ>A(a, ) = 0} The vector space
NA is non-empty (see Lemma 3.6). Let UA = NAπNA. The space UA has dimension
^k — m. Let UA denote the span of the orbit of UA under the quaternion action
dim UA ̂  4(fc — m). Note that UA£NA and its orthogonal complement
ZA=UAπNA is quaternionic, άimZA^4(l-k) and ZAgNA.

When ZAή=θ, one obtains useful information about P-FA. In fact, a nonzero
element aeZA has the property that at each xeM and for each ie(l,2, 3) and

0. (3.8

Here, F_ =(P_FA,ω
ί)eΓ(Q°) and α v= ̂  -
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Now restrict to G = SU(2) or SU(3). To prove the second part of Theorem 3.2,
it is enough to establish that UA = 0. Suppose to the contrary that there exists
OφαeZ^. As neither of the Lie algebras of SU(2) or SU(3) contain the direct sum
of two nonabelian subalgebras, one concludes (cf. [3, 15]) that at each xeM, either

[F_,-Fl]=0 forall /Je(l,2,3) (3.9a)
or

[αv,α,]=0 forall μ, ve(l,2,3,4). (3.9b)

If G = SU(2), both (3.9a, b) must be satisfied everywhere. Since A is a solution to the
Yang-Mills equations on M, A is real analytic. As a£ VA is a solution to an elliptic
PDE on M with real analytic coefficients, a is also real analytic. The real analytic
properties of A and a have as their consequence that if either (3.9a) or (3.9b) is
satisfied on an open set U £ M, then it is satisfied globally, and so one or the other
is globally satisfied. Equation (3.9a) cannot be globally satisfied. Indeed, the Yang-
Mills equations imply that *DAP_FA = 09 and if Eq. (3.9a) were true, the
Weitzenbock formula for the operator P_DA*DA : Γ(P_g2)->Γ(P_g2) would imply
that

DA*DAF
l_=Q, ίe(l,2,3), (3.10)

where here, DA*DA : Γ(§°)->Γ(<j°). From Eq. (3.10) and the fact that P_FAeL2, one
would conclude that P-FA is covariantly constant - hence zero. This would
contradict the assumption that A is not self-dual. Therefore, Eq. (3.9b) must be
satisfied everywhere. As ae VA9

\\δAa\\2

2=Q. (3.11)

Due to the imbeddings of HA that are provided by Lemma 6.3, one can integrate
by parts in Eq. (3.11) to obtain the identity

There are no curvature terms in the Weitzenbock formula, Eq. (3.12), (cf. [13, 14])
because of Eq. (3.9b). Hence a is covariantly constant and because of Lemma 6.3,
α = 0. Thus ZA = Θ as claimed.

Now consider the case where M is an arbitrary self-dual gravitational
instanton. Formally, the preceding arguments are still true. Indeed, M can be
covered by a system of coordinates in which the metric is real analytic [16]. The
Riemannian curvature terms in the required Weitzenbock formulae conveniently
vanish also so except for the possible existence of covariantly constant sections of
Γ(g°), Theorem 3.2 remains true on such M. When M=T4 with its flat metric, or a
K3 surface with a Yau metric, a lower bound for dimF^ can be obtained with the
Atiyah-Singer index theorem [17]. In these cases, Theorem 3.2 yields

Theorem 3.8. Let M be smoothly conformal to the flat T4 or to a K3 surface with a
Yau metric. Let Gbea simple Lie group and let P^M be a principal G-bundle. Let A
be a smooth connection on P and a solution to the Yang-Mills equations. Then the
L2-index plus nullity of ξ>A is at least ^^(Px A dg)— |dimG r(M)+l, where
r(Γ4) = 0 αm/r(K3) = 8.



Stability in Yang-Mills Theories 243

IV. On R4 and S4

The results of the previous section can be applied to analyze the hessian of
Eqs. (2.4) and (2.5) on IR4 and also on S4. This results in proofs for Theorems 2.1
and 2.2. Before using Theorem 3.2, some technical notions must be introduced to
make the theorem less abstract and hence more accessible.

For Aetyί, let HA be the Hubert space that was introduced in Sect. 3.
The utility of the space HA is in the proposition below, it is the domain where

the hessians of Eqs. (2.4) and (2.5) are well defined. This proposition is proved in
Sect. 6.

Proposition 4.1. Let Aε 21. Then
(1) ξ)A is a bounded, bilinear form on HA.
(2) The number of eigenvectors of ξ>A with nonpositive eigenvalue is finite.
(3) ξ)A admits n eigenvectors with negative eigenvalue if and only if there exists a

vector subspace ECHA of dimension n on which ξ>A is negative.

In order to apply Theorem 3.2 to the form ξ>A it is necessary to know the
dimension of VA of Definition 3.1.

Proposition 4.2. Let AE&. Let δA = (]2P_DA,D%\Γ(§l)-^Γ(P_§2®$*\ and let
VA = kerδAnHA. Then dimF4< oo. Define

-\TrQ(FAΛFA). (4.1)

Then dimV^p^A). If A is a solution to the Yang Mills equations which is not self-
dual, then

The proof of Proposition 4.2 requires an index theorem for the operator δA.
This index theorem is constructed in Sect. 8 where the proof of Proposition 4.3 is
given.

The number p±(A\ AeW can be computed using a result of Uhlenbeck.

Proposition 4.3 (Uhlenbeck [18]). Let £>:S4\{south pole}-*IR4 be stereographic
projection (a conformal equivalence). Let Abe a smooth, finite action connection on
IR4 x G. As bundle with connection, (IR4 x G, A) is isomorphic to ($~ 1)*(P, A'\ where
P^S4 is a smooth principal G-bundle, and A is an L 1 > 2 connection on P which is
smooth over S4\{south pole}. In addition, p^A) defined by Eg. (4.1) equals

The next proposition is now an immediate corollary to Propositions 4.1, 4.2,
and Theorem 3.2.

Proposition 4.4. Let AeW on IR4. // ξ>A has m<\ |px(^)| eigenvectors with negative
eigenvalues it has at least ^\p1(A)\ + 3 — m eigenvectors with zero eigenvalue. Let
G = SU(2) or SU(3), and suppose that A is a solution to the Yang-Mills equations on
IR4 which is neither self-dual nor anti- self -dual. Then ξ>A has at least ^\pl(A)\ + 2
eigenvectors with negative eigenvalue.

This last result can be used to analyze the hessians on S4 by exploiting the
conformal invariance of the Yang-Mills equations. Suppose that A' is a smooth
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connection on a bundle P->S4. It is no loss of generality to assume that
where § = P x Ad 9. (Here, and in Sect. 8, the symbol "~" distinguishes a bundle over
S4 from a similarly defined bundle on IR4, where "Λ" is used.) Let (IR4 x G, A) be
isomorphic to (s~1)*(P,y4/). According to Propositions 4.1 and 4.4, there exist m
eigenvectors {at}™=1CHA of ξ>A with negative eigenvalue and Ίϊm<^pl(A\ there
exist n^^p1(A) + 3 — m eigenvectors, {bi}"=1CHAnVA with zero eigenvalue. The
data (IR4 x G, A, {αj, {&.}) pulls back via s to define data (P, A', {2f}, {£j) on S4.
Elements in HA pull back via s to elements in Ll 2(§1) Therefore {5., b_y} CL 1 > 2(§1).
This space is a maximal domain for the Hessian, ξ>A, and for ξ>A,. The Hessian is
conformally invariant in the sense that

(4.2)

for all a,beHA. However, ξ>A is not conformally invariant.
Suppose that A' is also a solution of the Yang-Mills equations on S4. In this

case, ξ>A, has the property that for any a.beL^ 2(§1) and φeL2 2(§),

ξ>A,(a + DAφ,b} = ξ>A,(a,b}. (4.3)

In order to exploit the above invariances, one uses the fact that for each
aeL1 2(§1)> there exists a unique φεL2 2(§)n(kerDyl0

1 which satisfies (cf. [13, 14])

D*,a + D*,DA,φ = Q. (4.4)

This fact allows one to conclude that for each ie(l, ...,ra), andjΈ(l, .. .,rc) there
exists a unique 0. (and φ^eL2 2(§)n(kerDyl0

1 such that aί = aί + DA/φi (and bj = bj
+ DA,φ) satisfies D*,α. = 0 (D^fe^O).

Equations (4.2) and (4.3) imply that the set {ai}^=1 span a vector space in
^i 2(9 X) on which ξ)A, is negative. Standard arguments imply at least m eigenvec-
tors of ξ>A, exist with negative eigenvalue. With Proposition 4.4, one obtains
Theorem 2.2.

In order to obtain Theorem 2.1, one must investigate the set {£,-}"= r Each bj is
a eigenvector of ξ>A, on S4 with zero eigenvalue. However, the set {/?,•}"= 1 is not
necessarily linearly independent. This can happen if and only if there is a linear
combination from {bj} which is equal to DA,ψ for some ψeL2 2(o). If beSpan{bj}
is such a vector, then b pulls back to IR4 via inverse stereo-graphic projection to
b = DAψe VA where φeΓ(IR4 x g). Using the fact that δA(DAψ) = Q one obtains the
following lower bound for dim Span {bj}.

Lemma 4.5. Let (P,^') be a smooth pair consisting of a principal G-bundle P-»S4

and a smooth connection, A on P. Let (IR4 x G, A) be isomorphic to (s~ 1)* (P, A). Let
K = {ψeΓ(]R4XQ):DAιpEVA}. Then dim K^ aim G.

The lemma is proved in Sect. 8. Observe that Proposition 4.4 and Lemma 4.5
imply Theorem 2.1.

V. The Yang-Mills-Higgs Equations

The Yang-Mills-Higgs equations on R3 (with no Higgs potential) are identical to
the static Yang-Mills equations on IR3 x S1. (See, e.g., [5], and [6] for a lengthy
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discussion of this system.) The circle acts on IR3 x S1 in the obvious way. Let
P'— >IR3 x Sl be a principal G-bundle; one can consider connections on P' which
are finite action solutions to the Yang-Mills equations on IR3 x S1 and which are
invariant with respect to the aforementioned circle action (cf. [19]). Such an
invariant connection is uniquely defined by a pair c = (A, Φ), where A is a
connection on P = I R 3 x G and Φ is a section of cj=]R 3 xcj. The action of an
invariant connection c = (A, Φ) reduces to the following integral over IR3 :

α(c) = ±$ {\FA\
2 + \DAΦ\2}d*x. (5.1)

R3

This functional is considered as a functional on

e = {Smooth c = (A, Φ) : α(c) < oo and lim |Φ| (x)-* ll (5.2)
1 ι*ι-»oo J

A critical point of α, ced, satisfies the Yang-Mills equations on IR3 x S1 these
are equivalent to the Yang-Mills-Higgs equations on IR3 :

AΦ ]=0. (5.3)

The formal adjoints D^ are defined with respect to the L2 inner-products on
Γ(g® Λ T*(IR3)). The self-duality equations on Bt^xS1 for an ^-invariant

P

connection given by c — (A, Φ) are called the BogomoΓnyi equations:

FA=±*DAΦ. (5.4)

Here, * : Λ Γ*(IR3)^ Λ T*(IR3) is the Hodge dual on IR3.
P 3-p

The motivation for introducing α and Eqs. (5.3) and (5.4) as the S1 invariant
Yang-Mills equations on IR3 x S1 is that IR3 x S1 is a self-dual gravitational
instanton. The action of Γ(P_ Λ T*(IR3 x S1)) on Γ(T*(IR3 x S1)) respects the S1-

invariant sections. Therefore, the formal results in Sect. 3 can be used to analyze
the hessian of α at a solution c = (A, Φ) to Eq. (5.3).

In the interest of brevity, only the case G = SU(2) will be discussed from this
point on.

Prior to presenting the results of the analysis of the hessian, certain auxiliary
facts and definitions must be introduced. The definitions will be given in terms that
are intrinsic to IR3 it should be apparent what the corresponding IR3 x S1

definitions are, as given in Sect. 3.
To begin, it should be pointed out that the space (£ is naturally topologized in

such a way that it is the disjoint union of path components, (£n, ne% [6]. The
integer n is the degree of the map Φ/|Φ| as a map from a 2-sphere of large radius in
IR3 to the unit 2-sphere in $ιι(2). A lower bound for the index of the hessian of α at c
will be given in terms of this integer n.

It is convenient to explicitly introduce the quaternionic structure of Sect. 3. Let
{τj}j= i be an orthonormal basis for the imaginary quaternions with τj* = —τj and

τ'V = -δij + εijkτk. The vector bundle g®(T*(R3)0IR) is isomorphic to §' = § x H,
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where H is the quaternions. This isomorphism sends ψ = (α, φ) to ψ = akτ
k + φ,

where ak = —k _I αe Γ(§).

Corresponding to the space HA of Sects. 3 and 4, one has

Definition 5.ί. Let c = (A,Φ)e<ί. Define Hc to be the completion of Γ0(§') in the
norm defined by the metric

The bilinear form §c at c = (X,Φ)e(C is defined initially on Γ0(g') to be

£M»V>2) = <V^V>2>c + 2^^

where ιpi = (ai,φί)EΓ0(o>') for i=l,2.

The analog of Proposition 4.1 follows; it is proved in Sect. 6.

Proposition 5.2. Let ce&. Then
(1) §c is 0 bounded, bilinear form on Hc.
(2) The number of eigenvectors of §c with nonpositίve eigenvalue is finite.
(3) §c admits n eigenvectors with negative eigenvalue if and only if there exists a

vector subspace ECHC of dimension n on which ξ>c is negative.

The number of negative eigenvalues of ξ>c for ce(£n a solution to Eq. (5.3) is
stated in Theorem 1.2. If ce(Ln is not a solution to Eq. (5.3), one has

Theorem 5.3. Let ce&n. If ξ>c has m<\n\ eigenvectors with negative eigenvalue, it
has at least \n\ — m + 3 eigenvectors with zero eigenvalue.

Proof of Theorems ί.2 and 5.3. The formal aspects of the proof are provided in
Sect. 3 it is simply a matter to check that the results therein have the proper
S1-equi variance. In proving the theorems, one can restrict to the case n ̂ 0 with no
loss of generality.

In the n^O case, the S x -equivalent version of Definition 3.1 is

Definition 5. 4. Let ce(L Define the first order operator Ϊ>C:Γ(§')-*Ά§') by

Define Fc = kert)cnHc.

Observe that the unit quaternions act on Vc isometrically by multiplication
from the right, ιp-^ιph for ψεVc and fteH. This is the action described by
Lemma 3.3.

The dimension of Vc is bounded from below using an index theorem for
operator £>c.

Proposition 5.5. Let n^Q and let ce(£n. Then 4n^dimF c< oo. // c is also a solution
to Eq. (5.3) but if c is not a solution to Eq. (5.4) then 4(n+ l)^

The proof of this last proposition is technical, and it is provided in Sect. 9.
One must now check that the proof of Theorem 3.2 can be done in the

S^-equi variant context; this is straightforward and omitted here. Observe that
Theorems 1.2 and 5.3 are direct consequences of Proposition 5.5 and Theorem 3.2.
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VI. Quadratic Forms

In order to prove Propositions 4.1 and 5.2 it is first necessary to investigate the
properties of certain quadratic forms on the space of sections of a vector bundle
over IR", n = 3, 4. It is not a lot of extra work to consider the more general situation
below.

Consider a quadratic form, β, of the following type :

β(α,b) = <α?fc>Q + <α,«(fe)>2. (6.1)

Here, α, b are compactly supported sections of a Riemannian vector bundle £-»IR",
n>2 with finite dimensional fiber, V; 9ΐeΓ(EndO; < , >2 denotes the L2-inner
product on Γ(£); and < , >Q is a metric on Γ(ζ). The metric < , >Q is assumed of
the form

(6.2)

with geΓ(EndC) and A is a smooth, metric compatible connection on ζ. The
following restrictions on q and 9ί are required :

Definition 6.1. A section 9ϊcΓ(EndO satisfies Property * with respect to a metric
< , •>£ on Γ(C) if the following is true:

Let χr denote the characteristic function of the set Br = {xe]Rn: \x\<r}.
Property * is satisfied if, given ε>0, there exists r = r(ε)<oo such that for all
compactly supported a,beΓ(ζ\

|<(1 - χr) α, 5R(fc)>2| ̂  ε<α, α>^/2 <fe, b>^/2 . (6.3)

A quadratic form Q is said to be admissible if it can be written as in Eqs. (6.1) and
(6.2) such that 9ΐ satisfies Property * with respect to < , >Q.

After investigating the properties of quadratic forms which are admissible, the
Yang-Mills and Yang-Mills-Higgs theories are used to provide some natural
examples of admissible forms. The section ends with the proofs of Propositions 4.1
and 5.2.

Henceforth, Q will denote an admissible quadratic form. For discussing the
properties of β, some convenient function spaces are provided in the next
definition.

Definition 6.2. Let Γ0(ζ) denote the space of compactly supported sections of ζ.
Define HQ as the Hilbert space completion of Γ0(ζ) in the inner product <α, b>Q.

The lemma below states that the elements in HQ are sedtions of ζ.

Lemma 6.3. LetψεHQ. Then

If % < n — 2, then

(n-α-2) ( l+α)

2 '
(6.4)

Proof of Lemma 6.3. To establish Eq. (6.4), observe that because the connection,
A9 is metric compatible, one has for smooth a the pointwise inequality
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\VAa\(x)^\d\a\\(x) a.e. (6.5)

The first assertion of the lemma follows from Eq. (6.5), cf. Chap. 2 of [20]. The
second assertion also follows from Eq. (6.5) but for numerical constants, the proof
is identical to the proof of Lemma 5.4 in [21].

Lemma 6.4. The form Q extends to a smooth, bounded, symmetric form on HQ.

Proof of Lemma 6.4. The extension of Q to HQ is an immediate consequence of
Eq. (6.3) and Lemma 6.3.

It is worth remarking here that Q defines an unbounded, symmetric form on
L2(ζ'9μdnx), where μEC°°(IR") satisfies the growth condition μ(x)^ const \x\~2. A
fact which is not proved here is that HQr\L2(ζ μdnx) is the maximal closed domain
for β onL2(ζ;μdnx).

Equation (6.3) implies the following useful inequality: Given ε>0, there exists
c(ε)< oo such that for all 0eHQ,

(1 - ε) <0, a)Q g β(α, a) + φ) ( sup |«(χ)|) <χ(ε)0, α>2 . (6.6)
\\x\<r(ε) )

Consider the eigenvalues of Q.

Definition 6.5. An element αeHQ has eigenvalue E if for all beHQ,

. (6.7)

Concerning nonpositive eigenvalues, one has

Lemma 6.6. Let Q be an admissible form. Then (1) the number of eigenvectors of Q
with nonpositive eigenvalue is finite and (2) there exists a vector space EcHQ on
which Q is negative if and only if the number of eigenvectors of Q with negative
eigenvalue is greater than dimE.

Proof of Lemma 6.6. The proof of (1) is strategically like the proof of Theorem 3.2
in [22]. Let aeHQ be an eigenvector with nonpositive eigenvalue. Observe that
due to Eqs. (6.6) and (6.7), for any R>0

l£\\a\\^z<XRa,a>2> (6 8)

where z< oo is independent of α. Generality has not been lost by setting ||α||g = 1.
Observe that if α is a convex linear combination of //^-eigenvectors, {0.} with
nonpositive eigenvalues, then a also satisfies Eq. (6.8). Each eigenvector 0 is a
solution to an elliptic, 2nd order PDE on BR+ί. Thus, one obtains with the
Friedrichs Lemma (cf. Theorem 3.5 of [22], also [23]) and Lemma 6.3 the estimate

\\^i\\C^BR^l\\^i\\2,BR+^^2\\a\\Q = Z2' (6 9)

Here, z± and z2 are constants which depend on the eigenvalue of α/? and on R. As
Q( , ) is bounded from below, and since the eigenvalue of 0. is assumed to be
nonpositive, the constant z2 is independent of 0.. Equation (6.9) is also valid when
α is a convex linear combination of eigenvectors 0. with nonpositive eigenvalue. At
this junction, the Gromov and Lawson argument is valid word for word : Choose
an ε-dense set {xm}^= 1 for BR (each xeBR is within ε of some xm). If the number of
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eigenvectors with nonpositive eigenvalue is greater than JVdimF, there exists a
convex linear combination a = Σi(xiai of L-eigenvectors, αί? with nonpositive
eigenvalue which vanishes on each xm. Thus, for all xeBR, |α|(x)^z2ε and so
||α|| 2.BR ̂  |BΛ|z1ε. For ε sufficiently small, this contradicts Eq. (6.9). This establishes
an upper bound which proves Statement (1) of Lemma 6.6.

Proof of Statement (2) of Lemma 6.6. The if part is obvious. The only if part is a
standard proof by induction: Suppose there exists / (^0) eigenfunctions {βj|=1 of
Q with negative eigenvalue and suppose that there exists aeHQ which is
orthogonal to {ai}

l

i=1 and Q(a,a)<0. Statement (2) follows when it is established
that an eigenvector al+1 exists with negative eigenvalue which is orthogonal to
{0Ji=ι The existence of al+ί is proved by minimizing Q over
Hl = {bεHQ: \\b\\ H =1 and <fo,α >ρ = 0 for ie(l, ...,/)}. The weak convergence in
HQ of a minimizing sequence, {bΛ}CHl for Q is guaranteed by Eq. (6.6), and
Lemma 6.3. Let b denote a weak limit. The weak convergence implies that

<Mi>Q = 0 for ie(l,.. .,0,

and

<6,fe>Q^fllim<6β,6β>Q. (6.10)

The fact that 91 satisfies Property * [see Eq. (6.3)] implies that the function
<2i-»<fl, 5R(α)>2 from HQ to IR is weakly continuous. Thus

Q(b9b)Z]imQ(bΛ9ba)<0. (6.11)
α-^ oo

From Eq. (6.11), one concludes that fcφO. The vector \\b\\QlbeHl; therefore
Eq. (6.11) implies a priori that Q(b, b) = mϊHl Q( - , -) and that \\b\\Q = l. The con-
clusion is that Q takes on its minimum on Hl at b. The differentiability of Q on HQ

implies that al+ί —b is the required eigenvector.
As a parenthetical remark, it is worth noting that the number of eigenvectors

of Q with negative eigenvalue is the same as the number of L2(ζ;μdnx)-
eigenvectors of Q with negative eigenvalue when Q is considered as an unbounded
form on L2(ζ;μdnx). Here as before, μ(*) = const \x\~2 is a smooth function.

Examples of admissible forms are given by the following lemmas.

Lemma 6.7. Let Ae*Ά on IR4. Let δA be as defined in Proposition 4.2, and let δ^
denote its formal L2-adjoint. The quadratic forms <<5*(-)><5*(')>2 on Γo(P-Q2®Q°)
and (δA( ),δA(-)y2

 an^ &A on ^(δ1) are admissible.

Lemma 6.8. Let c = (A, Φ)e£ be as defined in Sect. 5. Let Dc be as in Definition 5.4,
and let D* be its formal L2 adjoint. The quadratic forms <X)C( ), ̂ c( ))2'
<t>c*( ), £?(•)> 2 and 6C on Γ0(g') are all admissible.

Proof of Lemma 6.7. One can write each of the three quadratic forms of the lemma
as follows: Denote the form in question by Q. Then for compactly supported

ΨvΨ2> Q(ψl9ψ2)=<rAψ19rAψ2>2 + <ψl9FQ(ψ2)y29 (6.12)
where F Q ( - ) in each case is a matrix with coefficients which are linear com-
binations of the components of the curvature of FA for Ae*Ά. Equation (6.12) is
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derived from the Weitzenbόck formulas for δA and δ^ in [13, 14]. Hence, each Q in
question is of the kind described in Eq. (6.1). To establish that FQ satisfies Property

* with respect to the norm HF^OIU' one uses ̂ e ̂ act ̂ at ^4e^2 Indeed, given
ε>0, there exists r(ε)<oo such that \ \ ( ί — χ r ) F A \ \ 2 < ε . Thus, for compactly sup-
ported ψ19ψ2,

The first line above uses Holder's inequality, and the second line uses Lemma 6.3.
Hence Property * is satisfied by FQ( ) as required.

Proof of Lemma 6.8. The form §c is given in Eq. (5.6), and the other forms in
question can be re-expressed as follows :

? φ2>c + <φ1? G_(φ2)>2 ,
(6.13)

> Ψ2>c ~ <Ψl> G + (Ψ2Ϊ>2 >

where ψί = (ai,φi)eΓ0(§') for z = l,2 and

G±(ψ) = τ&sWlFw φ] + UA φ]) - (6-14)

Hence each form is of the kind given in Eq. (6.1). The proof of admissibility
requires additionally, Lemma 6.6 of [6]. Using this result, the proof of Lemma 6.8
is completely analogous to the proof of Lemma 6.7 and it is left to the reader.

Proof of Proposition 4.1 ana 5.2. The propositions follow immediately from
Lemmas 6.4, and 6.6 given a priori Lemmas 6.7 and 6.8, respectively.

VII. Index Theorems

In both Proposition 4.2 and Proposition 5.5, one is required to compute the index
of a first order elliptic operator X) : Γ(£)->Γ(ζ')5 where £, ζ'-*ΊB? are vector bundles
with finite dimensional fibers F, F', respectively. In both cases, the operator X) has
the property that the quadratic form

ρφ(. ,•)=<£(•), £( )>2 (7.1)
is of the type discussed in Sect. 6, Eq. (6.1); and in both cases, Property * of
Definition 6.1 is satisfied (see Lemmas 7.3 and 7.4).

Definition 7Λ. Let T) :Γ(ζ)-+Γ(ζ') be a first order, elliptic operator with smooth
coefficients. Let D* :Γ(ζ')^>Γ(ζ) denote the formal L2-adjoint of I). The operator
T) is admissible provided that both Q^ and β^* are admissible in the sense of
Definition 6.1.

If D is an admissible operator, then by assumption, for a,beΓQ(ζ)

<£α, £6>2 = <α, b\ + <α, 9ίfe>2 , (7.2)

where 9teΓ(EndQ satisfies Property * with respect to the inner product

. (7.3)
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Here, A is a connection on ζ and q<=Γ(Endζ). The metric < , >φ on Γ0(£) defines
the Hubert space H^ of Definition 6.2. Similarly, one obtains the metric < , •>$*
on Γ0(O and the space H^* from the adjoint T)*.

For an admissible operator, £), it is possible to define three indices, z(D)
-dim(kert)n//α:))-dim(kerT)*nL2); /(T))-dim(kerX)nL2)-dim(kerT)*nL2),
and — ί(ϊ)*). Due to Lemma 6.3, these indices automatically satisfy

The above indices are the topic in this section, and the principle result follows (see
also Lemma 7.9).

Proposition 7.2. Let £> be an admissible operator. Then T> extends to a Fredholm
map from H^ to L2 and similarly for D*. Let ueΓ(Hom ((,(')) ^ such that
u*ueΓ(Endζ) and uu*eΓ(Endζf) satisfy Property * for <( , }35 and < , )φ*,
respectively. Then ί(X> + M) = Γ(D) ίwd Γ(X>* + M) = Γ(D*).

The reader may compare Proposition 7.2 (and Lemma 7.9) with the weighted
Sobolev space theorems of [24] and [25]. In the Yang-Mills context, see the L2

results in [26].
The first relevant example comes from the Yang- Mills theory on R4 :

Lemma 7.3. Let A e Won IR4 and letδA = (]/2P_ DA9 DJ). Then δA is admissible and
the numbers i(δA) and i(δ*[) ana the same for A and A + a i f aeHA.

The second relevant example concerns the Yang-Mills-Higgs theory of Sect. 5.

Lemma 7.4. Let c = (A,Φ)<Ξ& on ]R.3._Define Dc as in Definition 5. 4. Then Dc is
admissible and the numbers i(Dc) and i(Df) the same for c and c + ψ if ιpeHc.

Proof of Lemma 7.3, assuming Proposition 7.2. The admissibility of δA follows
from Lemma 6.7. IϊaεHA, thenδA + a-δA = a° where a°eΓ(Hom(Q1,P_Q2®$°)) is

a°υ = ( ]/2P _ (α Λ v + v Λ a\ — *(α Λ *v — v Λ *α)) . (7.4)

This homomorphism is essentially multiplication by a. Thus (α°)*α°eΓ(End(g1)) is
basically multiplication by a2. Observe that

<(l-χ>1 5(αo)*αo^2>2^c||(l-^)|α|2 | |2 | |φj|4 | |φ2 | |4, (7.5)

where the constant c is independent of φ1,φ2eΓ0(g1) and independent of r<oo.
Because aeHA, \a\2eL2 (cf. Lemma 6.3) so Eq. (7.4) and Lemma 6.3 imply that
(α°)*α° satisfies Property * with respect to O^')^- One analyzes (αc)(α°)*
similarly, and one finds that it also satisfies Property * with respect to < , -yHΛ.
Thus, Lemma 7.3 is a corollary to Proposition 7.2.

Proof of Lemma 7.4, assuming Proposition 7.2. In this case, admissibility of T)c

follows from Lemma 6.8. If ψεHc and ηeΓ0(§'), then

3>C+Ψ1- ?>c1 = ΨM = - [Ψ°^] + ̂ [ψ j, η\ . (7.6)

Let r<oo be given and let βr(x) = β(x/r)eC%(W*) where O^jS(x) and j8(x) = l if
|x|<l and j8(x) = 0 if |x|>3/2. Let ηί9η2eΓ0($). Then
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Kd -χ,)vfoι), Ψ(η2)>2\£ l id -j8,/ 2)v>foι)ll2 l id -βf/2)ψ(n2n2

The last line in Eq. (7.7) follows from Lemma 6.6 of [6]. Using Lemma 6.3 one
observes that because ψ£Hc,

lim||(l-)S r / 2)φ||c

2^0. (7.8)

Equations (7.7) and (7.8) imply that ψ*ψ( )eΓ(End§1) satisfies Property * of
Definition 6.1 with respect to <( , >c. The analysis for ψψ* is similar. Thus
Lemma 7.4 is also a corollary to Proposition 7.2.

The remainder of this section is occupied with proving Proposition 7.2.

Proof of Proposition 7.2. The proof begins with the following observation about
the domain of X).

Lemma 7.5. Let T) be an admissible operator. It extends to a bounded, Fredholm
operator from H% to L2.

Proof of Lemma 7.5. Let φ.eΓ0(Q be a Cauchy sequence in H% with limit ψ. Due
to Eq. (7.2) and Lemma 6.4, the sequence {DφJ CL2(ζ') is Cauchy. Then Dtp is by
definition lim(t)t/;.)6L2(C/) This extends X) to H^.

Consider the statement that D : H^-^L2 is Fredholm : Let X>* : L2-*H% denote
the adjoint of XX By Lemma 6.6, dimkerX)nHI5< oo because kerX>*
= kerX)*nL2CkerX)*nHIy l,, dimkerX)*<oo, too. If RanX) is closed, then X) is
Fredholm. The closure of RanX) is a corollary of the next lemma, cf. [27,
Theorem IV.5.2].

Lemma 7.6. // X) is admissible there exists y>0 such that | |X>ψ| l2 = 'Kt/;5t/;)ι> for
such all ψεHς, which are H ̂ -orthogonal to kerX).

Proof of Lemma 7.6. Suppose to the contrary that no such y exists. Then there
exists a sequence {ψJe/J^ with

(i)
(2) l l V i l l f l ^ l , (7.9)

(3) <φf,ι;>H =0 for all ^ekerDnHj,.

Due to Eq. (7.9.2), there exists an ^-weak, limit, ψ of {ψ.}. Lemma 6.3 and the
Rellich lemma implies that ψ-^ψi strongly in L2 on bounded domains. By
Eq. (7.9.1), ΐ>ψ = Q and therefore Eq. (7.9.3) implies that ψ = 0. However, Eq. (6.6)
now implies that lim<φί,φί>1) is zero which contradicts Eq. (7.9.2). Hence, y exists
as claimed.

As T) is a Fredholm operator, the index i(1)) = dim(kQΐDnHτ)
— dim(kerT)*nL2) is well defined. Now consider its behavior under pertur-
bation.

Lemma 7.7. Let £> be an admissible operator, and let t/EΓ(Hom(C, ζ')} be such that
w*weΓ(EndO satisfies Property * with respect to < , >Φ. Then T) + M is a Fredholm
operator from H^ to L2(ζί) and
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Proof of Lemma 7.7. First observe that because Property * is satisfied by w*w,
Domain (u) 3 H^. Thus T) and T) + w have the same domain. The lemma is proved
by showing that u:H^-^L2(ζf) is a T) compact operator, cf. Theorem IV.5.26 of
[27]. For this purpose, consider a sequence {t/ Je/ί^ with both H J t y f l U and
\\ipi\\fj bounded. One must show that uipt has a strongly convergent subsequence
in L2. The sequence, {φj has a H^-weakly convergent subsequence - also denoted
{φj. Let ip denote the weak limit and consider

\\u(ψi-ιp)\\2

2 = <Ψί-ψ,u^u(ιpi-ιp)y2. (7.10)

Due to Property *, the right hand side of Eq. (7.10) converges to zero. Therefore,
{uψt} converges strongly in L2 as required.

One can now reverse the roles of T) and ϊ>* by considering ϊ)* as a bounded
operator from H^ to L2(ζ). One obtains

Lemma 7.8. Let T) be an admissible operator. Let ueΓ(Hom(C, £')) be such that
uu*eΓ(Endζ') satisfies Property * with respect to < , )φ*. Then £)* + w* is a
Fredholm operator from H%* to L2(ζ) and

Proposition 7.2 follows directly from Lemmas 7.5, 7.7, and 7.8.
Concerning the index i(D), one has

Lemma 7.9. Let £> be an admissible operator. Let α< ̂ (n — 2). //
l + |x|_2)αφε/f;j>. /^ particular, if n>4, then kerT)n//^ = kerT)nL2 and Γ(D)

Proof of Lemma 7.9. Let seΓ(Hom(T*® C £')) denote the symbol of D. Let ue Γ*.
As a consequence of Eqs. (7.2) and (7.3),

s*(v)*(v) = \v\2. (7.11)

Now consider for R>0

for \x\<R,

Then Ψ^H and

,
w p = < (7.12)

*'R (l+R2Tιp for \x\>R.

= W2)v£ t > Λ for \x\<R,
i ct, R ] f\ i i i ^ n \ * /

[0 for |x |>JR.

Squaring both sides of Eq. (7.13) one obtains

ll^..Λll2^4α2||(l + |x|2)-1/2

V α f Λ | |i. (7.14)

With Eqs. (7.2), (7.3), and (6.6) one deduces from Eq. (7.14) the following inequality
which is valid for any ε>0:

α-^)ll^^ll^^2α||(l + W2)-1/2φα^||2 + φ)||φ||^. (7.15)

Now apply Lemma 6.3. The result is

l l ^ κ l l ^ ^ Φ ) l l ^ l l ^ . (7.16)
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Observe that for a<^(n — 2), Eq. (7.16) produces an ^-independent bound for
\\ιpΛtR\\^ and for such α, ιpaeH^. The concluding statement of the lemma comes
from Lemma 6.3.

VIII. The Index Theorem for Yang-Mills

The subject here is the operator

and the number dimker^ — drinker^. As before, δ\ is the formal L2-adjoint
of δA. The proofs of Proposition 4.2 and Lemma 4.5 result from the study of δA.
Proposition 4.2 is a consequence of the proposition below.

Proposition 8.1. Let ,4e2I. Define p^A) by Eq. (4.1) and define δA and δ^ as above.
Then

Proof of Proposition 4.2 assuming Proposition 8.1. The first assertion is a
consequence of Lemma 7.3, and the second is directly restated in Proposition 8.1.
Only the third assertion of Proposition 4.2 need be discussed. To prove this
assertion, it is sufficient to establish that dim(ker(S5nL2)^8 when Ae^Ά is a
solution to the Yang-Mills equations. To begin, note that the vector bundle
P_ Λ T*0IR admits a covariantly constant, isometric action of the unit quater-

4nions. In fact, P_ Λ Γ*©IR^1R4 x H; this is obtained by sending

where {ωfc}|=1 are a covariantly constant, orthonormal basis for P_ Λ T*. As a

consequence, P_g 2Θg° admits an isometric action of the unit quaternions by
right multiplication:

ωl ψ = — ul — είjkujωk + φωl.

In this notation, one obtains the following expressions for δ^ψ, tpeΓ(P_g2©g°):

δ^ip = DAφ + ωk(DAu
k), (8.1)

where {ωk} acts on /Xg1) as in Eq. (3.1). One can readily compute that

Observe that Eq. (8.2) implies that ker<?5 also admits an isometric action of the
quaternions. Therefore, dimker<5* is an integer multiple of 4.

Now suppose that A is a solution to the Yang-Mills equations on R4 with
finite action. In particular, P_FA satisfies DAP_FA = Q. Thus (P_FA,Q)ekeτδ'A and
so dimker<55^4. In fact, dimker<55^8. To see this, one can consider

ψ = (x

4Ffc_ + είjkxiFj_)ωk, -xlF_). (8.3)
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Here, Fk_=(ωk,P_FA) and {xv}4

=1 are Cartesian coordinates on IR4 which are
defined by the requirement that

ωί(dx4)=-dxί. (8.4)

Notice that

F*_ω*. (8.5)

If A is the pull back by inverse stereographic projection of a connection which is
smooth on S4, then

|FJ (x)^ consul + M2)2, (8.6)

In particular, Eq. (8.6) is satisfied by every finite action solution of the IR4- Yang-
Mills equations [28] and as a consequence, φeL2(P_g20§°).

Lemma 8.2. Define ψ by Eq. (8.6). Then δ$ψ = 0.

Proof of Lemma 8.2. Using Eqs. (8.1), (8.2), and (8.5), one obtains the sequence
below :

δ*ιp = ωk(DA(x4Fk_)) + ωi(ωk(DA(xίFk_))

= ωk(dx4)Fk_ - dxkFk_ - β* VίώcOί"-

= -2dxkFk_ + εikjcoj(ωί(dx*))Fk_

= - 2dxkFk_ + εijkεijl dxlFk_ = 0 , (8.7)

which is the desired result.
Clearly, ψή=h-Fk_ωk for any constant AeH. Thus, dimker<S5^8, and due to

Proposition 8.1, dimker(5^^p1(^4) + 8 as claimed. This establishes Proposition 4.2.
The remainder of this section contains the proof of Proposition 8.1. Lemma 4.5

is proved at the end of this section.
To begin, recall that Lemma 7.3 states that δA and δ\ are admissible operators,

so Proposition 7.2 is applicable. The principal tool for computing the indices is
Corollary 2.2 of Uhlenbeck [18] which is reworded slightly as Proposition 4.3. An
immediate corollary to Proposition 4.3 is

Proposition 8.3. Let AeW. There exists a connection Ae^Ά and ^eC°°(lR4; G) with
the following properties :

(1) As a bundle with connection, (IR4 x G,A) is isomorphic to the pull-back via
inverse stereographic projection of a pair (P',A'\ where P'-+S4 is a principal
G-bundle, and A is a smooth connection on P'.

(2) A-(

Proposition 8.1 is used in the following way: Because dimmer δAπHA) and
dim(ker<5*nH^) are Aut(R4 x G) invariant, Lemma 7.3 and Propositions 4.4 and
8.3 imply that i(δA) is the same as i(oA) where Ae^Ά is a self-dual connection on IR4

with the property that p1(A) = p1(A).
If A e 21 is a self-dual connection, then for all ψεHA, || δ^ψ || 2 = || VA\p \\ 2 and so

) = 0. Dimker^^ is described in the next lemma.

Lemma 8.4. Let AeW be self-dual. Then
= Pι(A).
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Proof of Proposition 8.1, assuming Lemma 8.4. Let A be the connection in
question. Due to Lemma 8.4, and Propositions 7.2 and 8.3, i(δA) = pί(A) = — i(δ%)
for the operator δA.

Proof of Lemma 8.4. Consider a self-dual connection A' on a principal G-bundle
P'-^S4. There exists the following exact sequence on S4:

O^Γίg^-^TO-^^ΓίP.g2)^. (8.8)

Here, in order to avoid confusion between bundles on S4 and IR4, Qp = (Pf xA dg)

® A Γ*(S4). The cohomology of this sequence was computed in [17]: As A' is
p

self-dual, ft2=0 and ft1 — h0=p1($) — dimG. Of course, if A' is irreducible, then
ft0 = 0 and it is always true that ft0 ^dimG. The cohomology in dimension 1 can be
represented by elements {«[., ze(l, ...,/ι1)}eΓ(§1) with d{ (south pole) = 0.

When pulled back to IR4 by stereographic projection, $~l(F,A',{d$) is
isomorphic to data (IR4 x G,A, {αj). The α. satisfy P_DAai = Q, and
aίeHA(§1)nL2(§1). Indeed, as d{ (south pole) = 0,

3 / 2. (8.9)

Unfortunately, α^ker^, necessarily. However, according to Lemma 7.5,
Im<55CL2 is a closed, linear subspace of finite codimension. Consider the
projection of Span {αj onto (Im^)1, and denote it Π{aί}.

Lemma 8.5. Let Π{ai] be defined as in the preceding paragraph. Then dimΠ{ai}
= dim Span {af

t} = ft1.

Proof of Lemma 8.5. Elements of Π{ai] pull back via stereographic projection to
L1 2 sections of g1 which will be denoted {Πa^}. For each z,

αί - Π(4)eIm(DA, : L2? 2(§°)-^Ll5 .(g1)) .

As the L1 2 cohomology and the smooth cohomology of the complex in Eq. (8.8)
agree, {Πa^} must generate H1 of that complex. Hence, dimΠ{ai} = άim{a'i}=h1 as
claimed.

One obtains dimG — ft0 additional linearly independent elements in ker<5^r>Z,2

with the following construction. Return to S4 and choose a basis {σα}ff\G for §°|s,
where s = south pole. By parallel transport with A' along the great circles through
5, extend each σα to a section φ'a of §° over the southern hemisphere. By smoothly
interpolating each φ'a to zero in the northern hemisphere, one obtains smooth
sections 0αeΓ(§°) which satisfy

0;is = σα, and DA,φ'a\s = 0. (8.10)

Now pull back the data (P7, A', φ'Λ) to R4. The data is isomorphic to (P, A, φΛ) and
0α satisfies

fc1^1' ί^^ = δ'β' and DAΦ*eHΛ. (8.11)

In addition, as A is self-dual, P_DADAφa = Q. Observe that the projection of
{DAφa} orthogonal to Imδ^CL2(§1) is necessarily dimG — ft0 dimensional. This is
because φaφHA. This projection is also linearly independent of 77{αJ; if not, one
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would obtain a contradiction by pulling back to S4 as in the proof of Lemma 8.5.
Thus, dim(kQrδAnL2)^pί(A).

By reversing this last argument, one shows that dim(kQΐδAr^HA)
( = dimkQΐδAπL2)'ζp1(A). This will establish Lemma 8.4. Indeed, assume now
that there exists aekQΐ(δAr^HA) which is linearly independent from Π{ai,DAφ(X}.
Then pulling a back to S4 via the stereographic projection yields aΈLlf 2(g1) which
satisfies (on S4)

p__DA,a' = Q ; (8.12)

and therefore a' = DA,ψ for some ψeL2 2(§°) But this implies that on IR4, a = DAψ
for some ι/;eΓ(IR4 x 9). Lemma 4.5, which is still unproved, forbids this occurrence
unless ψ = 0 and a = 0.

Proof of Lemma 4.5. Let ipeK. Then because DAipeVA, one concludes from
Lemma 7.9 that for any ε>0,

(l + \x\2ΓBDAψeL2. (8.13)

Now consider the pull back of (A, ψ) by stereographic projection to S4, (A'9 ψ). By
assumption, A. is smooth, and ψ is smooth on S4\{south pole}. Let {yv}4

=1 be
stereographic coordinates on S4 centered at the south pole. In these coordinates,

\δA,DA,φ\ (y)^ const \y\~1 \DA,ψ'\(y). (8.14)

Due to Eq. (8.13), the right hand side of Eq. (8.14) is in L3(S4). By elliptic regularity
for δA,9 DA>ψeL1 3(g1) on S4 and therefore ψe C°(g°) on S4 by the Sobolev lemma.
If dim K > dim g = dim G, there would exist a nonzero ψ e K with φ(south pole) = 0
equivalently, lim \ψ\(x)-+Q. But DA*DAψ = Q on IR4, so \ψ\ is subharmonic -

|:x|-» oo

hence zero everywhere. This is a contradiction. Therefore, dim K^ dim G as
claimed.

IX. Index Theorem for Yang-Mills-Higgs

Here the subject is the operator T>c, for ceCt as defined in Sect. 5. Of particular
concern are the indices Γ(DC) and ί(D*), where D* is the formal L2-adjoint of T)c. A
proof of Proposition 5.5 results from the calculation of i. A non-rigorous
calculation of ί has been given by Weinberg [12]. Weinberg's strategy is quite
different from the one below.

Proposition 9.1. Let ce£n, neZ. Let Dc be given by Eq. (5.8), and let D* be its
formal L2-adjoint. Then

Proof of Proposition 5.5, assuming Proposition 9.1. Both Dc and D* commute with
right multiplication by IH on Γ(g'). Because of this, one need only show that
kerD*nf/ cΦ0 when c = (A,Φ)e&n (n^O) is a solution to Eq. (5.3) which is not a
solution to Eq. (5.4). Consider ψ = *FA — DAΦ as a section of g'. The Bianchi
identities together with Eq. (5.3) imply that T>*φ = 0. Proposition 5.5 now follows.
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Proof of Proposition 9.1. Because Dc is admissible (Lemma 7.4), the kernels in
question are finite dimensional. The difference in the dimensions of the kernels of
Dc and D* will be computed with the aid of Lemma 7.4. The first step in the
calculation is to prove the following proposition.

Proposition 9.2. Let c,c'e(£B, for neΊL. There exists ge<S = {gεCCG(ΊR*
SU(2)) : 0(0) - 1 } such that ip = gc' - ce #c(§')

A corollary to Lemma 7.4 and Proposition 9.2 is

Corollary 9.3. For ce(E, the integers i(ΐ)c) and z(D*) are constant on the path
components, {£n}neπ of (L

The second step in the calculation of ί is to find a convenient ce £n to count the
zero modes of £>c and £>*.

Proposition 9.4. Let Q^neZ. There exists ce&n for which kerT)*n#c = 0 and

The remainder of this section contains the proofs of Propositions 9.2 and 9.4.

Proof of Proposition 9.2. The argument is simplified somewhat by the observation
that if c — cΈHc then Hc and Hc, are isomorphic Hubert spaces (this follows using
Lemma 6.6 of [6]).

To begin, for neZ, let Mn(S2\S2) denote the space of C°° maps from S2 to S2

whose degree is n. Equation (3.3) of [6, Sect. 3] provides a map / : Mn(S2 52)->(£M :

I(e) = (l- β(x)) ( - ίe(x/\x\l de(x/\x\)l e(x/\x\)) , (9. 1)

where e(x/\x\) : S2^{σe su(2) : |σ| = 1} = S2, and β(χ)e C£(IR3) equals 1 when \χ\ ̂  1.

Lemma 9.5. Proposition 9.2 is true if c, c'e Image (/).

Proof of Lemma 9.5. If e, e' e M n(S2 S2) there exists /zeC°°(S2;SU(2)) such that
e = he'h~1. Because C°°(52 SU(2)) is path connected, there exists #e© which is
equal to h(x/\x\) for |x|>l. For K>0, let βR(x) = β(x/R). Then

I(e) - gl(e'} = - (1 - β2) e(e, gdg^} + β2(I(e) - gl(e'}} . (9.2)

The lemma now follows from the observations that

and

\rode\,\rodg\£comt(l + \x\2Γl. (9.3)

One must now consider arbitrary c = (A,Φ)e(ίn.

Lemma 9.6. Let c = (A, Φ)eKn. There exists c1 =(A, Φ1)e£n with the properties: (1)
c-C leHC ι, and (2) VAΦ^HCιnL2.

Proof of Lemma 9.6. Observe first that d(ί — \Φ\)eL2 (Lemma 4.12 of [6]) and as a
consequence there exists R< oo so that (A,(l—βR(l — \Φ\))Φ/\Φ\) is in Hc. For this
reason there is no loss of generality in assuming that |Φ|(x) = l if |x|§rl. By
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mimicking the proof of Proposition 4.8 of [6], one obtains a unique ηeHc

satisfying

(1) l^2(

(2) |Φ + /^1, (9.4)

(3) (A,

Let Φ1=Φ + η. From the fact that ηeHc, one obtains from Eq. (9.4.1) that
P^Φ1eL2(g°). Statement (2) of Lemma 9.6 follows from the a priori estimate of
Theorem V.8.1 in [5].

Since (A5Φ1)e£, there exists R<oo such that |Φ1 |(x)>0 when M^-R. Let
c2 = μ,Φ2) = μ,[l-j8Λ(l-|Φ1|)]Φ1/|Φ1|). As before, (ΛΦ1)-(ΛΦ2)eHc, and
one can readily check that P4Φ2eHC2nL2. This implies that P4Φ2eLp(g1) for

Lemma 9.7. Let (A, Φ2)e(£λί be as specified above. There exists eeMn(S2;S2) and
such that

for

Proof of Lemma 9.7. Take e to be Φ2\\X\=R The existence of g1 follows from the
fact that the fibration O-^-^SUβ)-^2-^ has the homotopy lifting property.

Let c3=(A39Φ3) = gί(A,Φ2). Keep in mind that F43Φ3e(HC3nL2)(g/) and that
Φ3(x) = e(x/\x\) when \x\^R.

Lemma 9.8. Let c3=(,43,Φ3) be as defined above. There exists #2e(S such that
c4 = (A4, Φ4) = g2 c3 satisfies

(1) Φ4 = Φ3>

(2)

Proof of Lemma 9.8. Let Al = (ί-βR) \_e, \_A3, ej]. As

rA3Φ3 = de + lA3,e ] for \χ\^R, (9.5)

one can conclude that ^l^eL^g1). Let a3=(l—βR)(e,A3). Observe that for

(e, FA) = da^ + ± tracesu(2) (de Λ A\) + (e, A\ Λ AT

3). (9.6)

Therefore, dα 3 eL 2 (Λ T*). According to Proposition 7.6 of [6], (see also [29])

there exists αΈΓ(Γ*)nL6(T*) with the properties

(1) dd = da^,
(9.7)

(2) P0α'eL2(T*).

One concludes from Eq. (9.7.1) that

α'-αf = <M (9.8)

for some /teC^IR3). Let
Λ] . . . . „ ,.,, (9^9)
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Define A4 to be gA3 and then define A^ and a\ appropriately. By construction

(1) $4 = Φ3,

(2) a% = a' for \x\>2R, and (9.10)

(3) rAAΦt = de + [A4,e] for ,\χ\>2R.

Due to Eq. (9.9.3), and Lemmas 9.6 and 9.7,

Al + (l-βR)le,de ]EHc^L2. (9.11)

Due to Eqs. (9.9.2) and (9.7.1),

e aL

4eHC4. (9.12)

Because A4 = Al + e c%, Lemma 9.8 follows from Eqs. (9.11) and (9.12).
The proof of Proposition 9.2 is completed by the observation that due to

Lemma 9.8, c4 = (A4,Φ4) differs from I(e) by an element of HC4.

Proof of Proposition 9.4. The configuration c = (0,$)e(£0 is a solution to Eq. (5.4)
if θesu(2) is constant on IR3. For this configuration, ker £)c = ker D* = 0. This
follows from Eqs. (6.12) and (6.13). Hence the proposition is true when n = 0.

For n=l, it is known that the Prasad-Sommerfield solution, c1eG1 [30] has
kerX>c*n#c = 0 and kerDcnίίc-kerT)cnL2^lR4 [31]. The Prasad-Sommerfield
solution is a solution to Eq. (5.4).

Proposition 9.4 follows from the next lemma. It is stated for n > 0 the case
n<0 can be obtained by reversing the orientation of IR3.

Lemma 9.9. For each n^.2, there exist configurations c = cn£&n with

c = 0, and di

Proof of Lemma 9.9. In Chap 4 of [5], configurations c(n, d, R, {xa}"= ι)eGn were
constructed to have the following properties :

(1) They are indexed by the data 93 = {d,Λ, {*«}£= J, where d>e4R$>R>l,
and {xJ^cR3 satisfy inf \xa-xβ\>d.

aφβ

(2) For each αe (!,...,«), there exists ^αEC°°(IR3;G) such that gac(n, 33)
= CI(X-XΛ) tf\x-xΛ\<R. Here c± =(y41,Φ1)eC1 is the unique [up to C°°(IR4 x G)]
Prasad-Sommerfield solution for which Φ1(0) = 0.

(3) There exists z < oo which is independent of n and the parameter 93 with the
following property :

Let c(n,g3) = (4,Φ). Then | |Φ|-l|(x)^z ^dx-xj + l)"1, and \*FA + DAΦ\(x)

(4) If xeIR3 satisfies mϊ\x-xΛ\<R, then *FA-DAΦ = 0. If xelR3 satisfies
V.

inf \x-xa\>R, then \*FA-DAΦ\ (x)^ze~R V |x-xj"2.
α α

The first important property of c(n, 93) is

Lemma 9.10. Lei c = c(n, 93)e(£n foe as described above. There exists R0<co such
that for R > R0, ker(T)*n//c) = 0. In this case, there exists y > 0 which is independent
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of the parameters 93 such that for all

Proof of Lemma 9. 10. This follows readily from Eqs. (6.12) and (6.13) and
Property (4) above. To obtain the last statement of the lemma, one uses
Lemma 7.6.

Now let c1e(£1 and {0α}CC°°(]R3 ;SU(2)) be as in Property (2) above. Let
{ψί}f=1 be an L2-orthonormal basis for ker(£>CιnL2). Define for each αe(l, ...,ri)
and ie(l, ...,4)

-xa)Ψi(x-x*)) (9 15)

Lemma 9.11. Let c = c(n, 93)e(£,J and let {ψΛi} be as defined in Eq. (9.15). Let Π{ιpaί}
denote the L2-orthogonal projection of {ψai} onto ker£>c. There exists R0<co such
that for all R>RQ, dim Span JI{φα/}=4n.

Proof of Lemma 9. ii. Observe first that Property (1) implies that <V ?

αί»V ;/s i/>2= =0
for α φ β and for all ij. For α = β one has

where z< oo is independent of the parameters 93. For R sufficiently large, Eq. (9.13)
implies that dim Span {ψai}=4n. Now, observe that

where vΛieHc(Q') is the unique solution to

(x-xα)τ4Λ(x-xJ = 0. (9.15)

Equation (9.15) follows from Property (2) and the definition of {ψ.}. Using
Eq. (9.15), and then Holder's inequality with Lemma 9.11, one obtains

||^. (9.16)

The second line above uses Lemma 6.3. Lemma 9. 11 follows directly from
Eqs. (9.13)-(9.16).

Lemma 9.9 is a direct corollary to Lemmas 9.10 and 9.11 and the next result

Lemma 9.12. Let c = c(n,%$)e&n. There exists R0<oo such that for all R>R0,
dim(kerDcnHc) = 4w.

Proof of Lemma 9.12. Assume that the lemma is false and a contradiction exists.
Indeed, if the lemma were not true, then for some n, and for every set of parameters
(n, 93), there exists tp = φ(93)edim(kerT)c(/7 φ)nHc) which is Hc-orthogonal to
{Πψai}, and also satisfies ||φ||c = 1. Equations (6.6), (6.12), (6.13), and Lemma 6.8 in
conjunction with Property (3) imply the following: There exist constants 0<μ,
r < oo which are independent of the parameters 93 such that for some αe(l, ..., n)

J d*x\ιp\2^μ. (9.17)
\x-x«\<r
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The proof of Eq. (9.17) is similar to the proof of Lemma 6.6. Given c(n, 35) and ψ as
above, choose α so that Eq. (9.17) holds. Let cί9ga be as specified in Property (2)
and let

*>CIΨ*= Σ ̂  .(g^ψHx + xJ, (9.19)

Observe that

and for each ie(l, ...,4),

< V Λ J V i > C l = < V ϊ V α i > c

= -<φ,Dc*t;αί>c. (9.20)

From Eqs. (9.20), (9.15), and (6.6) one obtains the a priori bound

2. (9.21)

Now consider the sequence {ψR} as R^oo. This is a bounded sequence in //C1,
so it has a weakly convergent subsequence in HCl. Due to Eq. (9.17) and the Rellich
lemma, the limit is nontrivial. Due to Eq. (9.19), the limit is in ker^Cl. Due to
Eq. (9.21), the limit is linearly independent of [ ψ ί } i ' = 1 . This contradicts the as-
sumption that dim(ker^CιnHCι)=:4. Hence, Lemma 9.12 is true.
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