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Abstract. The structure of the S-matrix at the m-partical threshold s = (mμ)2 of
a m-^m process (m^2) in v-dimensional space-time is determined in a theory
with a simplified unitarity equation corresponding to a pure m^m interaction.
If (m— l)(v— 1) is odd, a two-sheeted, square-root type structure is obtained as
in the usual case of two-particle thresholds in dimension 4. The nature of the
singularity is more complicated if (m — l)(v— 1) is even (e.g. ra = 3 in dimen-
sion 4). Results obtained in this case include an orthogonal decomposition of
the scattering function T with nonholomic eigenvalues of the form

1 Γ 1

^—lnσ + Wσ) [where σ = (mμ)2 — s and bt is uniform around σ = 0] and a
2iπ J

related infinite expansion of T in powers of lnσ involving an on-shell
irreducible kernel U which is the analogue for (m—l)(v—1) even of
Zimmerman's K-matrix.

1. Introduction

While substantial progress has been made in recent years in the analysis of the
singularity structure of the S-matrix and of the Green's function of Quantum Field
Theory, the knowledge of the exact nature of singularities has however remained
limited so far; for instance, whereas the square-root nature of two-particle
thresholds is an old result, there is no comparable information on the nature of the
three-particle thresholds, even at a heuristic level. The present work gives a
treatment of the m-particle threshold and an explicit description of the nature of its
singularity in a simplified rn->rn scattering theory (m^2) with no subchannel
interaction, in arbitrary space-time dimension v. This treatment is based on the
on-shell unitarity-type equation of this simplified theory. Complementary results
obtained in the off-shell approach and based on a (simplified) Bethe-Salpeter type
equation are described in [1], where the links between the two approaches are
explained.

As discussed in [ la] the results accredit the idea that the nature of m-particle
thresholds in the actual theory should be determined through an adequate analysis
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of integral equations in complex space, and that the degree of complexity of the
singularities thus generated for the S-matrix should go in general far beyond the
class of holonomic functions which incorporates previously known examples
(square roots, poles, logarithms,...) and was proposed a few years ago by Sato [2],
as the natural framework of (standard1) scattering theory2.

We consider for simplicity a theory with only one type of particle of spin zero
and mass μ > 0 .

In the on-shell approach, namely that of a pure S-matrix theory, we consider
an m-+m scattering function T(pv ..., pm p' l 5 . . ., pr

m) defined on the (complex) mass-
m m

shell variety J?c :pf=pf

i

2=μ2, 1^/^m, ]£ pf = £ p ; the variables pt and p\ are
ί = l ί = l

v-dimensional energy-momenta for the initial and final particles respectively. As
usual, p2=plo~Pi where pί0 is the energy and pf the (v—1) dimensional
momentum, and we denote by s the squared total center of mass energy variable

m

s = /c2, k = ]Γ p{. In the simplified theory, T is assumed to be locally analytic in a
i = l

"cut neighbourhood" of the "threshold variety" p : = ... = pm = p/

1 = ... = p'm [on
which s = (mμ)2], and as usual we denote by "physical sheet" this initial (schlicht)
domain (see Sect. 2 for a precise specification). The boundary values Γ ( 0 ) and T{1)

of T at s>(mμ)2 from the respective sides Im5>0 and I m s < 0 will be assumed to
be continuous. The unitarity-type equation of the simplified theory is then:

where * denotes on-mass-shell integration over m internal energy-momenta.
Namely (with a suitable normalization of T):

<5V Σ K- Σ Pi Π δ(kf-μ2)θ(kUΌ)d%. (2)
\ ί = l i = l / ί = l

It will also be convenient to assume that T is invariant through the inversion of
all incoming and outgoing (v — 1) momenta in the center of mass system (see
Sect. 2). This symmetry property is automatically fulfilled if T is invariant through
the (full) Lorentz group in v-dimensional space-time however, Lorentz invariance
is irrelevant in the present study and will not be assumed.

1 Here we do not refer to the more recent important works by M. Sato and collaborators on
"holonomic quantum fields," which apply to a certain class of two-dimensional models

2 At ordinary points of a Landau singularity z1—0, holonomicity, if it holds, entails that the

scattering function T is of the form: T(z)= £ α α j (z)z" (In z^-7, where each; is a positive integer (j^O),
«.j _

the sum J] runs over a finite set and the coefficients aaj are uniform around zγ =0. It means corre-
spondingly that the vector space generated by the successive determinations of T around zγ — 0 is finite-
dimensional ( = "finite-determination property" of T)
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The main results of the paper will be found in Sects. 5 and 6. Sections 2-4
present the basic preliminary results that will be needed there.

In Sect. 2, a new set of variables is introduced to describe the m-^m particle
mass shell, namely the total energy-momentum k of this channel and "angular"
variables Ω (respectively Ω') which are associated with the incoming (respectively
outgoing) relative momenta, and vary on the unit sphere § ( m _ 1 ) v _ m . In these
variables, T appears as a kernel T(k Ω, Ω') in Ω-space which depends analytically
on the (v-dimensional) parameter k in a cut neighbourhood of s = k2 = (mμ)2;
correspondingly Eq. (1) takes the form of an integral relation of the Fredholm type
depending on the complex parameter k:

T(0\k;Ω,Ωf)-T{1\k;Ω,Ωf)

= [(mμ)2 - k2y x j T(0)(fe Ω, Ω") T{1\k Ω", Ω')

&(k,Ω")dΩ"9 (3)

? / x? i n ( m — l ) v — m — 1
{mμ) and βwhere α is analytic at k = {mμ) and β — .

This allows one to show (Sect. 3) that, under the assumptions listed above, T
satisfies "local maximal analyticity" around the threshold s = (mμ)2, i.e. is analytic
or meromorphic in a certain covering oϊ Ψ" — {s = (mμ)2}, where y is a complex
neighbourhood of s = (mμ)2. If (m—l)(v —1) is odd, i.e. β half-integer, T is two-
sheeted (i.e. the usual square-root singularity of the case m = 2, v = 4 is reobtained);
however if (m — l)(v — 1) is even, i.e. β integer, an infinite number of determinations
T{r) of T is obtained and the general relation

which entails under general conditions the non holonomicity of T at s = (mμ)2

(see Sect. 3 and [3]; see also Sect. 5 below), is derived from (1).
To further exploit the unitarity-type equations (1) and (4), we first give in

Sect. 4 some useful results of Fredholm theory with complex parameters.
It is then shown in Sect. 5 that all solutions of the simplified theory satisfying

the additional physical condition of hermitian analyticity admit, for (m— l)(v— 1)
even and at s real below threshold, an orthogonal decomposition of the form:

T(k Ω, Ω') = Σ ~χ

 1 Eft Ω, Ω'), (5)
1 —Λnσ+ bί(k)

2ιπ

where σ = (mμ)2 — s, β= , the kernels Ei satisfy Ei^Ej = Eίδi j9 and

the functions Et and bi are uniform (analytic or meromorphic) around σ = 0 the
functions ύi = l/oβbi are moreover analytic at σ = 0 under a boundedness condition
on T at σ = 0, and for β>0. The nonholonomocity3 of the eigenvalue functions

3 An explicit proof of the nonholonomicity of these functions can be found e.g. in [ la] . See also in
this connection footnote 2 of the present paper
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Γ i Γ
-—lnσ + bf(fc) entails the nonholonomicity of T. (These eigenvalues reduce to
[2ιπ \
partial waves at m = 2, up to locally analytic factors.)

In Sect. 6, the decomposition (5) is extended to the physical-region s>(mμ)2 by
introducing an on-shell irreducible kernel U which is the analogue for(m— l)(v— 1) even of Zimmerman's K matrix. If -—lnσ

- 1

is not an eigenvalue
2ίπ

function of % U is defined, independently of the condition of hermitian analyticity,
through the Fredholm equation:

T=U+ — l n σ 7 W . (6)
2π

1 Γ 1

—-lnσ is an eigenvalue function, T can be decomposed into a sum T'+ T",If Ί. *

where T" is the principal kernel associated with this eigenvalue and where T and
T" are both solutions of the same unitarity-type equation as T. Then U is defined
in terms of T by an equation analogous to (6), with T replaced by V. In both
cases, the unitarity-type equation for T is shown to be equivalent to the
uniformity of U around σ = 0. In the hermitian case, U= £ uίEi for σ real,

ί &iφO

where ut = l/bi9 tt and bt being the functions occurring in (5).
If T is assumed to be uniformly bounded in the physical sheet near σ = 0,

T=V, U is irreducible, i.e. locally analytic, at σ = 0 and the functions ύi = ui/σβ are
also locally analytic at σ = 0. The irreducible character of U allows one on the
other hand to express the nature of the threshold singularity of T through the
following (convergent) expansion of % which is the Neumann series of (6), valid
for β>0 near σ = 0 (and Argσ bounded):

= ΣU*in+1\k;Ω,Ω')

— lnσ
2π

(7)

where * is defined from * by removing the factor σβ generated by the latter, and
[/*<">= [/*£/...*[/ (n factors); all factors C/*("+1) are, like U, locally analytic at
σ = 0 and are uniformly bounded by KCn, for suitable constants K, C near σ = 0.

In the off-shell approach to the simplified theory (see [1]), the individual terms
in the expansion (7) appear naturally as "leading contributions" to generalized
Feynman or G-convolution integrals associated with the graphs

(8)

each vertex representing here an off-shell extrapolation of the irreducible kernel U.
Some complements to the present paper will also be found in [3], where in

particular a general criterion implying the nonholonomicity of T (in this simplified
theory) is proved (see Proposition 2 at the end of Sect. 3).
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2. Choice of Variables

The (real) mass shell variety Jt can be described as the following bundle:

* = Σ Pi= Σ p; = (fcθ5k)?/co>05/c2

(pv...,Pm)ee(kWv..,p'm)ee(k)}, (9)

where the "mass shell fiber" e(k) = \{kv ...,km); ]Γ k{ = k k( = (ku0,k ), ku0 > 0,

kf=μ2, l^i^mX will be parametrized through the following choice of variables:

Let k= γsvo(k\ where vo(k) varies in the connected hyperboloid shell H^_1 = {v0

= Ko,Vo)' ^^o 6 1 1 1"" 1 ' ^o,o>0> < o - V o = l} and let (ϋo(fc), {va(k); α = l, ...,v-l)})
be a continously varying v-dimensional Lorentz frame with analytic dependence
in k. We put for each index i, l^ί^m:

kί=kf)\(k)+ Σ bf ]
1 - α - v ~ 1 > (10)

k<=(&{1 ),...,iίv-1 )), k f = Σ (fcf0)2 "

Then e(k) can be represented as a [(m— l)v — m] dimensional manifold in the space

R(m-i)(v-i) of t h e (v-1) momenta k l 9 ...,km_1 through the equation:

(11)

where

Φ(k1,...,km_1)= Σ Mk/)-μ)? (12)

km = - (k1 + ... + km_ J. (14)

Here Φ is an even function of k1 ? ...,km_ l 5 which admits a critical point at the
/ dΦ \

origin i.e. —^ =0, Vi, Vα with critical value Φ(0) = 0, the associated quadratic

form being positive definite. In view of Morse's reduction theorem applied to the
analytic case (see Theorem 4-1 in [4]), it is possible to find a new system of local
coordinates xv ...,xr, r = (m— l)(v— 1) such that 4 :

a) the mapping φ:

1 (15)

4 The method used in the proof of Theorem 4-1 of [4] allows one to deduce the symmetry property
of the mapping φ from the even character of Φ assumed here
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is biholomorphic at the origin and satisfies the relations:

k f (-x l 5 . . . , - x j = - k ί ( x 1 , ...,x r), l ^ z ^ m - 1 , (16)

b) Σ xf = Φfel9. ,K-i)' ( 1 7 )

Finally, by putting χ.= |/τί3 ί 5 Ω = {Ωi;ί^i^m}e§r_ί, we obtain the following
analytic parametrization of e(k):

(kv...,kJ = ψ0(k,Ω), (18)

where Ω = (ΩV ...,Ωr)e§r_v k= ]/s v0, z;oei/v

+_1? s>(mμ)2 and φ 0 is defined by
Eqs. (10), (13), and (14) together with:

/ ^ (19)

. (20)

In view of (9), this yields correspondingly by the following parametrization of the
mass shell variety M:

>). (21)

Ψo is an analytic mapping defined on the real set

{{k;Ω,Ω%k=}/svo,voGHΪ_vs>(mμ)2,(ΩxΩf)e§r_1xSr_1}.

On the other hand if σ denotes the inversion of momenta in the center-of-mass
system, namely the transformation p ^ — p ί? p̂  —> — p̂ 9 pf\ pf0) being unchanged
(1 ̂ z^m), then Ψo satisfies the following symmetry property [in view of (16), (19),
and (20)]:

= !P 0(fc;-Ω,-Ω'). (22)

We now consider the variables k = (s, υ0), Ω, Ω' as complex and assume that s
varies in a (complex) cut neighbourhood of the threshold s = (mμ)2, with the cut
along s^(mμ)2, while (υo,Ω,Ωf) varies in a complex neighbourhood of
Hv

+_ 1 x § r _ 1 x § r _ 1 belonging to the corresponding complexified manifold. Let W
be the set thus defined in the complex space of variables (fc, ί2, Ω') then formulae
(18), (19), and (20) remain meaningful for (k,Ω,Ωf) in #^ with the specification
0 < a r g τ 1 / 2 < π ; they respectively provide analytic continuations ψ and Ψ of the
mappings ψ0 and Ψo and the image of if by Ψ is by definition a "cut
neighbourhood" of the threshold variety5 in the complex mass shell Jίc.

5 Note that on the submanifold s = (mμ)2 of (k,Ω, Ω')-space (ψ) x defines a "blowing up" of the

threshold subvariety, the latter being in fact a singular subset of Mc
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We notice that due to the occurrence of the factor τ 1 / 2 [or (s — (mμ)2)1/2] in (19),
the limit Ψί of Ψ on the cut s>(mμ)2 from the side I m s < 0 is different from Ψo

and such that:

Ψ1(k;Ω,Ω') = σlΨo(k;Ω,Ω'K = Ψo(k;-Ω,-Ω'). (23)

We can now express our local analyticity assumption on T as follows: T is analytic
in a "cut neighbourhood of the threshold variety" of the form Ψ{W). It will then be
convenient in all the following to reexpress T in our new set of variables by
putting:

TΨ(k β, β') = T(Ψ(k β, β')) = T(Pv ...,pm p'l9...,p'J. (24)

In view of the continuity assumption on T ( 0 ), T ^ , the boundary values T$\ T£1} of
TΨ at s>(mμ)2 from the respective sides Ims>0, I m s < 0 exist as continuous
functions and are linked to T ( 0 ), T ( 1 ) through the following relations:

β, flO = 7<0>(y0(Λ fl, β')) = T < > 1 5 . . . , p m Λ, . . . , P m ) , (25)

p 1 ? . . . 5 p m ; p ; 5 . . . , ^ (26)

the second equality in (26) being a consequence of relations (22) and (23).
At this point, we shall introduce our symmetry assumption on % according to

which T is invariant under the transformation σ. It entails [in view of (25), (26),
and (22)] that:

7jf)(fc;fl,β/) = Γ ( e )(p 1 9...,pm;p /

1,...,pJ, ε = 0,l, (27)

TΨ(k β, β') = 7 (̂fc; - β , - β ' ) . (28)

Throughout this section we shall then adopt without inconvenience (by an abuse
of language) the notation T(k, Ω, Ω') = TΨ(k, Ω, Ω') in fact, the boundary values
T ( 0 ), T ( 1 ) of T(fc,β,β') taken from the respective sides Ims>0, I m s < 0 at s = k2

>(mμ)2 [and defined for each (v09Ω,Ωf) fixed in the complex domain defined
above] coincide in view of (27) and (28), for k, Ω, Ω! real, with the corresponding
boundary values T ^ , T ( 1 ), of T(pv ...9pm9p'v . . . ,p j at the point (pl9...9p'm)
= yo(fc,β,β').

We are now in a position to prove

Proposition 1. The unitarity equation (1) can be rewritten in terms of the new
variables (fc, Ω, Ω') as follows:

ΊiO\k\Ω9Ω
f)-Ίil\k'9Ω9Ω

f)

J T(0)(/c β, β") T(1)(fc β", β')α(fc β")dβ" (29)

α(/c, β) = ((m/ι)2 - /c 2 ) [ ( m " 1 ) v ~ m ' 1 ]/2ά(/c, Ω), (30)

a being an analytic function of (k,Ω) near s = k2 — (mμ)2.

Proof In formula (1), the substitution (18) is performed in the arguments of

T ( 0 ), T ( 1 ), both for the external variables, by putting (pί9 .. ,pm) = ψ0{k9Ω);

(PΊJ •• >Pm) = V;o(^^')> a n < ^ ^ o r ^ e m t e β r a t i ° n variables by putting: (kί9...9km)
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= ψo(K Ω"). The left hand side of (1) is then, in view of (21) and (27), identical with
the left hand side of (29). We shall now compute the integral (2) representing the
right hand side of (1) by using the various equations corresponding to the mapping
(kv ...,km) = ψ0(k;Ω"): the integral (2) is first written in terms of the coordinates
(fcj°\ki) of fc.(l Si^m) associated with the Lorentz frame (vo(k), {va(k)}) [see (10)],
and the formal integration over the variables k\0) (l^ί^rri) and kw is done with the
help of the (5-functions δ{kf - μ2) (1 ̂  i ̂  m) and δ{v ~1} / £ k A. One is then led to

[
the integral:

|T<o,Γ(i,r π

in which we have used the notations introduced in (10)—(12).
By using the mapping φ [Eq. (15)] and taking formula (17) into account, one

rewrites the integral (31) in the form:

$τ<O)Ί<1)J(xl9...9xr)δ( Σ xf-{]fi-mμ))dx1,...9dxr, (32)
\ I

Dίk k )
where J(xv ..,χr) = v - 1 ? " ' ? " m " i ; x f ] [2ω(k ) ] " x is a locally analytic func-

D(X %)

tion of (x l 5 ...,xr); in view of (16), J is moreover even. Finally the substitution
χ. = τ1/2ί2., ( l ^ i ^ r ) in (32) allows one to rewrite the latter as follows:

\T{0)T{1)J(τ,Ω'')τ{r-2)l2δ{τ-{γ~s-mμ))dτdΩ\ (33)

where dΩ" is the canonical invariant measure on §,._!, and J(τ, Ω")
= \J(τll2Ω"v ...,τ1/2ί2;) is (since J is even) an analytic function of (τ,Ω") at τ = 0.
The formal integration of (33) over τ with the help of the ^-function
<5(τ — (]/s"—mμ)) then yields the right hand side of formula (29), with the following
specification of ά:

y γ r - 2 ) l 2 , (34)
α being analytic at s = (mμ)2. QED.

In the following, we shall use again by convenience the notation T ( 0 ) *T ( 1 ) for
the right hand side of (29), so that Eq. (1) will represent also Eq. (29). More
generally, being given two kernels A(k Ώ, Ω'\ B(k Ω, Ω') depending analytically on
the complex parameter /c, we shall put:

(A * B)(k Ω, Ω') = J A(k Ω, Ω")B{k Ω\ Ω')oc(k Ω")dΩ" (35)
§(m-l)v-m

and

{A * B)(k Ω, Ω') = j A(k; Ω, Ω")B(k Ω\ Ω')&(k Ω")dΩ", (35')
§ ( m - l ) v - m

so that, in view of (30):

(A * B)(k Ω, Ω') = σβ(A * B)(k Ω, Ω'),

where σ = (mμ)2 — s, β = [(m— l)v — m— l]/2.
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3. Local Maximal Analyticity and Unitarity Equations

Equation (29) expresses the fact that for each k real, with fc2>(mμ)2, T ( 1 ) is the
Fredholm resolvent6 of T ( 0 ) at the value λ = 1 of the Fredholm parameter λ, with
respect to the integration measure oc(k;Ω")dΩ" on § f ._ 1 (see the review of
Fredholm theory in Sect. 4). Equation (29) will then be extended for complex
values of the parameter k in the neighborhood of /c2 = (mμ)2, the extension
T(k;Ω,Ω') of Γ ( 0 ) being considered as a given Fredholm kernel on the sphere
g(m-i)v-m ^ e ^ j n ιQ-space), depending analytically on k. In view of the analyticity
of T in the physical sheet domain #^ and of the continuity of the boundary values
T ( 0 ), T ( 1 ), the Fredholm resolvent of T then defines an analytic (or meromorphic)
function in W whose boundary value at k real, s = k2> (mμ)2 from the side Ims > 0
is continuous and coincides with T ( 1 ) ; it thereby defines (by applying an
elementary form of the edge-of-the-wedge theorem) a second-sheet determination
for T in Ψ*1. (This argument is the direct analogue of that given in Sect. 2 of [6] in
the case m = 2, v = 4 and belongs to the general framework of Fredholm theory
with complex parameters [7, 3].) The analysis of the unitarity equation (29) then
provides the following preliminary indications.

If ( m - l)(v- 1) is odd, the factor σ ^ [ ( m μ ) 2 - f e 2 ] [ ( m " 1 ) v ~ m ~ 1 ] / 2 involved in the
right hand side of (29) [see (30)] changes its sign when s = k2 terms around (mμ)2 in
the complex plane and Eq. (29) becomes after one turn [by using our notation
(35)]:

By comparing Eqs. (1) and (36), one sees that Γ ( 0 ) and T ( 2 ) satisfy the same
Fredholm equation in terms of T ( 1 ) and therefore coincide, i.e. T is two-sheeted
and has a square-root type singularity at s = (mμ)2, as in the usual case of two-
particle thresholds in dimension 4.

If on the other hand (m— l)(v— 1) is even, the factor σβ is uniform around k2

= (mμ)2 and Eq. (36) is replaced by:

T ( 1 ) - T ( 2 ) = T ( 1 ) * T ( 2 ) . (37)

By an argument of analytic continuation similar to that given above for T ( 1 ),
one obtains an infinite number of Riemann sheets for T around s = (mμ)2, with
possible poles in the various unphysical sheets. The unitarity equation can then be
continued in the full Riemann surface of T, the successive determinations T ( r ) or T
at s>(mμ)2 satisfying

jir- l)_T(r) = T{r- D^jir) ^ (38)

6 Fredholm theory entails in particular that the right hand side of Eq. (29) can then be written either
Γ ( 0 ) *T ( 1 ) or Γ ( 1 )*T<0 ) [e.g. from Eq. (49), with λ = 0, μ = l ]
7 The continuity assumption on T ( 0 ) and 7 χ i ) plays here the same role as the (weaker) regularity
condition introduced and used by Martin [5] at m = 2, v = 4, to show the local maximal analyticity of
the partial waves
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By interpreting Eq. (38) in terms of Fredholm resolvents and applying Eq. (49) of
Sect. 4, or by a direct algebraic argument, one also has:

Lemma 1.

The following criterium, which entails the non holonomicity of the solutions of
Eq. (1) as a general rule (see footnote 2), then holds:

Proposition 2. T does not satisfy the finite-determination property at s — (mμ)2

unless T ( 0 ) * ^ 0 for some > 0 integer q (T(0)*q = T ( 0 ) *T ( 0 ) . . .*T ( 0 ) , q factors).

Proof A general proof is given in [3]. We give here a proof valid for β > 0 under
the assumption that T ( 0 ) is bounded near the threshold, namely that for any
real K, K2 = (mμ)2, K o > 0 , |T ( 0 ) | is uniformly bounded by a constant Cκ when k
lies in a real neighborhood Wκ of K. Under this condition, the Neumann series

( _ r ) " T ( 0 ) * ( n + 1 ) of Tir) in (39) is absolutely convergent for
« = o

r = (rCκCκ)-\ where Cκ= Max$\ά(k;Ω)dΩ,
keWkeWκ

in view of the bounds \τ<°Wn+»\ ^ CK(C^Cκ\σ\β)n easily derived from the definition
of *. Tir) is then equal to the sum of this series.

ro

Any relation of the form ^ arT
(r) = 0, with given constants a0, ...,aro ( α o φ 0 ,

r=0

aro φ 0), entails if it holds the relation:

ro

Σ cn1<0)*<n+1) = 09 cn= Σ ( - r ) X (40)

for \σ\β<dro. One cn at least, n = l, ...,r0, is non zero since the determinant |F|,
Uj=l, ...,r0 is non zero. Let no = Inf{n;cn + 0}. Equation (40) gives:

Γ oo I

_ r τ(°)*(" 0 + 1 )—T(°)*^ 0 + 1 ) i k V r T<0)*(/i+l) M|\
Lno1 — J * Z J C n + « o + l J * V ^

L« = 0 J

f ro \

The bound |cj < Σ lΛrl ro a n d t n e Previous bounds on the terms |τ(°)*<«+ D|

allow one to show that the sum ]Γ in the right hand side is bounded in modulus e.g.
by 2(Σ|Λ r |)r50+1C jK: for \σ\β<dJ2. Hence the right hand side of (41) is it-
self bounded in modulus, up to a multiplicative constant, by
Max Ω Ω , |T ( 0 ) * ( " 0 + 1 ) | x \σ\K Since |σ| can be chosen arbitrarily small, Eq. (41) thus
entails that T ( 0 ) ^ = 0 with q = no + l. Conversely, if 7^0 )* ( i )s0 for some q, then all
terms τ^*(n+1\ n^q, vanish; the finite determination property and the holono-
micity of T follow. Q.E.D.
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4. Fredholm Theory with Complex Parameters: Review and Auxiliary Results

We give in this section a review of Fredholm theory, adapted to the present case of
analytically dependent kernels, and a complementary lemma which will be useful
throughout this section. The results apply to any compact measurable space of
variables Ω with measure dΩ and to an integration operation * of the form (35),
with an arbitrary (continuous) weight α(fc, Ω) depending analytically on k.

Being given a Fredholm kernel A(k Ω, Ω'), depending analytically on complex
parameters /c, its Fredholm resolvent, defined by

Rλ(k Ω, Ω') = A(k Ω, Ω') + λ(Rλ * A)(k Ω, Ω') (42)

is a meromorphic function of (λ, k) of the form:

W (43)

ή , (43)

N and D being the standard Fredholm series, which are analytic with respect to k
in the same domain as A(k) and are entire functions of λ. In the following, we shall
often identify (by convenience) kernels such as A(k;Ω,Ωf), Rλ(k;Ω,Ωf) with the
corresponding fc-dependent operators A(k), Rλ(k) and will also use the notation
A(k)*B(k) for the /c-dependent operator whose kernel is (A*B)(k;Ω, Ω'). We denote
by aβ), i belonging to a finite or denumerable set /, the eigenvalues of the
operator A(k). The latter are the inverses of the characteristic values λβ), which
are the poles of Rλ{k) and are more precisely the solutions of the equation
D(λ9 k) = 0. The functions Λ,.(fc) are thus analytic in the same domain as A(k), except
possibly at a discrete set of branch points. Each associated projector E (fc) is a
meromorphic function of fc, with the same branch points as A.(fc), its kernel being
defined by the Cauchy integral

Eβ Ω, Ω') = — § Rλ(k Ω, Ω') dλ (44)

around the point l.(fe) in the complex plane of the Fredholm parameter λ.
With each eigenvalue function α (/c) = 1/Λ,f(fc) is associated a unique decom-

position of A(k):

(45)

where At and A't depend analytically on k, with possible branch points the
"principal kernel" Aβ) [relative to the eigenvalue function αf(fe)] is of finite rank
and admits aβ) as its single eigenvalue the associated "regular-kernel" Aβ) has
all the remaining eigenvalues of A(k) and

Aβ)*A'β) = A'β)*Aβ) = 0. (46)

The resolvent Rλ(k) admits the corresponding decomposition:

β), (47)
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where Rλ /? respectively jR f̂ίJ is the Fredholm resolvent of Ai9 respectively A[, and

(k) = 0. (48)

Finally, the following relation is satisfied by the resolvent Rλ{k) of A(k) at different
values of the Fredholm parameter:

Vλ,μ: Rλ(k)-Rμ(k) = (λ-μ)Rλ(k)*Rμ(k)

= (λ-μ)Rμ{k)*Rλ(k). (49)

Details will be found in [8] and in [7, 3].
The following result then holds:

Lemma 2. Let A(k) and B(k) be two Fredholm operators linked by the relation

A(k) = B(k) + φ(k) A(k) * B(k), (50)

A, B and the function φ depending analytically on k. Then
(i) There exists a bisection between the sets of eigenvalue functions at and bt of

A(k) and B(k) given by the relation:

aβ) = bβ) + φ(k)aβ)bβ). (51)

(ii) The operators A(k) and B(k) admit the same system of projectors Eβ)
associated with the respective eigenvalues aβ) or bβ) satisfying (51).

(iii) The principal kernels Aβ), respectively Bβ), of A{k), respectively B(k),
associated with the given eigenvalues aβ), respectively bβ), satisfy the relation

Aβ) = Bβ) + φ(k)Aβ)*Bβ). (52)

The corresponding relation between the associated regular kernels Aβ) and B[(k) in
the decomposition (45) relative to A(k) and B(k) also holds:

A'i(k) = B'i(k) + φ(k)Af

i(k)*B'ί(k). (53)

Proof We denote below by RλfA(k) and RλtB(k) the respective resolvents of A(k)
and B(k). By noticing that A(k) is the Fredholm resolvent of B(k) for the value φ(k)
of the Fredholm parameter, one easily obtains, in view of (49):

* A , # ) = K Λ + ^ > , # ) (54)

The characteristic values λitA(k) and λt B(k) of A(k) and B(k) (which are the
respective poles of Rλ A and i^^) are therefore linked by the relations

uW \ # ) # (55)
from which (51) follows.

Property (ii) of the lemma then follows from (54) by taking into account the
expression (44) of the projectors (EUA = EUB).

To show property (iii), we write for B(k) a decomposition of the form (45),
namely B(k) = Bi(k) + B[(k), where Bt(k) is the principal kernel associated with the
eigenvalue bt(k) of B(k). The corresponding decomposition (47), relative to Rλ>B(k)
for λ = φ(k) can be written: A{k) = Aβ) + A'£k). The relations (52) and (53) then
express the fact that Aβ\ respectively Aβ\ is the resolvent of Bβ), respectively
B'β\ for λ = φ(k). Finally, applying the previous result (i) to each relation (52) or
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(53) shows that At(k) admits the single eigenvalue at(k) while A'^k) has all the
remaining eigenvalues a fit). This shows that the finite rank operator At(k) is indeed
the principal kernel associated with α (fc). Q.E.D.

The following Fredholm norm of the operator A{k) (for each given k) will be
used:

\\A{k)\\ = [J \A{k Ω, Ω')\2 x |α(fc, Ω)α(fc, Ω')|dΩdΩ'Y1 2. (56)

A standard result due to Schur (see [8b]), asserts that the eigenvalues at(k) of A(k)
satisfy the inequality:

(57)

The following bound on each individual eigenvalue is obtained as a weak by
product of the latter:

(58)

[Better bounds on each α. follow from the general theory, but (58) will be sufficient
for our purposes.]

5. The Hermitian Case: Orthogonal Decomposition and Nonholonomicity of T

In this section, we come back to the simplified theory defined in Sects. 1 and 2, and
we study the solutions T of the unitarity equation (1) which satisfy the additional
condition of (anti)-hermitian analyticity in the physical sheet, near s = (mμ)2:

T{k Ω, Ω') + T(k ;Ω,Ω') = O. (59)

A condition of this type holds in field theory for the Green's functions and follows
for the m->m scattering functions by restriction to the complex mass shell
(assuming that the corresponding analyticity has been established).

We then have:

Theorem 1. "// the scattering function T satisfies the local analyticity, unitarity and
symmetry properties of our simplified theory, together with condition (59) of (anti)-
hermitian analyticity, and if (m—l)(v—1) is even, then:

i) T admits in the neighbourhood of k2 = (mμ)2 a complete denumerable set of
(nonholonomic) eigenvalues tt(k) of the form:

(60)

and a corresponding system of orthogonal projectors Et(k) (Ei(k)*Ej(k) = Ei(k)δij),
where the functions bt(k) and the kernels Et(k Ω, Ω') depend analytically on k and are
uniform around k2 = (mμ)2 the functions bt satisfy bi(k) + bi(k) = O.

ii) The following expansion holds near the threshold for any k real, k2 Φ(mμ)2,
in each Riemann sheet9, in the sense of 1}-convergence on S{m~1)v~m x §(m-i)v-m;

T(k;Ω,Ω')=Σtί(k)Eί(k;Ω,Ω'). (61)

9 With the exception of the possible real poles for the unphysical sheet determinations of T
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iii) T has a nonholonomic singularity at k2=(mμ)2.

iv) // T is uniformly bounded near k2 = {mμ)2 in the physical sheet, and if

β= > 0 the functions ύi(k) = ui(k)/σβ, where ut{k) = l/bf(fc) and

σ = (mμ)2 — s, are locally analytic at k2 = (mμ)2".

Proof We prove below the assertions i), iii), and iv) of the theorem and the
decomposition (61) of ii) in the region k2 <{mμ)2. An alternative proof of i) and the
proof of (61) in the region k2>(mμ)2 will be given at the end of Sect. 6.

Let {t^kXE^ iGl} be the system of eigenvalue functions and associated
projectors of T(k), which are analytic in k near s = (mμ)2 (sφ(mμ)2) and could a
priori have a discrete set of branch points (see Sect. 4). For any given iel, let us
consider any path of analytic continuation in the physical sheet around s = (mμ)2

that starts and ends at a given real point s0, sQ>(mμ)2, and stays away from the
possible singularities of t{ and Et. We denote by tf\ Ef\ respectively f|1}, E\1} the
respective determinations of ti9 and E{ at s>(mμ)2 from the sides I m s > 0 and
Ims<0. The unitarity equation (1) and (29) and Lemma 2 [applied to the case
φ{k)=Y] entail the existence of an element j e / (independent of s in the neigh-
bourhood of s0) such that:

tf\k)-t?\k) = tf\k)t?\k), (62)

Eγ\k Ω, Ω') = Ef\k Ω, Ω'). (63)

Γ 1 Γ 1

A particular possible solution of (62), with j = i9 is ίf(fe)= —ln((mμ)2—k2)\ in
[2ιπ J

which case Et is uniform around 5 = (mμ)2 [in view of (63)] such an eigenvalue, if it
exists, satisfies Eq. (60) with 2̂  = 0. For a different eigenvalue function ί (fc), it is
convenient to introduce the function w (fe) defined through the relation:

1 1 _-Lln((mμ) 2 -/c 2 ) . (64)
Uί(k) φ) 2iπ

It then follows from (62) that (near s0):

ι41\k) = uf\k). (65)

The condition of (anti) hermitian analyticity (59) ensures that t0 and hence ui9 is
purely imaginary in the physical sheet at k2 <(mμ)2 and that E{ is symmetric in
that region (E-(k Ω, Ω') = £.(fc, Ω\ Ω)). We show below that these properties (also
applied to upEj) necessarily entail that j = i, i.e. in view of (63), (65) that ut and Et

are uniform around s = (mμ)2.
In fact, since ut is purely imaginary at k2<(mμ)2, one has, in the region k2

>(mμ)2:

1)(fe) = O, (66)

and thus, in view of (65)

uf\k) + uf\k) = 0. (67)
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The same arguments as above applied to the element j of / show the existence
of an element if = ί(j)el such that:

(68)

(69)

(70)

The comparison of (67) and (70) entails that uf\k) = uf)(k) near s0, and hence
that i = ϊ. If φz, let us then introduce the operator:

Utβ β, ίϊ) = ufftEβ β, O) + uβ)Eβ β, β/). (71)

This operator is uniform around s = (mμ)2 in view of (65), (68), (63), and (69) and of
the identity i = ϊ. Since ui9 Uj are purely imaginary in the physipal sheet in the
region k2<(mμ)2 and since Ei9 Ej are symmetric in this region, Όtj is antisymmetric
there. In view of its uniformity, it is therefore also antisymmetric at k2 > (mμ)2, and
hence its eigenvalues uί9 Uj are again purely imaginary there. Since ut, uj are purely
imaginary both at k2 <(mμ)2 and at k2 >(mμ)2, they are necessarily uniform, which
contradicts the assumption j =M. Since Eq. (64) can be rewritten under the form (60)
with fr.(fc) = 1/ujUή, this achieves the proof of property (i).

Let now T(r) be the rth determination of T in the region fc2<(mμ)2, J ( o ) being
the physical sheet determination. Similarly let t{[\k), be the corresponding rth

determination of ί (fc). Formula (61) readily follows for T(0)(/c) from the Hilbert-
Schmidt decomposition of the anti-hermίtian operator T(0)(/c) (the eigenvalues and
projectors occurring in that decomposition being obviously identical with those
obtained above from Fredholm theory). We now establish it for all other
determinations T{r\k).

At each real point fc, k2<(mμ)2, which is not a pole of T(r\ Shur's result [see
(57)] applied to Tir\k) shows that Σ\t{l\k)\2S\\Tir\k)\\2<oo and thus entails, in
view of the hermitian property of the orthogonal projectors Et(k) that the series
Σ^pikjE^k, Ω, Ω') is convergent [in the sense of L2-convergence in (β, β')-space].
Let Σ{r) (fc;β,β') be the sum of this series. We check below that Σ{r) = Ί{r)\ this
follows from the identity Σ(0) = T ( 0 ) already proved above, and from the fact that
Σir) and T{r) are solutions of the same Fredholm resolvent equation with given
kerneU ( 0 ) -T ( 0 >.

We have indeed:

^ (72)

Equation (72) is obtained by analytic continuation from Eq. (39) Eq. (73) can be
derived by standard arguments of convergence from the hermitian property and
orthogonality of the £.(fe) and from the relations:

t?\k) -t?(k) = r^\k)i\k) (74)

that directly follow from (64) and (60).
This achieves the proof of property (ii) at k2 <(mμ)2, in all Riemann sheets.
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The nonholoriomicity of T follows from that of the coefficients ί .(fc): in view of
the decomposition (61) established for each Tir\ any condition of the form

ro fo

Σ arT
{r) = Q would yield Σ arίΐ\k) = ® f° r e a c n U which contradicts (60) (see e.g.

r = 0 r=0

[la]). (Note that condition (59) in fact forbids, in view of (61), the pathology

T(o)*<z = 0 considered in Sect. 3, which would yield [ίi(fe)]« = 05 Vi, hence T = 0.)
Finally, if T is uniformly bounded near σ = (mμ)2 — k2=0 in the physical sheet,

its eigenvalues ί (fc) are uniformly bounded in modulus, near σ = 0, [see (58)] by

SupJ T(fc)|| ^ \σβ\ x Supk ΩΩ,\T(k Ω9 Ω
f)\ x Sup J |ά(/c Ω)\dΩ < oo .

Hence, in view of (60), wf(fc) = [ββbi{k)~]"* is bounded near σ = 0; ίi; is thus analytic
at σ = 0 since it is uniform around σ = 0. Q.E.D.

Remark. An alternative method, based on the explicit form of holonomic functions
indicated in footnote 2, could be used to derive the nonholonomicity of T, for
(m— l)(v— 1) even, from the same assumptions as in Theorem 1. In particular,
elementary arguments show that (anti) hermitian holonomic functions with
regular singularities (i.e. with coefficients aa j analytic at z = 0 cannot satisfy the
unitarity equation (1).

As an introduction to Sect. 6, we conclude with the following heuristic
comment. Let us assume for simplicity that all eigenvalues f .(fc) are such that bf(fc) is
not identically zero: this is the case for instance if T is bounded near σ = 0 in the
physical sheet. The proof of Theorem 1 then suggests the introduction of the kernel
U = Σ^E^ If this sum is convergent, it follows from our previous analysis that U is
uniform when fc2 turns around (mμ)2. In view of the orthogonality relations
Ei*Ej = δίjEί and of the relation (64), written in the form:

φ) = uβ) + -?- ln((mμ)2 - k%(k)Ui(k). (75)
In

U satisfies on the other hand the integral relation:

T= U + ̂ ~In((mμ)2-k2)T*U. (76)

Equation (76) will be used in Sect. 6 to define rigorously the kernel U in terms of T
independently of the condition of (anti) hermitian analyticity of T, and its
uniformity will be proved to be equivalent to the unitarity equation. Closely
related results will also be obtained if

is one of the eigenvalue functions of T.

6. On-Shell Irreducible Kernel U

Being given the scattering function T, Eq. (76) defines U in a unique way for each

given k through Fredholm theory, provided that λo(k)= — — ln((mμ)2 — fc2) is not
2π
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a characteristic value of T(fc). Hence, by Fredholm theory with complex parame-
ters (see Sect. 4), U(k Ω, Ω') is a well-defined meromorphic function of k in the
same Rieman domain as T(k, Ω, Ω') provided that to(k) = l/λo(k) is not one of the
eigenvalue functions tt{k) of X

If to(k) is an eigenvalue function of % there exists (see Sect. 4) a decomposition
of T of the form:

T(k Ω, Ω') = T\k Ω, Ω>) + V{k Ω, Ω'), (77)

where T" is the principal kernel of T corresponding to the eigenvalue to(k) and the
associated regular kernel V does not have the eigenvalue function ίo(fc) T and T"
are analytic in the same domain as T and T'*T" = 0. U can then be defined (as a
meromorphic function in the same domain as T) through the Fredholm equation:

ln{{mμ)k)T*U. (78)
2π

In the following, we shall consider Eq. (78) as the general definition of 17, since
it reduces to (76) (Γ" = 0, Γ = V) if to{k) is not an eigenvalue function of X

The following results can then be derived from Lemma 2 of Sect. 4:

Lemma 3. The unitarίty equation (1) and (29) implies the analogous equation for T:

where T / ( 0 ) and T / ( 1 ) are the physical sheet boundary values of V at k2>(mμ)2 from
the respective sides I m s > 0 and Ims<0.

Proof Part (iii) of Lemma 2, applied to Λ = T{0\ B=T(1\ φ = l9 shows that the

regular kernels of T ( 0 ) and T ( 1 ) associated respectively with the eigenvalue

\ i Γ 1

functions ίo(fe) and t0 1(k)= h— ln((mμ)2 — fc2)— 1 satisfy the same integral

J.2π J
equation as T ( 0 ) and T ( 1 ). In view of the analytic dependence on k of TJ and hence
of r , these kernels are respectively T / ( 0 ) and T ( 1 ) . QED

Let {ti(k)9Ei(k); iel} denote, as in Sect. 5, the system of eigenvalue functions
and associated projectors of X In view of Eq. (78), we have:

Lemma 4. U admits the same system of projectors {Et(k) ;iel,iή=θ} as V and its
eigenvalues ut(k) are analytic functions of k around s = (mμ)2 that satisfy the
relations:

V/6/,ίΦ0;tί(/c) = M1.(fc)+-ί-ln((m/i)
2-fc2)ίi(fc)Mi(fe). (80)

In

Lemma 4 follows directly from Part (i) of Lemma 2.
We next prove the following algebraic relation10, which will allow one to show

the equivalence between the unitarity equation (79) and the uniformity of U with
respect to k around s = (mμ)2.

10 An analogous algebraic relation, which allows one to prove the equivalence between off-shell
unitarity equations and the uniformity of the Bethe-Salpeter kernel at threshold, holds for m = 2,3 in
the exact theory (see [9]) and for every m in the simplified theory [1]
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Lemma 5. If (m— l)(v— 1) is even, then:

~ln((mμ)2-k2)-l\U(1)

l n ( ( m μ ) / c ) r U ( t 7 l [ / ) , (81)

where l/(0) ami t/ ( 1 ) #r£ ί/ze physical sheet boundary values of U at k2>(mμ)2 from
the respective sides I m s > 0 and Ims<0.

Proof. The relations

= Ui0) + ^ - In ((mμ)2 - fc2) Γ ( 0 ) * ί/(0), (82)
2π

^ l n ( ( m μ ) f c ) l l r * l / (83)
2π J

yield [since T' ( 0 ) * L/(0)- T / ( 1 ) * C/(1) = ( Γ ( 0 ) - r ( 1 >)* Ϊ7 ( 1 )+ r ( 0 ) * ( l / ( 0 > -

_ / c 2 ) _

j ( 8 4 )
[2π

Equation (81) follows by subtracting from both sides of (84)

! Γ ( 0 ) * r ( 1 ) * ( i - U-ln((mμ)2-/e2)-l £/(1)V
\ l2π I

which is also equal in view of (83) to T' ( o )* l/(1). QED.

Remark. If (m— l)(v— 1) is odd, the analogue of Eq. (76) is a direct extension of
Zimmermann's equation (of the case m = 2, v = 4), namely:

T = K + ±T*K. (85)

We assume here for simplicity that — \ is not a fixed characteristic value of
T(k;Ω,Ω'); this condition is guaranteed in particular if the (anti) hermitian
analyticity property (59) is assumed. (Otherwise, T should be replaced by the
kernel T obtained by subtracting from T the principal kernel associated with the
characteristic value —1/2.)

The analogue of Eq. (81) is then:

The proof of Eq. (86) from Eq. (85) is similar to the proof given above for Eq.
(81).

We now state:

Theorem 2. "The following properties are equivalent if (m— l)(v— 1) is even:
a) T satisfies the unitarity equation (79).
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b) The associated kernel U(k;Ω,Ωf) is uniform around the threshold s = (mμ)2.

If β= >0 ? conditions a) and b) can be replaced by the stronger

conditions :

a') Equation (79) still holds in the limit k2 = (mμ)2 and Vi0) = Γ{1) in this limit.
b') U is analytic at k2 = (mμ)2".

Proof In view of the invertibility11 of the kernels 1 ln((mμ)2 — k2)U(0) and
2π

— \n((mμ)2-k2)-l T/(1), Lemma 5 entails the equivalence between Eq. (79)
[2π

and the relation U(0)— Ϊ7(1) = O, i.e. the uniformity of U. This proves the equival-
ence between a) and b).

The equivalence between a') and b') is obtained by the same methods as those
used below in the proof Theorem 3'.

We first state the following direct corollary of the first part of Theorem 2 and
of Lemma 3.

Theorem 3. // (m— l)(v— 1) is even and if T satisfies the local analytίcity, unitarity
and symmetry properties of our simplified theory, then the associated kernel U
(defined through Eq. (77), (78)j is uniform around k2 = (mμ)2.

The following more refined version of Theorem 3 also holds:

Theorem 3'. "Let (m-l)(v-l) be even and let β=— be >0. // T

satisfies the local analyticity, unitarity and symmetry properties of our simplified
theory, and if T is moreover uniformly bounded in the physical sheet near k2 = (mμ)2,
then

(i) U is analytic with respect to k at k2 = (mμ)2.
(ii) T=Tf, and T admits following expansion12 in the neighborhood of k2

= (mμ)2:

(87)

(σ = (mμ)2 — fc2), which is uniformly convergent in the Rίemann surface of T for Argσ
bounded, \σ\ sufficiently small and (Ω,Ωf)eS2β+ί x §2β+v

(iii) lim T(k;Ω,Ωf)=U(k;Ω,Ω') (88)

11 For instance the inverse of 1 + — ln{(mμ)2-k2)T{0) is in view of Eq. (82):
2τu

1 - — \n((mμ)2-k2)Ui0)

2π

12 The following related result is given in [10]: if T is a convergent sum £flw(p) — σβ lnσ) of dom-

inant contributions to the Freyman integrals /(Gj,m)) of the graphs (8) multiplied by locally analytic

coefficients, then T satisfies Eq. (1) if (and only if) the an are of the form α* ( n + υ for some locally analytic

kernel a
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for any k in the threshold manifold k2 = (mμ)2 and from any direction of the Riemann
surface of T\

Proof The eigenvalues ί.(fc) of T(k) are uniformly bounded in view of (58) and of
the boundedness condition of the theorem by

|| T(k) II < \σ(kψ Sup fe} ΩfΩ, I T(k Ω, Ω')\ x Sup, J \a(k Ω)| dΩ (89)

when k varies in the physical sheet near k2 = (mμ)2. Therefore

- 1

cannot be an eigenvalue function of T. [σ^lnσ-^0 when k2-*(mμ)2 since
Hence T=T and 17 is defined through Eq. (76).

It will be convenient for the present purpose to rewrite Eq. (76) in the form:

^σ\nσT*U (90)
2π

when * is defined in Eq. (35'). The Neumann series

of U in terms of T is uniformly convergent for σ in the physical sheet, |σ|
sufficiently small and (Ω,Ω')eS2β+1 x § 2 / j + 1 since

\r{n+iXk;Ω,Ω')\<(Supk;Ω^(T(k;Ω,Ω>)\r+1 x(SupJ|α(fc;Ω)|dΩ)\

Therefore U, which coincides with the sum of this series, is itself uniformly
bounded in modulus in the physical sheet near σ = 0. Since U is uniform around
σ = 0, it is therefore analytic in k at σ = 0. This proves property (i).

The expansion (87) of property (ii) is then obtained in the same way as above,
by considering the Neumann series of T in terms of U relative to Eq. (90). Since U
is analytic at σ = 0, the argument is now valid also in unphysical sheets provided
that |σ^lnσ| be sufficiently small.

Finally, property (iii) follows from Eq. (90) in the limit σ—>0 since T and U are
both uniformly bounded near σ = 0 for |σ^lnσ| sufficiently small. QED

The Hermitian Case. The previous analysis and results of this subsection are
independent of the condition of (anti) hermitian analyticity of T. We now impose
again this condition as in Sect. 5. We then give below an alternative proof of
part (i) of Theorem 1 and the proof of the decomposition (61) at k2>(mμ)2.

If to(k) is one of the eigenvalue functions of T, one first deduces from (59) the
same (anti) hermitian analyticity property for T'=T—T"; in fact, in the present
case Tr(k;Ω9Ω') = to(k)Eo(k'9Ω9Ω

f\ E0(k) being the projector associated with the

Γ ΐ
eigenvalue to(k)= —ln((mμ)2 — k2)

|2π
, as follows from the Hilbert-Schmidt de-

|2π
composition of T at k2 < (mμ)2 in the physical sheet. Equation (78) that defines U
in terms of V as a meromorphic function of k can be rewritten:

(91)
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where

(92)

= l-ίo(fc)C7(fc). (93)

The antihermitian analyticity property of T entails that #(k), and hence in
view of (91) °ll(k), is a self-adjoint operator for any real k in the region k2 <(mμ)2

(near the threshold and except at the possible polar singularities of U). Formula
(93) then ensures in turn that U satisfies for k2 <(mμ)2 the antihermitian condition:

U{k Ω, Ω') + U(k ;Ω,Ωf) = 0. (94)

Since U is uniform around k2 = (mμ)2 (Theorem 2), condition (94) also holds at
k2>(mμ)2. The eigenvalues ut(k) of U(k) are thus purely imaginary both at k2

<(mμ)2 and at k2>(mμ)2, and are therefore uniform. The uniformity of the
associated projectors Et(k Ω, Ω') is proved similarly. In view of Lemma 4, part (i)
of Theorem 1 is therefore reobtained (with ft. = 1/w ).

We now prove part (ii) of Theorem 1 at k2>(mμ)2 for the physical-sheet
determination T ( 0 ) of T. [The decomposition (61) for the other determinations T(r)

of T will then follow from Lemma 1 [Eq. (39)] in the same way as that presented
in Sect. 5 for T{r\ starting from the decomposition (61) of T{0\'] Being given any
real point k with k2>(mμ)2 near threshold, let Σ(k Ω, Ω') be the sum of the series

Σ tf\k)Ef\k\Ω,Ωf), which is known to be convergent (in the L2-sense in
iel

O-space) in view of Schur's result (57) and of the hermitian property of the
orthogonal projectors Ef\ In order to prove the decomposition (61) of T ( 0 ), we
have to prove that T ( 0 ) = Σ. The proof given below applies to any fixed real point
k = K, K2>(mμ)2, near the threshold.

We first assume for simplicity that to(K) = \—ln((mμ)2 — K2)\ is not an
|2π J

eigenvalue of T{0)(K). This condition is satisfied if to(k) is not an eigenvalue
function of T and if K does not belong to a polar singularity of U(k). Since U is
antihermitian at k2>(mμ)2 (see above), it admits at K the Hilbert-Schmidt
decomposition.

U(K Ω, Ωf) = Σ uj&EjJK. Ω, Ω1). (95)
i

By the same convergence arguments as those used in Sect. 5, one then checks,
in view of Lemma 4 [Eq. (80)] that

Σ(K)=U(K)+ ^-ln((mμ)2-K2)Σ(K)* U(K), (96)
2π

i.e. Σ(K) satisfies the same Fredholm equation in terms of U(K) as Ti0)(K). Hence
Ti0\K) = Σ(K).

If to(K) is one of the eigenvalues of T(K\ let 70 be the (finite) set of indices i
such that tt{K) = to(K). It is then convenient to introduce the decomposition:

= f'(k)+f'(k), (97)
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where T"(k) is the sum of the principal kernels of T(k) associated with the
eigenvalues ί.(/c), ielo, and f'(k) does not have the eigenvalues ί (fe); T and f"
coincide respectively with V and T" unless one or more eigenvalue functions tt{k)
different from to(fc) are equal to to(K) at the point K considered. We first consider
T". In the region k2 <(mμ)2 of the physical sheet, f" is equal, in view of the Hilbert-
Schmidt decomposition of T to £ (̂/c) £;(/<; ;Ω,Ω') Since the sum is finite, the

ie/o

same result still holds by analytic continuation in the region k2>(mμ)2, in
particular at the given point K. On the other hand, a well-defined kernel
JJik £2, Ωr) is associated to f'(K) through the equation analogous to (78):

f{K)= U(K)+ -l-\n{{nιμ)2-K2)T'{K)* U(K), (98)
2π

since to(K) is not an eigenvalue of T'(K). By the same arguments as those used in
the previous case for the sum Σ(K), one shows here that the sum

X tjiKjEJiK Ω, Ω') coincides with T\K Ω, Ω') as the unique solution of (98) in
i,iel\lo

terms of U.
By combining the results thus obtained for f'{K) and T"{K), the decom-

position (61) of T ( 0 ) at k = K is therefore proved. QED

Remark. In the hermitian case and if T is moreover assumed to be uniformly
bounded in the physical sheet near σ = 0, then the orthogonal decomposition (61)
can be recovered from (and is in fact equivalent to) the expansion (87) of T in
powers of σ^lnσ. Starting from (87), one may introduce for k real near the
threshold the Hilbert-Schmidt decomposition U=Σ uίEi = ]Γ ύiEi of U, where

ie/ ieJ

ui = σβύί, Ei = σ~βEi. In view of the orthogonality of the Et and the corresponding
relations Ei*Ej = EidiJ, one gets:

[/*<*+1)= £ u ? + 1 £ . (99)
iel

from which (61) follows, by resummation for each i of the series

in the form:

T(k • Ω, Ω') = Σ 1 Eβ • Ω, Ω'). (100)
; —

The converse is proved by expansion for each i of the functions

in powers of σ^lnσ (and resummation over i, for each n).
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