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On Cantoni’s Generalized Transition Probability
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Abstract. We obtain simple expressions of the “generalized transition pro-
bability” proposed by V. Cantoni, for both classical and quantum mechanics.
We compare the result with the ordinary quantum mechanical transition
probability.

I. Introduction

Using Mackey’s axiomatization of physical theories ([1], p. 63), V. Cantoni
introduced a function T'(a, ) defined on pairs of states «, f. When the physical
theory in question is quantum mechanics and for the special case of pure states,
Cantoni proved that T(a, f) equals the “transition probability” |(a, B)|*. In that
sense, he named the function T “generalized transition probability.”

Our main purpose in this work is to give-simpler expressions of T for both
classical and quantum theories since Cantoni’s definition is quite involved. We
shall prove furthermore that in the quantum case, T(x, ff) equals the quantum
mechanical “transition probability” between the states « and f, each time that
this concept has an unambiguous sense.

We now recall that in Mackey’s system, one considers a set ¢ of observables
and a set & of states. For each A€ and a€.%, and for any Borel subset E of the
real line R, one denotes by p(A4, o, E) the probability that a measurement of 4
performed on a system in the state o will yield a result lying in E. Accordingly,
o,(E) = p(A4, o, E)is a probability measure on R. Mackey then imposes some axioms
involving @, % and the probability p. We shall make use only of the first three,
which trivially hold in all known physical theories.

Cantoni’s definition now runs as follows: for any pair of states o, f and any
observable A4, define the expression T ,(«, ) by

) o do, dB\Y?
T (e p) = é (d—;d—a) do, 1)

where g is any measure with respect to which both o, and 8, are absolutely continu-
ous. It is easy to see that T, is independent of o. Finally define

T(o, B)=inf T ,(ot, B). )

Ael

This is Cantoni’s “generalized transition probability” [2, 3,4].
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II. The Main Theorem

Let us recall that in Mackey’s formalism, the spectrum of an observable 4 can
be defined, roughly, as the set of all possible values of A (for a rigorous definition
see [1], p. 69). Our main result, from which all others follow, is that in (2) we can
take the infimum over the observables with purely discrete spectrum only. The
proof is based on two simple lemmas from measure theory:

Lemma 1. Let (X, 9, u) be a measure space and L*(X, u) the Hilbert space of
all square integrable real-valued functions on X. Then for any positive element
fe#?* (X, p) and any € > 0, there exists a partition D,,i =1,2, ...n of X such that,
Jor any partition B;,j=1,2, ... m finer than D, one has

f= X f frdu—2
u(Bj)# 0 \/ WB))
where Ap, 8 the characteristic function of B,

Proof. Since the step functions are dense in £ ?(X, p), for any ¢ > 0 and fe Z*(X, p),
there exists a partition D,,i = 1,2, ... n, and numbers g, such that

- ZaiXDi = <f f- ZaiXDi

We recall that, by the usual definition of step functions ([5], p. 231), u(D,) =
impliesa, = 0.

If in addmon f=0, then we can take a; = 0. For any partition B, finer than
D,, define the numbers b; by b;=a,iff B;= D Then relation (3) 1mphes

2 1/2
d,u) <e (3)

” I=2b @
Setting !
XB
fi= vV frap——==
u(B,Z#o gj VH
we find
I f=fil =] /= Xbs, bits, — S| (5)
and also ' '

172 ]2
2 (ffzdu>
~fi| = b——~P £ .
MBEW ; 5 u(B)
S22, = 1028, 112 < 20 f 25, = s, 1P

=/ = 2bs,|* (©)

Combining (4), (5), (6) we deduce that ||/ — f, || <2e. ]
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Lemma 2. If f,ge #*(X, ) and f=0,g =0, then Ye >.0 there exists a partition

B},J - 1, 2, e HlSLlCH that
1/2
((ij ><Bjy >>
J J

Proof. By Lemma-1, for every ¢ > 0 we can find partitions B;, B;, such that | f -
filSellg—g,| Se where f, was defined in the precedmg proof and g, i
defmed analogously. In addition, we can suppose that the two partitions are
identical. (If not, consider the partition Bj N B’J.,). One has

<e.

du| < (| f—filgdu+ [f,lg —g,|du

e[ £+ gl ()

1/2
1fi9du=" % <<§f2du><§gzdu>> , (8)
X WBj)F o B; B;

while Lemma 1 again shows that for this partition B;, one has

Y, [ ffdu<é Y [gPfdu<é,

Obviously

w(Bj)=w B, wBj)=o B,
which imply
1/2
(o)) e
wBy)=w B, B;
A combination of (7), (8) and (9) entails Lemma 2. |

We now turn to the statement and proof of the main theorem. Let us denote
by O, the set of all observables the spectrum of which consists of a finite number
of points.

Theorem 1. Inany physical theory obeying axioms I, 11, 111 of Macke)’s axiomatics,
T(, ) is also given by the formula
T(a, B) = inf T (o0, ). (10)
Ae@f

Proof. For any pair of states o, § and for any observable A4, let ¢ be a measure with
respect to which both «, and §, are absolutely continuous. Since o, and S, are

d /
probability measures on R, \/7 belong to Z*(R, o). Accordingly,

Lemma 2 and relation (1) imply that for any & > 0 there exists a partition B, , k = 1,
2, ... nof Rsuch that

‘Tj’z — 2 (0, (BYBBY)?| < (11)
k

Define now the function h(x)= )| ky g (x) and the observable A’ = h(A) (see

k=1
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Mackey’s axiom I1I, [ 1], p. 63). It is easy to see that (a) the spectrum of A’ is discrete,
consisting of the points k = 1,2, ... n, (b) one has o, ({k} ) = o ,(B,) and T }/*(o, B) =
Y (0 ,(By)B 4(B,))/*. Substitution in (11) gives

k

|Ty? - Ti?| <. (12)
It is now trivial that (12) and (2) imply (10). |

III. The Classical and the Quantal Case

Let us see what the forgoing theorem implies when the physical theory in question

is classical statistical or quantum mechanics. In the first case, a physical system

is described by its phase space Q. The invariant Liouville measure p is defined on

the Borel subsets of €. States are probability densities on €, i.e. non-negative

functions p such that | pdu = 1 (see [1], p. 48) while the observables are measurable
Q

real valued functions f on @ (i.e. random variables). The probability measure
p(f, p, E) = p (E)is given by
)= | pdp (13)
J-NE)
The value of T(p,. p,) can be easily found by applying Theorem 1:

Proposition 1. In the case of classical statistical mechanics the value of T(p,, p,)

is given by the formula
T(py, py) = ( \/plpzdu>

Proof. Let the random variable f represent an observable whose spectrum consists
of the points 4, 4 2, /ln. This means simply that f takes on only the values 4;,
sothatf ~'(4),i=1,2,... nisa partition of Q. Consequently, (1) and (13) yield

1/2
T}“(pl,pz)=2< [ pudp | Pzd“> : {14)
S

i ~1(4i) S A

Since f'can be chosen freely, so can the partition /= *(4,). Accordingly (14) and
Theorem 1 entail

1/2
T2 = 1an<jpldu jpzdu) , (15)

{B;} j \B, B,

the infimum being taken over all partitions. On the other hand, one has by the
Schwartz inequality

12
j\/szd/" §Z< §p,du jpzd/"> ’
Q j \B,

B,

which together with (15) and Lemma 2 imply the proposition. [ ]
We come now to quantum theory. The states of a quantal system are represented
by density operators W(i.e. positive operators of unit trace) in a Hilbert space
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A, while the observables are represented by self-adjoint operators A. The measure
p(A, W, E)is given by

p(A, W, E) = Tr (Fg W), (16)
where F7 is the projection-valued measure which corresponds to the spectral

decomposition of 4. We now give for T(«, f) a much simpler expression than
that given by its definition (1) + (2), holding in the quantum case.

Proposition 2. In the case of Quantum Mechanics, Cantoni’s “generalized transition
probability” between two states represented by the density operators W,, W, is
given by
T1/2(W1’ Wz) = inf Z((l//” Wllﬁ,')(l//p Wzlpi))l/zv (17)
{Yilien ieN

the infimum being taken over all bases {y,},_, of the Hilbert space A .

Proof. Theorem 1 shows that for any ¢ > 0, there exists an operator 4 with purely

discrete spectrum 4, 4,,...such that 0 < T,/ — T'? <&, or equivalently
0= R (TH(W, Ff, ) Tr(W, F, )2 — T2 <. (18)

Let {x, }, ., » be a basis of the subspace onto which F ﬁk} projects.
Then () {x, }; ., is a basis of # and
k

1/2
Y(Tr(W, F(‘;,‘})Tr(WZF(‘ak}))”2 = Z(Z(xkl, Wlxkl);(xkl, szk,)>

k kN I

23 2 (06 Wy, (X, Wyx, )2 (19)
k Iy
On the other hand, if B is any self-adjoint operator having a purely discrete
nondegenerate spectrum and all x, as eigenvectors, we deduce from (1) and (2)
D2 (e Wy, )5, Wy NY2 = T2(W, W) 2 TVA(W,, W) (20)
k I
The proposition follows by combining (18), (19) and (20). |
The result of the forgoing proposition is considerably simplified if one of the
two states is pure, i.e. represented by a unit vector g or, equivalently, by the pro-
jector P, on g.

Proposition 3. Cantoni’s “generalized transition probability” between a pure state
P, and a state W equals (g, Wg).

Proof. For any two states W,, W, and any basis {f,},_,. one has

neN>

(Z((fna W) Wa )Y 2) = 2 (U Wi L) U Wi ) o Wa f) Sy WS, )12

n,m

; Z \(fn’ Wlf;n) H (fn’ Wme)l

=

Z (Wlfn’fm)(fm’ szn) = Tr(Wl Wz)

n,m
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Combining this result with Proposition 2, we deduce that

YW, W, T(W,, W,) = Tr(W, W,).

For W, =W, W, =P, we obtain from (21)
T(W,P) =(g. Wy).
On the other hand, it can be easily verified that
(9. Wg) = T, (W.P) 2 T(W, P,)
which, together with (22), proves the proposition.
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