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Abstract. It is shown that for classical gases with stable, bounded and absolu-
tely integrable pair interactions, the Taylor expansions in β of the correlation
functions and the pressure are Borel-summable at β = 0.

1. Introduction

The question of analyticity in β for classical continuous systems was considered
some years ago by Lebowitz and Penrose [1]. Among other results they showed
that for hard core potentials pressure and correlation functions are analytic
at β = 0. In this paper we treat the case of bounded potentials, where analyticity
is not to be expected, as the expansion is around the ideal gas and the negative
of a stable potential is unstable, which causes divergence of the pressure for negative
β in the finite volume.

2. Infinite Volume Correlation Functions

We assume the interaction potential φ to satisfy stability,

m

Σ Φ(xf — Xj) ^ — mB for some constant B (1)
u=ι
i<j

and

II*L<°°. (2)
l l φ l l ι < ° ° (3)

Eqs. (2) and (3) imply regularity ([2], ch. 4.1):

l\e-f«'i>-\\dx = C(β)«x> ϊoiβeC. (4)

We shall use the representation of the correlation functions given by Ruelle ([2],
ch. 4.2.):

On the Banach-spaces E.,ξ>0 of sequences of complex functions φ =
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(ψ(x)ι)n* i wit*1 ̂ Q norm

\\φ\\ξ= sup (ξ ~ " ess sup | φ(x)n \ ), (5)
n^ 1 (x)n eRvn

we define the operator K^ by

(M)(*ι ) = Σ AίΦ W*, > 00>(y)n (6)

where (x)'m_ 1 = (xx , . . . , xi9 . . . , xm), the kernel is given by

and
m

^wm- Σ *(*,-*> (9)
j = ι
J>i

The index z in (7) depends on (χί , . . . , xw) and is chosen so as to ensure

W\x)m ^ - 2B, (10)

which is always possible by (1).
For a linear mapping A : E -> Eξ we define

| |A| |«= sup H A φ l l , . (11)
lklU = ι

If Re β ̂  0,K^ is a bounded operator on E, and

IlKjI^e^^Γ^xpEξCO?)]. (12)

For

(13)

Eξ and can be written as
the sequence p = (p(x)JM^ i of the infinite volume correlation functions belongs to

p(j8,z) = (1l-zK ϊΓ
lzα, (14)

with α(xx) = 1, oφc)w = 0 for w > 1.

3. Estimates
In this section we prove some estimates which we shall use to bound the
jS-derivatives of p.

Proposition 3.1. For any ε > 0 there is aRT>0 such that C(β)^εfor \β\ ̂ Rτ.

Proof. By
e-βΦW _ 1 ^ e\β\ IΦWI _ 1 ̂  e\β\ I I Φ I U
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we have

Proposition 3.2. ForRF > 0,d > 0, ξ > η > RF + d, there is a Rτ > 0 such that
for \β\£RT9ζe[η9ς]

RF + d. (17)

Proof. By

e-2B**βζεxpί-ζC(βn^e-2B**βηexp[-ξC(βK (18)

this follows from Proposition 3.1. Π

Proposition 3.3. For RF, ξ, η, d, Rτ as in Proposition 3.2.

L= sup| |(1-zK,Γ 1 | |^ l + -, (19)

Proo/ By Proposition 3.2. and (12)

i« iίsjζb (20)

Thus the power series expansion of (1 - zKβ)~ 1 converges in the || \\ζ

ζ - norm and

Equation (14) yields

^jytp(β,z)l^^-Λ^^\z\^l. (22)

consequently

Σ N I K H - ^ ^ d - z K ) - 1 . . . . (23)

where we take

can be calculated explicitly:

(25)



186 W. Wagner

(D'βKβφ)(x)m = [ - W(x)Jr exp [ - β W(x)J «***,_ 1 (26)

+ Σ
s = 0

Σ ^jf d(y)nD°β

Proposition 3.4. For any Rτ>0 there are constants KlyK2(RT) such that for
\β\^Rτ

\d(y)n\iyβKf(x, (y\}\ ^ K\s IK"2 . (27)

Proof

ίφ

^ Σ

min(s,π)

s' '
• Σ -i-J i Π \dy\Φ(x-y}\Sie-^βφ(χ-y\ (28)

. . fi . * * .V. ' .

As

J^lφ^.^ls^-Re^-yί^Hφll^-l^MlΦll. l lφll^ (29)

and

Σ 7 τ τ τ ^ s ! Σ ι = ̂ : ^ H (30)
sι,...,s,^l Sl ••• ά« si ..... s/^1

ΣSΪ=S ΣSΪ=S

this leads to

n ^Γl lΦHoo I I Φ I I [ D , i ) |
\ e " "M r n Φ i i / r
L \ II II oo / J

(31)

The last inequality follows from (16). Π
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Proposition 3.5. For βeSRτ,φeEζ

(32)

I [ - '̂(x)Jsexp [ - /W(*)J I ̂  e2™* •(« ~ I)1- (33)

Proo/.
(32) is obvious from Proposition 3.4. and (5), (33) from (10). Π

Lemma 3.6. For c~ 1 £ 5Ξ η < ξ there is a constant K3 (Rτ, η, ξ) such that for βeSR ,

"rl (34)

Proof. For m > 1, by Proposition 3.5. and (26)

(35)

By

we obtain

Σ
s=ι

r \m / r \~s / r
supms ii g log^H e- ss s^log^ s! (36)

|| D'βKβ I g ̂  C- ! e2BΛτ + {.Jt^T^r H Σ log (37)
s = 0

r!. D

Theorem 3.7. For z e C, | z | ̂  jRF , ξ > RF there are constants Rτ>Q,K4(Rτ,RF,ξ)
such that for βeSR

)||^|z|^4r!2. (38)

Proof. As ξ > RF, we can find η, d, Rτ as in proposition 3.2., η^e~lζ. Thus, by
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(23), (24) and lemma 3.6.

r\. (39)

P Γ / E\nlr~\-r

• Σ (RFLκ3yγ\ hog (ί)
Π ..... i p^l i = lL \ y / / J

p / r \n

• Σ Π ( f )
!••(=(•

r!2,

where we have used

Σ 1^r'l(pl\)^)l>!- Π (40)

Theorem 3.8. For z, β, ξ as in Theorem 3.7.

\ D r

β ( β p ( β , z ) ) \ ^ \ z \ ξ K r

4 r l 2 , (41)

where p(β, z) is the thermodynamic limit of the pressure.
Proof. From Theorem 3.7. it follows that pt(x), which is translation-invariant,
i.e. a constant, satisfies

\D'βPί(β,z)\^\z\ξKr

4rl2. (42)

For I z I < e ~ 2βRe β ξ exp [ - ξ C(β)} Pί^'z) is analytic in z by (14) and
z

) = -Pl(β,z') (43)
o z

(see [2], ch.4.3.). Consequently

\Dr

β{βp(β,z))\^\]dz'ξK'4r\
2\ = \z\ξK'4r\2. D (44)

0

4. Borel-summability

Theorem 4.1. For zeC,\z\ ^RF,ξ> RF,f a continuous linear functional on Eξ

there is aRT>0 such that for β in the circle CR^ = {β\ Re β~ 1 ^ R~ ί } the Borel-

sums of the Taylor-series in β at the origin for the functions

converge absolutely and uniformly in β, z.
Proof. This follows from Theorems 3.7., 3.8. and Nevanlinna's theorem ([3], see
also [4]). Π
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Corollary 4.2. Let RF,ξ,Rτ be as in Theorem 4.1., A a set of finite Lebesgue-
measure in ίRvπ(e.g. a product of balls centered at points x19 ... , xn). Then the Borel-
sum of the Taylor-series in β at the origin for

converges absolutely and uniformly in β, zfor βeCR 9\z\^RF.

Proof. This is a direct consequence of Theorem 4.1., as the mapping

is obviously a continuous linear functional on Eξ. Q

Remark. If Φ is a continuous function, the />((x)M;/J, z) are continuous in (x)n

([2], p. 79) and we can replace the integral in corollary 4.2. by ρ((x)n',β,z), (x)n

fixed.
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