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Abstract. It is shown that for classical gases with stable, bounded and absolu-
tely integrable pair interactions, the Taylor expansions in f of the correlation
functions and the pressure are Borel-summable at f = 0.

1. Introduction

The question of analyticity in f for classical continuous systems was considered
some years ago by Lebowitz and Penrose [1]. Among other results they showed
that for hard core potentials pressure and correlation functions are analytic
at §=0. In this paper we treat the case of bounded potentials, where analyticity
is not to be expected, as the expansion is around the ideal gas and the negative
of a stable potential is unstable, which causes divergence of the pressure for negative
B in the finite volume.

2. Infinite Volume Correlation Functions

We assume the interaction potential ¢ to satisfy stability,

i P(x;— x;) = —mB for some constant B 1)
i,ij<=j1
and
@], <o, )
[@], < co. 3)
Egs. (2) and (3) imply regularity ([2], ch. 4.1):
fle P —1|dx = C(B) < o for BeC. 4)

We shall use the representation of the correlation functions given by Ruelle ([2],

ch.4.2):
On the Banach-spaces E,, ¢>0 of sequences of complex functions ¢ =
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(¢(x),), 3 1 With the norm

[ ;= sup(&~"ess sup| p(x),|), (5)

nz1 (X)n eRv"

we define the operator K, by
K, 0)(x,) = i L TA0LK 1. 0))00), ©)
,0)(x), = oxp[ — pW(x), ]
oW+ % il dOhKy b 0o, 01)]. (1)

where (x),_, = (x,, ..., X;, ..., x,,), the kernel is given by

Ko 0),) = [T (expl = B, = )] = 1) ®)
j=
and
Wi(x),, = Z P(x; — X)). )
Y
Theindexiin (7)dependson(x,, ..., x, ) and is chosen so as to ensure
Wi(x), = — 2B, (10)

which is always possible by (1).
For a linear mapping A: E, — E, we define

|Al;= sup [Ae], (11)
lollp=1
IfRe § = 0,K, is a bounded operator on E, and
1K, [I§ < e?PReP & exp [£C(B)]- (12)
For

|z| <e™?BRPEexp [ - EC(B)] (13)
the sequence p = (p(x),),» of the infinite volume correlation functions belongs to

E, and can be written as

o(B,z)=1— zKﬂ)"lzoc, (14)
with a(x,) =1, a(x), =0 forn > 1.

3. Estimates
In this section we prove some estimates which we shall use to bound the

B-derivatives of p.
Proposition 3.1. For any ¢ > 0 there is a R, > 0 such that C(B) < ¢ for |B| < R,..

Proof. By
|[e=F2 — 1| < elfll®@I 1 < el |B|2(x)| (15)
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we have
fle™%® — 1]dx < [Ble!! Nl @] . O

185

(16)

Proposition 3.2. ForR,>0,d>0,{>n>R_+d, there is a R.>0 such that

Jor |B| <R Ce[n.¢]
e 2BReb exp[ — (C(B)] =R, +d.
Proof. By
e 2Rl texp[ — {C(B)] z e 2P nexp[ - £C(B)]
this follows from Proposition 3.1. ]
Proposition 3.3. For R, ¢, 1, d, Ry, as in Proposition 3.2.

L= sup (1 —zK,)™! Ry
teln.é] d

Proof. By Proposition 3.2. and (12)
1K, [l =

1
R.+d

Thus the power series expansion of (1 — zK ;)™ ! converges in the ||

Q R " R
_ -1 )¢ F — F
[@— &)~ §,,§0<Rﬁ+d> 1+—5 0
Equation (14) yields
| D3 B.2) |, < || D@ - 2Kp) ™" | 5]z

consequently

rlK
LATEIEEED> Wu(ﬂ—zxﬂ)-ll_’;lf_!ﬁ(ﬂ—zxﬂ)-l....

1seeestp2 1

Xri=r
DK
(0 —zKﬂ)"l—LEr ! (! —zKﬂ)'I]],flz]n‘l
!

DK H‘l_

<lebrtLrt T ey [] “

Flyeens rp21
Iri=r

£\t
C,‘ =N <_
1 n

DK, can be calculated explicitly:

where we take

® 1
(DpK0)0x,) = X —[d0.DKy(x,, (7),)90),
n=1"""

17)

(18)

(19)

(20)

|} — norm and

21

22)

(23)

(24)

(25)
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(DK, 0)(x), = [ - Wix), ] exp [ - BWi(x),]o(x),, (26)

( )= W, T exol — pwica, )

)

r"—l
T|M3 ||l\/_]‘

300, Dy, )0l 1,00 |

Proposition 3.4. For any R, >0 there are constants K, K,(Ry) such that for
|8l <Ry

§ d()’),.lDszp(xa 0),)| S K5sKn. 27
Proof
§aw), DK 4(x, (1),)]
s! n
< " Si(,— BP(x—yi) __
=s1,...,zs,,zosl' ] sn';l_ll jdyi|Dp(e 1)|
Zsi=;
min(s,n) n .
<) <I)C(ﬁ)" .
1=1
2 TS—H fdy|@(x — y)[ie PO, (28)
Styes2 151 TSy
Ysi=s
As
jdyl(p(x _ y)lsie" Re fd(x —y) < ” (p"z— 1e|ﬁ| ||¢[|w” (D" " (29)
and
— 5 sl Y, l=s! $71) <o) (30)
Styeeessy 21 sl!""'sn! - szl l'—l - »
Zsi=s_ ZSi=;
this leads to
fd),| D5 Ky(x,(),)|
n (n eB19lal |\
= @2|o|,rs! ( )C(ﬂ)""<—___1_
lolrst 24, o1,
eBliele | @[ \»
s elef.rsap+ g 2l)

g(znmlw)ss![ Rriole ||¢||1(R ol )]

(1)
The last inequality follows from (16). O
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Proposition 3.5. For BasSRT,q)eEC
§dm),| DK 5x 1)) (%N 1))

<)o) " K SIEK R T (32)
I[ = W), Fexp[ — AW, ]|<eZBRT<K2 ) (m— 1. (33)

Proof.
(32) is obvious from Proposition 3.4. and (5), (33) from (10). O

Lemma 3.6. For e™! ¢ <n < & there is a constant K, (Ry,n, &) such that for BESRT,
¢z2(,>0 =z

”D ﬁ”m <K,(2K )’<log§2> r! (34)
1
Proof. For m > 1, by Proposition 3.5. and (26)
|(D3K, 9)(x),| (35)

< e2BRT ” ) ”C;C'ln— 1 [(%)'(m _ l)r
r K.\
£ (%) e S ]

éezBRT+61Kz ” (P“ . C'ln_lKrl l:(m _ l)r + z <:>(m _ I)r—ss |]

s=1
By
supms<£l> §<10g£> e“ss§<logg—2> s! (36)
mz1 C2 Z-"1 Cl
we obtain
r S142 r : c -
[ VY N SR L D) <logC_2> (37
s=0 1
é” 1 ZBR +§K2(RT)(2K )'(log§2> rl O
1

Theorem 3.7. ForzeC, |z| <Ry, £ > Ry there are constants R >0, K, (R, Ry, )
such that for ﬂESRT

1D;,0(6,9)] <)zl K12 (38)
Proof. As £ > R, we can find #, d, R; as in proposition 3.2., 1 = e~ 1¢& Thus, by
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(23), (24) and lemma 3.6,
| Dy0B.2)| <|z|n~ ' LK ). (39)

p rifr |—ri
Y ®LKYI] [m(f) }

ri,...,rp21 i=1

Sri=r

g|z|17‘1L[2K1max(l,RFLK3)]’(log§) r!

L2 G

Zrt .,
<|z|n~'L[4eK, max(l,RFLK3)]r<1og§> r2,

where we have used

2 H() Y 1= z( )g(Ze)*rx. )

Flseees rp21li=1 Fiyeentp21
Tri=r ):rz r
Theorem 3.8. For z, B, £ as in Theorem 3.7.
| Dy (Bp(B, 2))| < |z| €K, r1?, 1)

where p(B, z) is the thermodynamic limit of the pressure.
Proof. From Theorem 3.7. it follows that p, (x), which is translation-invariant,
i.e. a constant, satisfies

| Do, (B, 2)| < |z[EKGrt2. 42)

For |z|<e 2BR#¢exp [ — £C(B)] p—l(f;) is analytic in z by (14) and

z d !
Bo(B,2) = [0, (6,2) @3)
0

(see [2], ch.4.3.). Consequently
| Dy (Bp(B,2)| | fdz' EKr!?| =z |EKr!? O (44)
0

4. Borel-summability

Theorem 4.1. For zeC,|z| <R, ¢ > R,f a continuous linear functional on E,
there is a Ry.> O such that for B in the circle Cy = {B|Rep~! =R, '} the Borel-
sums of the Taylor-seriesin f at the origin for the functions

S(0(B,2)):8,_—C
Pr(B,z):Sp - C
converge absolutely and uniformly in §, z.

Proof. This follows from Theorems 3.7., 3.8. and Nevanlinna’s theorem ([3], see
also [4]). a
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Corollary 4.2. Let R,,¢, R, be as in Theorem 4.1., A a set of finite Lebesgue-
measure in R*(e.g. a product of balls centered at points x,, ... , x,). Then the Borel-
sum of the Taylor-series in f at the origin for

J4P((x),;B,2)d(x),
converges absolutely and uniformly in B, z for B Cy_, |z <Rg.
Proof. This is a direct consequence of Theorem 4.1., as the mapping
o [ 0(x),d(x),
is obviously a continuous linear functional on E,. O

Remark. If @ is a continuous function, the p((x),; B,z) are continuous in (x),
([2],p.79) and we can replace the integral in corollary 4.2. by p((x),;8, z), (x),
fixed.
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