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Abstract. We state some new results about the configuration space of pure
Yang-Mills theory. These results come from the study of the kinetic energy term
of the Lagrangian of the theory. This term defines a riemannian metric on the
space of non-equivaίent gauge potentials. We develop a riemannian calculus on
the configuration space, compute the riemannian connection, the curvature
tensor, and solve for the geodesies, etc. We show that the Gribov ambiguity is
more than an artefact of the choice of a gauge condition, and is related to the
existence of conjugate points on the geodesies, and is thus an intrinsic feature of
the theory.

Introduction

Pure Yang-Mills theory yields one of the most interesting examples of a singular
Lagrangian in field theory (i.e. in a system with an infinite number of degrees of
freedom). A serious analysis of this system requires the use of Dirac's formalism for
systems with constraints [1-3].

Our analysis differs from that of [2] in that, instead of introducing second class
constraints to eliminate the gauge freedom, we directly define the theory on the
space of non-equivalent gauge potentials (quotient space by the action of the group
of gauge transformations, which we call orbit space). This analysis leads us to the
definition of the true configuration space W of the theory, and to an effective
Lagrangian defined on ffl. This Lagrangian contains a kinetic part (the electric
part) and a velocity independent potential term (the magnetic part). The kinetic
term provides a riemannian metric on 50? by saying that it is of the form \- {square
of the velocity computed with that metric}. Consequently the classical motion is the
motion of a point in an infinite dimensional riemannian manifold in a potential.

The study of the configuration space is essential, first because it is the space of
classical physical states of the system, secondly because the quantum functional
integral is to be defined on paths on this space. The metric defined on SOi is a
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powerful way of investigating this structure. Furthermore two very strong facts
show the central role played by this metric in Yang-Mills theory:

1. This metric is the most natural one if we take into account the whole
geometrical content of the theory.

2. This metric is already used in the conventional quantization: it was shown in
[4] that there is a deep link between the usual Faddeev-Popov determinant [5] and
the determinant of this metric. We see there a sign of its importance in the
definitions to come of a path integral [6].

The paper is organized as follows:
1. We cast the ingredients of the theory into a geometrical framework. 2. We

briefly recall Dirac's analysis of the Yang-Mills Lagrangian, and give the true
configuration space together with the effective Lagrangian defined on it. 3. We
show how the metric which appears in this analysis is actually coded into the
structure of the theory (more precisely in the action of the group of gauge
transformations on the set of all gauge potentials). 4. We display a coordinate
system, which is merely defined by a gauge condition, express the metric in this
coordinate system, and introduce some interesting related operators. 5. We
compute the riemannian connection, the curvature tensor, the sectional curvature
which is found to be positive, and recall some formulae concerning determinants. 6.
We solve for the geodesies and give a normal coordinate system. 7. We show the
existence of focal points on any geodesies, and show in what sense the Gribov
"horizon" is the conjugate locus of some point. 8. Conclusion. 9. An Appendix.

1. Proper Geometrical Setting [7, 8]

Gauge potentials are time dependent connections in a principal bundle P with base
space M (M = space = compact riemannian manifold of dimension d, without
boundary) and group G. We shall suppose G is a connected compact simple Lie
group).

We will denote by # the set of connections in P. The group ^ of gauge
transformations is the group of automorphisms of P which induce the identity on M
[8]. A gauge transformation can be realized as a section of the bundle B associated
to P, with fiber G endowed with an adjoint action of G on itself. Locally a gauge
transformation is given by a mapping g:M-»G. We will also use the bundle E
associated to P with fiber <s/(G) (the Lie algebra of G) and adjoint action of G on

If ω is a connection in P, V will be the corresponding covariant derivative in E. If
we denote by A/1 the space of /-forms on M with values in E; then

We shall write the action of a gauge transformation g on a connection ω as:

It is remarkable that the difference τ of two connections ω and ω' is not a connection
but a covariant object i.e.:

g τ = g " 1 τ g .
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In other words τeA1.
Moreover, if ω is a connection and τ any element of A1, then ω+ τ is a

connection. Consequently ^ is an affine space modelled on A1. We will denote by
Tω(^) the tangent space to % at ω.

The metric on M and the Killing metric on G (tr) give rise to a scalar product in
A ,̂ defined with the help of the Hodge operator.

(α,j8)=ftr(αΛ*j8).
M

As a consequence, for / = 1 we have a scalar product on the tangent space to #.
It is essential to notice that the metric on # thus constructed is invariant by gauge

transformations. We denote by F* the adjoint of V with respect to the scalar product
(,): If ξeA° and τeA1, then

Let D ω be the covariant Laplacian acting on A0: • = P7* V. Generically (e.g. if
the connection is irreducible and, in any case, in an open dense set of ^), the
operator D ω has trivial kernel: \3ξ = 0 =>ξ = 0. We then denote by Gω its inverse.

2. Dirac's Formalism

The Yang-Mills action is

M

Fμv = dμAv - d,Aμ+ [Aμ,AvL β,v = 0,1,2,3.

The Lagrangian L can be written

L = ±(A-VA0,A-VA0)-V,

if we define

dt
and

ijF% ί>7 =l,2,3.
M

Computing the canonically conjugate momenta / μ of Aμ, we get

fi = fcdxi = A-VA0

and / 0 = 0, which is the primary constraint [1]; this leads to the Hamiltonian

with an arbitrary Lagrange multiplier λ.
We thus get the secondary constraint (Gauss condition)
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where {,} denotes the Poisson bracket. Then the total Hamiltonian is

Hτ = H0+(μ,\

where μ is an arbitrary Lagrange multiplier. This Hamiltonian gives, among others,
the following equations of motion:

The time evolution of Ao being arbitrary and / 0 being zero, following Dirac we can
discard these unphysical variables, and write the Hamiltonian H:

where again ξ is arbitrary.
The equation of motion reads

ξ. (1)

We see here that the time evolution of A contains an arbitrary part Vξ, which
corresponds to an infinitesimal arbitrary gauge transformation. Thus in order to
get a well defined time evolution, we need to remove the unphysical degrees of
freedom corresponding to gauge transformations. A way to do this is to quotient
the space of gauge potentials by the group of gauge transformations.

In order to get the Lagrangian on the true configuration space, we first write the
Lagrangian L deduced from H. From Eq. (1) and the Gauss condition we get:

thus

L = i(ΠA,ΠA)-V, (2)

where

Π=Tί-VGV*.

This Lagrangian consists of two parts. The first term E = j(ΠA,ΠA) is gauge
invariant, quadratic in the velocity A, and appears as the square of the gauge
covariant object ΠA, defined by (,), and V is the gauge invariant, velocity
independent potential. We will see that L is actually a non-singular Lagrangian on
the space oΐ non-gauge equivalent potentials.

3. The Metric on 9K

The space of non-equivalent gauge potentials is obtained by quotienting the space
of all connections # by the action of the group of gauge transformations. Modulo
certain restrictions, this space is amanifold [10,11, see also the Appendix]. We will
denote this manifold by Wl and refer to it as the orbit space. The trajectories under
gauge transformations are the orbits. We will denote by p the projection: p: #-»501.
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Moreover, this manifold can be equipped with a weak Riemannian metric which is
induced from the gauge invariant metric on c€. We will see that this metric is
precisely the one appearing in [Eq. (2)].

If ω is a generic connection we define χω: A1 -»A0 by

Y = G V*

We then have a splitting of the tangent space T ω ( # ) into two orthogonal subspaces
[12]

Vω = vertical subspace = tangent space to the orbit = Image of Vω. H ω = horizontal
subspace = kernel of χω. There is a projection operator Πω on H ω [orthogonal
projection in T ω (^)] such that

77 _ -π _ y Q p *

77* — 77

77 2 — 77
11 ω ~~ i i ω

The induced metric is then defined on 5DΪ in a standard way. If a is a point in 9JI and ω
some point in p ~~1 (a), and X some vector in Ta (SDΪ), there exists a unique vector τ in
H ω projecting onto X, i.e. p^ίτ) = X. τ is the horizontal lift of X at ω.

If X and 7 belong to Ta(9W) and τ x and τy are their respective lifts at ω, we define
the metric ^(,) on 901 by:

Suppose ώ is a tangent vector at ω, not necessarily horizontal, ώ projects on 90? onto
a vector X= p^ώ, Zcan be lifted horizontally to a vector τx at ω, which is nothing
else than τx = Πω - ώ. By this procedure we have removed from ώ its vertical part,
which is unphysical [see Eq. (1)]. Now

or

i ώ p

2

h y s i c a l =

This was already noticed from Faddeev's analysis in [4].

Remark. The orbit space 93? not only possesses a weak riemannian structure, but is
also a Haussdorf metric space [9, see also Sect. 6].

4. Coordinate System on SR

Given a point a 0 in Wl, we will define a coordinate system in a neighbourhood of a 0 .
In order to do this we choose a point ω 0 in the orbit p~ 1 (a0) and define the affine
subspace Sf0 of # by:
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Fig. 1

£f0 is generated by the horizontal space H o . If a, in 9Ή is sufficiently close to a 0, then
the orbit p~ 1 (a) cuts £f0 in a unique point ω(a) which will be the coordinate of a.

This choice of coordinate amounts to "fixing the gauge" by a covariant
background gauge condition. It applies only locally in 9Ή [15].
Notice that we do not solve the gauge condition. If A and B are vectors tangent to $ft
at a, then the components of A and B are two vectors uA and uB [in Tω{$)~\ which
belong to <9*0 (i.e. V%uA — V%uB~0), and which project respectively on A and B.
Clearly

Consequently Πω uA is the horizontal lift of A at ω (respectively ΠωuB is the lift of B).
Hence

or

In this coordinate system the metric is Π0ΠωΠ0. Notice that the coordinate system
becomes singular when V$ Vω has a kernel, i.e. when part of the orbit through ω is
tangent to 9§. This is precisely the point where the Gribov ambiguity appears [16].

Let us introduce a few relevant operators (related to the above coordinate
system). Let γ — V% Vω (the Faddeev-Popov operator). If ω is on 6f0, then γ is self-
adjoint. If ω is sufficiently close to ω 0 , then y has an inverse [11, and see Sect. 7].
From now on ω e £f0.

Let P be the projection on H ω parallel to Vo

Let P* be its adjoint. P* is the projection on H o parallel to V
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We have

p2 _ p p*2 _ p *

Pi7 0 = P i7 0P* = P*

Γί P — P P*/7 = P *

and

i7 0 i7 ω i7 0 P*P = P*Pi70i7ω170 = Πo.

Therefore on £f0: P*P is the inverse of the metric.
We denote by Kτ: A

0 -> A1 the commutation with τ eA1,

K* A1 -• A0 is its adjoint. The metric Π0ΠωΠ0 can be written

270(Tl-KτGωKτ*)/70,

where τ = ω — ω0. The coordinate system is seen to be a geodesic coordinate system
since the metric is of the form 1 -+• 0(τ2).

5. Riemannian Calculus on 501

In what follows, we denote by X(respectively Y,Z...) vector fields having in the
coordinate system given by % as above, constant coordinate X (with V$X=0)
respectively Y.... Notice that the Lie bracket of these vector fields is zero.

Let DXZ be the riemannian covariant derivative of Z along X. We compute DXZ
by the standard formula

2?(Y,DXZ) = X' ?(Y,Z) + Z

from which, by a straightforward claculation, we get

+ \χωZ9ΠωX\). (3)

To first order in τ = ω — ωΌ, we get

DXZ = - Π0(KxG0Kf Z+ KzG0KfX). (4)

From [Eq. (4)] we get the Riemann curvature tensor,

R(X,Y) = [DX,DY]-D[XY] (sign convention taken from [8]),
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The sectional curvature on the direction of the 2-ρlane generated by two
orthonormal vectors X and Y is

The sectional curvature is non-negative.
In addition, we would like to recall some formulae relating the determinant of

the metric and the Faddeev-Popov determinant [4]. Formally

= <5>

This equation comes from the identity of the spectra (for the eigenvalues differing
from unity) of the two operators ^ : ^ ?

0 ~ > t ^ ό a n d Γ: A°->A°, with Γ
= GωV*V0G0V$Vω. _ ^

For a proof and implications of [Eq. (5)], in particular for the distinctions
between the canonical and covariant quantization, see [4].

6. Geodesies

Before going ahead with the study of geodesies, we will show an elementary but very
useful proposition:

Proposition. If a straight line in <& cuts one orbit perpendicularly, then it cuts
perpendicularly all other orbits it meets.

Proof Let ω o + tτ be a line in <€ such that V$τ = 0. Then V% +fτ(τ) = V%(τ)+ tKf(τ)

This is also a consequence of a more general proposition [17].

In the coordinate system <70, the equation for geodesies reads

1 Λ dτ d2τ
We suppose τ = ω - ω 0 = τ(t) and I τ = —-, τ = - ^ -

From Eq. (3), the above proposition, and inspection of [Eq. (6)], we see that the
straight lines ω = ω o + t\ with constant v satisfy [Eq.(6)]. Consequently the radial
geodesies are the straight lines through ω 0 . In other words, the coordinates
introduced in Sect. 6 give a normal coordinate system at ω 0 .

A distance function d was introduced on 9W in [9]. dis computed as the minimum
length of the segment joining two generic points ω and ω' on different orbits. Let ω'
— ω+τ. If we naively apply a calculation of variation, we see that any minimizing τ
should verify:

i.e. any minimizing segment ought to be perpendicular to both orbits.
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Justifying this variational approach is beyond the scope of this paper, but a
reasonable assumption would be that the distance defined in [9] actually is the
geodesic distance on ϊft.

Notice that this assumption contains the idea that the horizontal space ^ 0 (ω 0

being any generic point in <$) meets all orbits.

7. Focal Points

The knowledge of the normal coordinate system ^ 0 determines completely the
exponential map around ω 0 . If τ is a unit horizontal vector at ω 0

The exponential is singular in ω — ω0 + λτ if 3 v e T ω ( ^ ) n £f0, such that vφ 0 but
P*(v) = 0> i e Πω\ = 0, that is to say 3ve S?θ9 of the form Vωξ. Therefore 3ξ such
that V%Vωξ = 0, i.e. y(λ) = D 0 4 - λV%Kτ, has a non-trivial kernel.

According to [11], the operator V%Kτ is self adjoint non-nonnegative, and since
D o is self adjoint positive, there exists a smallest finite λ such that y(λ) has a non-
trivial kernel, and this kernel is finite dimensional since y(λ) is elliptic.

The point ω = ω0 -f λτ is said to be on the Gribov horizon around ω0 (in the
direction τ). [For details on the problems arising from the existence of non-generic
connections, see the Appendix.]

Generically, suppose ω is on the horizon of ω0 and V% Vωξ = 0; v = Vωξ is a
vector at ω in ^ 0 such that p* (v) = 0. Consequently the exponential is singular at ω.
Therefore ω is the first conjugate point of ω 0 in the direction of the unit vector τ.
This can be seen in terms of Jacobi fields on $?. We construct an infinitesimal
variation of the geodesic joining ω 0 and ω as follows: Let v = Vωξ as above, t be the

canonical parameter on the geodesic. At ω(t) = ω0 + tτ define J(ή = - v. / is the
A

coordinate of a Jacobi field on 50?, vanishing at p(ω0) and p(ω).

8. Conclusion

The simplicity of the results we get on the orbit space reveals its extraordinary
richness and leads us to believe that many properties encountered in the finite
dimensional case extend to this infinite dimensional case. For instance, in cases
where all connections are generic [e.g. if P is a non-trivial SU(2) bundle on M and
// 2(M,Z) = 0] the orbit space is geodesically complete (i.e. all geodesies can be
prolonged to infinity). We could hope for a generalization to this case of a theorem
on cut locus [8]. This would solve the Gribov problem.

On the other hand the important question of non-generic connections arises.
There are already results on this program. We give an account of the situation in the
Appendix.

The study of Yang-Mills theories has led us to consider a natural (non-
relativistic) dynamical system (with infinitely many degrees of freedom). This
system is defined by the geodesic motion of a point on the orbit space. Given initial
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conditions, we may describe this motion by some straight lines in the total space <€
of connections. However the true motion (on the physically relevant space) is
obtained after projecting these lines on the orbit space. This projection is a highly
non-trivial operation: geodesies may have a very intricate shape (e.g. double points,
etc.). The question arises as to whether the motion is ergodic, is completely
integrable, or is of some other kind. Some preliminary results (existence of infinitely
many conserved quantities) suggest non-ergodicity, and this problem is under
investigation.

Appendix

We stated that 501 = ^ / ^ is a manifold "under certain restrictions." The first
restriction is on the space of connections (and gauge transformations) in order that
^ Λ 501 be a principal fiber bundle. We would need to take connections (respectively
gauge transformations) belonging to adequate Sobolev spaces. [12]. The second
restriction comes from the necessity of having a free action of 3? on (€. A connection
ω is left unchanged by g e & if

or equivalently g~1 Vg = 0. This implies that g commutes with the holonomy group
N(ω) of ω. That is g belongs to the centralizer c(ω) of N(ω). ω is called generic if
C(ω) reduces to the center of ^. ω is generic if D ω has trivial kernel. In particular,
all irreducible connections are generic if the structure group is simple. Since the
center 2£ of 3? has trivial action on #, we replace the group ^ by §^= 3?/Jf.

For a non-generic connection the inverse Gω of G ω is not defined. The induced
metric cannot be defined directly. (For example, if a geodesic hits a non-generic
point we do not know how it behaves.) However it is known that generic
connections form an open dense set in # (and thus fill # ) , but the precise location of
the non-generic points is still to be found. Some positive results have been obtained
on the structure of the quotient space of all connections: it is a stratified space
[10,11].
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