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Abstract. We propose a new approach for the estimate of the rate of
degeneracy of the lowest eigenvalues of the Schrodinger operator in the
presence of tunneling based on the theory of diffusion processes. Our method
provides lower and upper bounds for the energy splittings and the rates of
localization of the wave functions and enables us to discuss cases which, as far
as we know, have never been treated rigorously in the literature. In particular
we give an analysis of the effect on eigenvalues and eigenfunctions of localized
deformations of 1) symmetric double well potentials 2) potentials periodic and
symmetric over a finite interval. Theses situations are characterized by a
remarkable dependence on such deformations. Our probabilistic techniques are
inspired by the theory of small random perturbations of dynamical systems.

1. Introduction

The estimate of the semiclassical rate of degeneracy of the lowest eigenvalues of the
Schrodinger operator H in the presence of tunneling is not a new problem and has
been solved in special situations, for example in connection with the theory of
phase transitions in statistical mechanics [1]. More recently Harrell has produced
two papers [2, 3] in which a rather complete analysis of the above problem for the
case of symmetric double wells is given and where one can find a wide list of
references. The methods employed in these papers require in general a detailed
analysis of the eigenfunctions of H as #—0 and their generalization to non-
symmetric cases does not appear so easy. Here we propose a different approach
based on the theory of diffusion processes which requires only an estimate of the
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log-derivative of the ground state wave function in the semiclassical limit in order
to extract lower and upper bounds for the splittings of the lowest eigenvalues and
for the rates of localization of the corresponding eigenfunctions. Our method
enables us to discuss cases which, as far as we know, have never been treated
rigorously in the literature.

In particular we give an analysis of the effect produced on the splitting of the
eigenvalues and on the eigenfunctions by localized deformations of 1) symmetric
double well potentials (Fig. 1); 2) potentials symmetric and periodic over a finite
interval (Fig. 2). As we shall see, tunneling in these situations is very unstable
under deformations.

The techniques presented here were inspired by the theory of small random
perturbations of dynamical systems [4]. On the side of physics however, it is
reasonable to see the origin of our approach in the stochastic quantization in the
form developed by Nelson some years ago [5].

If for illustrative purposes we restrict ourselves to one dimensional systems, the
scheme of stochastic quantization for stationary states goes as follows: the
position of a particle in a potential V(x) obeys the stochastic differential equation

h L2
dx,=b(x,—)di+ =) aw,, (L.1)

where W, is the Wiener process with unit variance and b(x) a drift term determined
by

hd 2

b* — —b(x)=— —E). 1.
()4 - b9 =~ (V(x)~ E) (12)
The connection with the Schrédinger equation is straightforward as we note that
(1.2) is a Riccati equation which can be linearized in the usual way by putting

h d 5
b(x)= 3m Elnw .
From this the Schrodinger equation for v follows and one realizes that y? is the
density of the invariant measure of the process described by (1.1). The description
of time dependent states is more complicated but shall not be needed here.

The connection between stochastic processes and quantum mechanics has a
long history. The relationship among the Schrodinger equation, the heat equation
and brownian was pointed out a long time ago by Kac [6]. After the
work of Nelson [5], Guerra and Ruggiero [7] remarked that the process
corresponding to the ground state according to stochastic quantization is
essentially the same as the process described by the imaginary time functional
integral, i.e. the process generated by the heat equation. More recently this aspect
has received a general mathematical formulation [8, 9] in terms of equivalence
between the quadratic form associated to the Hamiltonian and the Dirichlet form
(or “energy” form in the terminology of [8]) constructed with the ground state
measure pidx. The interesting fact is that the differential operator associated to
this Dirichlet form

e? d?

F=gaa™

d
b7, (1.3)
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with &= (}E) , b(x)= 5 Elntpg, can be studied as an operator on L*(yjdx) by

direct probabilistic techniques. These techniques show that the study of the lower
part of the spectrum of — L* can be reduced as ¢—0 to the study of the spectrum of
a finite stochastic matrix which approximates, in the same limit, the transition
probabilities between the absolute minima of the potential V(x) of the process with
infinitesimal generator L°

We now come to a crucial question. In order that the general approach we
have described may work, we need the drift b%(x) of L® which is equivalent to the
knowledge of the ground state wave function 1p,. We must therefore construct the
solution of the Riccati equation (1.2) corresponding to the ground state in the limit
¢—0. This is a nontrivial matter and Sect. 2 of this paper is entirely devoted to such
a problem?.

In Sect. 2 besides establishing various properties of b%x) for smooth positive
potentials which increase sufficiently rapidly at infinity (the precise hypotheses will
be given there), we prove that for ¢ small enough |b*(x)+ |/2V(x)| < Ce” in the
complement of ¢’-neighborhoods of finitely many points, 0<y<2. In those

neighborhoods b*(x) can exhibit a rapid increase from — }/2V(x) to + |/2V(x).The
most difficult part of the job consists then in determining the location of such
points of rapid increase. This problem is solved completely in several situations
with the aid of an integral equation connecting the symmetric part of b*(x), b*(x)
+ b%(— x), with respect to an arbitrary reflection point, with the antisymmetric part
b%(x) — b*(— x). The method appears to be of general applicability at least in one
dimension.

We now describe the main results of the paper. First of all, as a test for our
method, we calculate the level splitting for the symmetric double well potential and
we recover in a simple way well-known upper and lower bounds [10]. We then
consider localized deformations of the previous case (see Fig. 1) and compute

E\—Eo,  woD/wo(=1),  wi(=Dfyy(D)

1 There are points of contact between our Sect. 2 and the work of Harrell in [2] which however was
brought to our attention only after completion of the present work



226 G. Jona-Lasinio, F. Martinelli, and E. Scoppola

Vix)

Fig. 2

in the new situation. E,, E;, y,, y, are of course the energies and the wave
functions of the ground and the first excited state respectively.

The interesting conclusion is that only the part of the barrier between x=a,
and x=1 determines the leading logarithmic term of the splitting E; — E, in the
sense that we prove bounds of the form

1 1
-4 () 2V(x)dx—h —4{ )/2V(x)dx+h
exp % 52 <E,—E,<exp = 55 . (14

On the other hand for the eigenfunctions y, and y, we get

—2 j 1/ 2V (x)dx—h"

—a; wO(l) |’~P1(—1)|
X < =
P 262 Pol—1) ~ | py(D) |
—2 | V2V dx+H
<exp . 52 , (L5)

i.e. small local deformations are enough to produce exponential localization of the
wave functions. h, /', h” can be made as small as we like (compared with the
integral) for ¢ sufficiently small. We show in addition that if the deformation is
moved, for example, to the right beyond the point x=1 and beyond a critical
distance a¥, the situation approaches for e—0 the symmetric case in the sense that
in (1.4) and (1.5) one can take a,=0. In other words if the deformation is moved
sufficiently far it does not influence the tunneling.

We next consider the effect of deformations of a potential which is symmetric
and periodic over a finite interval (see Fig. 2). In the undeformed situation the
particle tunnels through all the barriers and the wave function has equal maxima
in correspondence of the minima of the potential. However, as soon as we lower
one barrier only tunneling through the lower barrier is effective and the wave
function is localized in the two wells at the sides of it.

As for the splitting of the levels we have a transition from a situation where a
number of levels exponentially near to the ground state is present (the number of
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such levels is of the order of the number of barriers) to a situation which is close to
the symmetric double well. We have therefore only one level at exponentially small
distance from the ground state energy while the others are pushed up. We think
that this type of results may be interesting in connection with problems in solid
state physics. These results are discussed in Sects. 5 and 6.

We finally give some indications on the structure of the other parts of the paper
where all the necessary techniques are developed. In Sect. 2 we discuss the ground
state solution of the Riccati equation (1.2) as ¢—0 for a certain class of potential
functions. In Sect. 3 we adapt to our case a theorem of Ventzel [11] which in one
dimension will permit us to reduce the study of the lowest part of the spectrum of
— L* to the study of a finite matrix g;;. In Sect. 4 we give estimates of the elements
q;; as €—0 using well-known explicit formulas for one-dimensional diffusion
processes.

Applications of these techniques to excited states and multidimensional
situations will be discussed in subsequent papers.

2. The Drift b*(x)

We begin by stating some hypotheses on the potential V(x). These will certainly
not be the most general and have been chosen so as to simplify as much as possible
the exposition. The reason for doing so is that one of the main purposes of this
paper is to illustrate in some nontrivial cases and in the clearest possible way the
possibilities of a new interesting technique.

The potential ¥ is assumed to be a real valued function on IR such that:

1) V(x)=0 and Ve C™.

V(x)

2) V has a finite number of zeros: x;, i=1, ..., N and lim 5 =w?, that is
x=x (X —X;)

V has quadratic minima.

V'(x)

3) There exists a real number 1 <a<oo such that lim —= exists and it is

x>+ X
finite and positive. This implies that there exists a positive constant ¢ and a point
. Vi(x
X, such that: V(x)>Cx**! for x>x, and lim 6 _

x> 1/2V(x)

Similarly we assume that there exists a real number 1<f<oo such that

d

. x) . . . .
lim (ﬂ ) exists and it is finite and negative.

x>—w X
. L . h?
Calling H the Friedrichs extension of the operator on L*(IR, dx), Hp= (— o
d? .
g + V)qo for pe CF(R), from 1), 2), 3) it follows that:
a) The eigenfunctions of H are C* functions and the spectrum of H is discrete
and positive (see e.g. [10, 12]).
b) The ground state wave function v, is strictly positive and has at least an
exponential fall off at infinity (see [107]).
c) If Ey(h) is the energy of the ground state, then there exists a constant C>0

E(h)

such that ;liin%—?l- < C; this follows from the mini-max principle using as a trial
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function the ground state wave function of one of the harmonic oscillators
wl(x—x)* i=1,2,...N.

d) Let v, be an eigenfunction of H then y,/p, grows at infinity at most like a
power law: this result will be proved in Appendix A, as it will be needed only in
Appendix B.

1
e) The operator S—Z(H —E,) on L*(RR, dx) is unitarily equivalent to the Friedrichs

2 d2
) S

feCP(R), where e2=h/m, py(x) is the ground state of H with eigenvalue E,(h)

extension of the operator on L*(R, pidx), —L°f= (

and b‘(x)~— xlnllpo(x)|2. The unitary operator realizing the equivalence

.L2(]R,dx)—+L2(IR,w§(x)dx) is given by : Uf=f/yp,. We remark that this important
result holds under much more general hypotheses on V(x) (see [8,13]).
In this section we give a qualitative analysis of the solution of the Riccati

equation corresponding to the ground state y,:
(b*(x))* n &? db(x)
2 2 dx

= V(x)~ Egle) @1

for e—0, where the potential satisfies the above hypotheses. Although some of the
results of this section could be reduced to known facts in the theory of ordinary
differential equations (see [14]), we prefer to give a direct proof of the main
statements in order to keep the paper as self contained as possible.

Proposition 2.1. If we define xy=max{x;,; V(x,)=0} then on every compact interval
[c,d]C(xy, + ) the solution b*(x) of Eq. (2.1) tends uniformly to — |/2V(x) as e—0.
Analogously, if we define x, =min{x,; V(x;)=0} on every compact interval
contained in (— o0, x,), b°(x) tends uniformly to + |/2V(x) as e—0.

Proof. First of all we observe that:

Yol®) _ 6 yxe[c, o) 2.2)
(x)

bi(x) =¢2
0
for ¢ sufficiently small. In fact given C>x, there exists an ¢, >0 such that V(x)
>E(¢), Vxe[C, w), Ve <g,; from the Schrddinger equation and from the positivity
of g, if V(x)— Ey(e)>0 then yg(x)>0, hence 1y, is monotonically increasing and
therefore has to tend to 07.

We now turn to the proof of our first statement. It is obvious that — |/2V(x) is

a first solution of the equation

, db%(x)
dx

V'(x)
1/2V(x)’
Exploiting the quadratic structure of the Riccati equation it is possible to study the

difference b*(x) — b°(x) between a solution of (2.1) and a solution of (2.3), in terms of
their sum b%(x) + b%(x).

(bO(x))> + =2V(x)—¢? xe[C, + ). (2.3)
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We have in fact that

[57(x) — bO(0)] [b°(x) +b°(x)] = (b(x))* — (b°(x))?

Ve . d LI (2.4)

1/2V(x) dx

Solving with respect to b°(x)—b*(x), we find

= —2E,(e)+&* ———

bO(x)— b*(x) = F(x)exp { — ? (b°(x") + b¥(x")) dx//ez} , (2.5)

X0

where

F(x)—F(x,)= } (% - I;SC(;)C/)) exp {} (bo(x")+ bg(x”))dx”/sz} dx'. (2.6)

By the assumption 3) on the derivative V’(x), we have that F'(x) for x— + o
becomes eventually negative, that is lirP F(x) exists, possibly — oo

Let us now choose b%(x)= — |/ 2V(x) and use (2.2). It is easy to see that in this
case we must impose lir}rn F(x)=0, otherwise from (2.5) |]/2V(x) +b*(x)| would

diverge at infinity at least exponentially, but this is forbidden by the Riccati
equation (2.1).

In fact if we put in (2.1) b*(x) = —exp{f(x, )}, xe[C, c0) with f(x,¢) such that

lim exp{f(x, &)}

b o =+ 00, Vn< oo we obtain for x sufficiently large and fixed ¢:

d
Y (o) exp(fx.0)

=exp{2f(x,e)} —2[V(x) — Eo] >exp{2f(x,8)} (1 = O)
with C<1; by an integration
C/
exp{— f(x, &)} < exp{— f(xq, &)} — (x Xo), C'>0.
But for large x this inequality cannot clearly be satisfied.
We have thus that: lim F(x)=0 that is, taking now x,=C,
(2Eo(e> V()
2V(x'
With this choice of F(C), Eq. (2.5) becomes:
+ o 2E V/ X X
[/ 2V(x) +b*(x)= j ( ol® ) () ) {j +b0(x"))dx" /e? } X (2.8)
)/ 2V(x) X
If we use the a priori estimate (2.2) on b*(x) we obtain:

11/2V(x) + b*(x)| < Oj? }222(8) - ]/I% exp{— T[ I/ 2V(x”)dx"/82} dx'. (2.9)

F(O)= - j

)) exp {} (b*(x") + bo(x”))dx"/cz} dx'. (2.7
c
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Some simple computations now show that
[1/2V(x) +b°(x)| < C ", Vy; O0<y<2
uniformly in [c, d]. The second part of the proposition goes in the same way.

Remark. Equation (2.8) gives an estimate on b® stronger than (2.2):

b*(x) < — |/2V(x), Vxe(a, + ), (2.10)
where a is such that
V'(x) 2E

0
> ——, Vxe(a, + o0).
V2V(x) &
This point a always exists for the hypothesis 3) on V'(x).
We now prove some properties of b*(x), which allow us to study its behaviour
between the points x; and xy.

Proposition 2.2. (i) Let [p, q] be an interval such that V'(x)>0(<0), Vxe[p, q]; then
in [p,q] there is at most one minimum (maximum) of b*(x).

(ii) Let [p,q] CR be a finite closed interval containing in its interior the points
X, Xy, then given n>0 for ¢ sufficiently small, |b%(x)| is bounded by :

max |/2V (y)+#, Vxe[p.q].

velp,ql

(iii) Between two consecutive zeros of V(x) there exists at most one point y° such

db*(x
that b*(y*)=0 and ) >0.
dx |- 5
(iv) Let us fix e and suppose that between two consecutive zeros of V(x), say x,,
X; 4 1» there is a point y¢ defined as in (iii), then for any xe[yi+¢’, x;, ,]1:

[b(x)— ]/ 2V(x)| < Ce
for some constant C and any 0 <y <2. Analogously for all xe[x,, y;—¢’]:
[b*(x)+ ]/ 2V(x)| < C’e

for some constant C'>0 and any y, 0<y<2.
(v) If there is no such point y; between x; and X, , then:

[b*(x) £/ 2V(x)| <C"¢’,

for any xe[x,+¢", x;, , —&"], some constant C" >0 and any 0 <y <2. The choice of
the sign of the square root of V(x) is determined by the specific form of the function
V(x).

Proof. (i) By the derivative of the Riccati equation:

b(x)b¥(x) + éba”(x) =V'(x), (2.11)

2V . .
if b*(x)=0, then b*"(x)= Zz(x). The statement follows if in [p, g] the sign of V'(x)

is constant.
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(i) From the Riccati equation (2.1) we know that whenever b°(x) has an
extremum then [b*(x)| = |/ 2V(x) — 2E,. Besides b*(p)— + |/ 2V(p), b*(q)— — |/ 2V(q)
as ¢—0 (by Proposition 2.1).

(iii) We first remark that by the Riccati equation b%x) can have a zero with
negative derivative only for those x such that ¥(x)<E(e). Let us now take two
consecutive zeros of V(x), say x; and x;,,, and the corresponding two turning
points X¢, X¢, ; 2 between them, and suppose that there exists a point yie(x; x;, ;)
such that b%(y;)=0, b*(y{)>0. By the previous remark b*(x)>0, Vxe(y;,X{, ).
Analogously b%(x) <O, Vxe(xl, Vo).

(iv) We compare, as in Proposition 2.1, the solutions of the two equations:

(b*(x))* +&2b”(x) = 2(V(x) — E,)
e2V'(x)
1/ 2V(x)’

with initial conditions b*(y?) =0, b°(y?) = + 1/ 2V(y;), in the interval (y7, x;, ;). From
the above equations we obtain:

(BO(x))2 +e2b%(x)=2V(x) +

bi(x) — bO(x) = 1/2V<y,)exp{ T(be<x')+b°(x’»dx'/82}

- y( o) ZS(__ZI))eXp{— § 06+ 7 . (212

Using now the explicit expression, for b°(x), b°(x)=+ |/2V(x), the estimate
b¥(x)>0, Vxe(yi, X;) (see iii)] we get:
[b*(x)— |/ 2V(x)| < Ce?, Vxe[yi+e&", X, ]

for some C>0 and any 0<y<2.
Similarly:

[b*(x)+ |/ 2V(X)| < C'¢, Vxe[x;, yi—¢"]

for some C'>0 and any 0<y<2

(v) In this case the proof follows the previous one iv) with the difference that
the proper intial condition for b%(x) is unknown.

But this is not important for the estimate we need because from ii) we know
that in any case b*(x;) is bounded by some e-independent constant.

Summarizing from Propositions 2.1 and 2.2 we can conclude that for ¢ small
enough, |b*(x)+ |/2V(x)|< Ce’ in the complement of ¢’-neighborhoods of the
points y¢ with i<N—1, for some constant C and any 0<7y<2. Proposition 2.2
however, does not exclude the possibility that, in general situations the limit for
e¢—0 of the points y{ may not exist. We now describe a technique which solves
completely this problem in situations of practical interest and allows us to
compute explicitly the limit y?. In other words, as we shall see in Sects. 5 and 6, one

is able to prove that lin(l) b*(x)= + ]/2V(x) in the complement of the points y.

2 X¢is called a turning point if V(x{)=E(e)
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We choose an arbitrary point x, and we consider the symmetric and the
antisymmetric parts of b%(x) with respect to the point x,. For simplicity we put the
origin of the x-axis in x,.

Exploiting again the quadratic structure of the Riccati equation we can express
the symmetric part of b%(x), b*(x)+b%(x) (b*(x)=b*(—x)), in terms of the anti-
symmetric one b*(x)—b%(x). In fact the following nonhomogeneous differential
equation holds:

d - 1 ~ ~ 2
7y D) +600]= = 5 [0 + b [B(x) =001 + 5 4V(x),  (2.13)
where AV(x)= V(x)— V(—x). Equation (2.13) can be solved explicitly, and we get:
b¥(x) + b*(x) = F(x) exp { — f (b*(x') — B*(x")) dx//sz} (2.14)
0
with
x 2 x’ _
F(x)—F(0)= | 2 AV(X')exp { | (5 (x") = b*(x")) dx"/sz} dx’.
0 0
From the previous general discussion on the behaviour of b*(x), as |x|— o0, it is
clear that b*(x)+ b*(x) cannot go to infinity exponentially and this implies that the
constant F(0) must be chosen equal to
0 2 x’ _
— i AV(x") exp {f b (x")— be(x"))dx”/az} dx'.
0 0
We have thus the following form for Eq. (2.14)
— © 2
b(x)+ b (x)=— | = AV(x)

-exp {xj (b*(x") — b*(x")) dx”/az} dx’'. (2.15)

By using this formula we prove the following:

Proposition 2.3. a) Let us suppose that the potential V(x) satisfies the following
additional assumptions :
(i) there exists a point x,e(x,,xy) (X, is the i™ zero of V(x)), such that

V(x)—V(2x,—x)20,Vxe(xy, + ).

(ii) The open set I={x>x,; (V(x)—V(2x,—x))>0} is nonempty; I will be in
general a (possibly infinite) union of disjoint open intervals (a,b,), x,<a,<b, <
+ co.

Then lirr(} bi(x)=—]/2V(x), Vxel.
b) Analogously if V(x) — V(2x, —x) <0 Vx> x, and if I ={x<x,; (V(x)— V(2x,
—x))>0} is nonempty, then lirré b(x)= + |/2V(x), Vxel.
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Proof. a) We consider the function b*(x) +b*(2x, — x), e.g. the symmetric part of b
with respect to x,. By Eq. (2.15) with inversion point x, we get

b*(x)+ b*(2x,—x) <0, Vxel.
We will show that this implies
li_{r(} bi(x)=—|/2V(x), Vxel.

Let us begin by examining b*(x) in the interval (a;,b,). If a, >x, then the
proposition follows from Proposition 2.1. If b; <x, and V(x)>0, Vxe(a,, b,), then
it is easy to show that, if (a%,b,)S(a,, b,) is the set where b*(x) is strictly positive,
then a®—b, as ¢—0. In fact if for any ¢, >0 there exists an £<¢, such that (b, —d%)
>C for some gy-independent constant C, then by Proposition 2.2 (v), in the

interval (a%,b,) there exists a point such that b*(x)> |/2V(x)+0(). From this we
would get for such points x:

b(x)+bH(2x, — %) > |/ 2V(x) — |/ 2V(2x — X) + O(e4) > 0

for ¢, sufficiently small, and this is forbidden by (2.15). We have thus proved that
lirr(} a®=b, and this, again with the help of Proposition 2.2, is sufficient to conclude

that:
lil(% b*(x)= — |/2V(x), Vxe(ay,by).

The proof for the remaining intervals (a,, b,)CI is just the same. Part b) is
proved in an analogous way.

3. Reduction of the Study of I’ to the Study of a Finite Matrix

This section follows essentially the paper by Ventzel [11] with the difference that
Ventzel treats processes with their semigroup acting on the Banach space of
bounded continuous functions, while we are dealing with a diffusion process
possessing an invariant measure 3(x)dx with its semigroup P' acting on
L,(pddx). We recall that the action of the semigroup generated by —I can be
defined by:

(exp(L1)f) (x)=(P) (x)= M f(x,),

where M: denotes the expectation over the diffusion process X} starting at x
generated by I, i.e. the solution of the stochastic differential equation (1.1). We are
interested in the eigenvalues and eigenfunctions of — I defined by the equation:

(P 1) (x) =exp(—at) f3(x),

where f7is in L,(widx). We will refer to fF as an a-eigenfunction of — L.

Let E and D be two finite unions of points such that EnD =#. Define 1,(t,) to
be the hitting time of the diffusion process X? to the set E(D). Clearly both 7, and
1, are Markov times [15]. Now let 7, be the Markov time defined as follows:

Ty =15+0, (),
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X, X,
T T . T T T T L T T

Cy Qpy a2 C2 Cjy Qj Q2 T2

Fig. 3

where 0, is the usual shift over the process X? [15]. 7, is the time the process X
completes the cycle of motion taking it for the first time to D and from there
subsequently to E.

Let M be the number of points of E; we then define the M x M matrix:

(425, 5=M5{explat,) x(X., =)}, X, yeE,
where y(A) is the characteristic function of the set A, provided
M: {exp(ar,)} <oo,VxeE.

Theorem. Let a>0 be such that |M: exp(2at,)] La(w3) < - Then there is a one-to-
one correspondence between the a-eigenfunctions of — °T° and the eigenvectors of (q,);;
with eigenvalue 1.

The proof, given in Appendix B for completeness, follows step by step that
given by Ventzel in [11]. The interest of the above theorem resides in the fact that
one can take advantage of the arbitrariness of the sets E and D. Of course there is a
price one has to pay in going from I to (q;),; due to the condition
| M exp(2azt )] Lawd) < © which implies an upper bound for a.

In Appendix C we will show that the upper bound for a is large enough for our
purposes.

4. Probabilistic Estimates

Our main purpose is to provide an estimate as ¢—0 of the elements of the matrix g°,
defined in the previous section for a particular choice of the sets E and D. These
sets are defined as follows: for each zero of the potential V(x), x;, i=1,..,N, we
take two closed neighborhoods E; and D, such that x,e E,CD;, D;nD;=@if i ;
let y; and I; be the boundaries of E; and D, respectively, y,=a;,ua,,, I;=c;;Uc;,,
N N
then we define E= () y, D= {J I;
i=1 i=1
The situation is summarized in Fig. 3.
With the above definition of E and D we have
(405, 5=M(explaty) x(x., =), (4.1)
where X=ay, y=a,, i,j=1,...,N; k,£/=1,2 and the parameter a =0 must be such
that:
HMfc(exP(zaﬂ))”LZ(ngx) <+c0o.

Using now the Holder inequality we have:
- K e I B
Pix., =9) S (055 < [IMEexplaxt )1V [pilx, =]« (4.2)

where « is an arbitrary constant > 1. To compute pi(x,, =) we have to distinguish
different cases. First of all if the points X = a;, y =a,, are such that |i— j| > 1 then by
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the definition of t, pi(x, =y)=0. We suppose then that X and y are nearest
neighbours that is |i—j| <1, k=+/. If i=j using the strong Markov property we
have the decomposition:
o (%, =ai2) =15, (€12, €i1) PE (@325 Gy 1 1)
Poo(Xe, = a11) = D4, (Ci15 €10) PE (G111 )
where pi(y,z) is the probability that x; starting at xe[y, z] exits at y.
If X=75 the analogous decomposition reads:
Pi,l(xn =a;)= g, (i1, ¢;2) P, (11,0, )
and similarly for a;,. If i=1: p; (x, =a;,)=p; (¢;;,¢;,), analogously if i=N

PhnXe, =an2) =iy (CyasCyy). Finally if j—i=1: p; (x, =a;)=p; (c ¢;)
P; (@, a;,), and similarly if i—j=1. This decomposition is useful because the

2 d
+b(x)d—x—

p5 =0 with boundary conditions pj(y,z)=1, pi(y, z)=0 and are given by the simple
formula [16]:

probabilities p%(y, z) are solutions of the differential equation: 32/2W P

P 2) = | () d / [ ¢ () (43)

X

where
P*(x')=exp { — Jj 2/82b£(x”)dx”} .

We now assume that 1in% b*(x)= + |/2V(x) in the complement of finitely many

points y?, where b°(x) jumps from + |/2V(y{) to +]/2V(y). This allows
estimation of the integrals appearing in (4.3). It is enough to make the com-
putation for j—i=1 as all the other cases are obtained taking complementary
probabilities. By taking now the width of the intervals [a;,, a;, ], [¢;q,¢;»] equal to
0/2 and ¢ respectively, it is not difficult to verify (see Appendix D) that:

exp{(—V;;—h(e,0))/2e*} =p;, (x,, =a;)) Sexp{(— V};+ h(e,0))/2¢*}  (4.4)

with V,.=4 j |/2V(x)dx=4 j |b(x)|dx where y? is the jump point between x; and

X, ie. the mtegral has to be extended to the region between x; and x; where b°(x)
<0 h(e, 8) is an error arbitrarily small for ¢ and § sufficiently small h(s 0) includes
the error coming both from the approximation on b*(x) and from the estimate of
the integrals. We now need estimates for e—0 of M%exp(axt,), Xe E, appearing in
(4.2). First of all we have the obvious inequality:

M(exp(axt,)) =1+ axMit, =1 +axt,pitp,>t,), XEE,

where 7, is the hitting time defined in the previous section, ¢, being an arbitrary
time. From Appendix E, we have:

pitp>ty) =1 —exp{—h(e,d, to)/282} s
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where I'(e, 6, t,)) is again as small as we like for ¢ and ¢ sufficiently small. Therefore
M:{exp(axt,)} =1+ akx(l —exp{—N(e,J,t,)/2*})t,. 4.5)
To obtain an upper bound we apply the strong Markov property

MZ(explaxt,)) < sup Mi(exp(axtp)) sup Mi(exp(akty)) (4.6)
xeE yeD

Let us estimate for example the first factor, the calculation for the other one being
identical. Let t, be an arbitrary time, then

sup M:(exp(akty)) = sup j exp(axt)dpi(t, <t)
XeE XeE

© (n
up )
e€E 0=

n

xn"’

+ 1)to

[ e™dpi(r,<t)
nto
[oe]

<sup ). expla(n+1)xt,)
xeE 0=n

{pilrp = (n+ Do) — piltp i)}

= sup i exp(ax(n+1)t,)

XeE 0=n

pitp>nty) —pi(ty > (n+ 1)t,)}
<exp(axt,)+ {exp(axt,)—1}

-y exp(mcato)[sup p;(rD>to)]",
1=n XeE

and this sum converges provided exp{axt,} sup pi(t,>t,)<1. By summing the
xeE
series and doing some other obvious majorizations

sup M2 exp{axt,} <1+ a;cto/{l —axty,— sup pi(t,> to)}

XeE XeE

provided axt, < {1 — sup pi(tp > to)} C,C<l.
XeE

Using again the result of Appendix E

Pitp>to)=1—pitp<t)<1—exp{—h"(s,8)/2¢*}, VXeE.
In conclusion we get:

t
sup Mi(exp{aktp}) <1+ 1a;< gexp{h”(s, 8)/2e%},
XeE -

if axty < Cexp{—h"/2¢*}.

The same holds for sup M exp(axty). If we choose the Holder constant «

appearing in (4.2) in such a way that pi(x, =y)*~ V% is still of the form (4.4), that
is x~1/h(e,6) which in turn implies a<hexp{ h"/2e*}, we finally have for the
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elements of the matrix ¢ the following inequalities:
exp{(—V;;—h(e,0))/26%} (¢, S exp{(— Vi +hle, 8))/267) . (4.7)
For |i—jl=1 where h(e, ) is slightly bigger than h(e, &)

2 N
L+aexp{—N(ed)/2c*}< Y Y qilay. a,,)

t=1j=1

=M’ e*1<1+aexp{h"/2¢*}. (4.8)

Now using these inequalities it is possible to estimate in concrete cases the
values of a for which 1 is in the spectrum of ¢, i.e. to estimate the eigenvalues of
- L

5. Double Well Potentials

In this section we consider some typical tunneling problems in which it is clear
how the previous techniques work in view of the determination of the drift term
b*(x) and the calculation of the main logarithmic term of the splitting of the ground
state. The simplest situation is provided by the symmetric double well potential. In
this case, by symmetry reasons, the drift b%(x) has a unique “jump” in the symmetry
point of the potential V(x). The precise form of the function V(x) is not important,
however, for definiteness, we shall refer to the function V(x)=g(1 —x?)%. In this
case by Proposition 2.2 we have:

: £ _ _y2 3 £ — 32 —
lim b*(x) = + }/20(1-x%), ¥xe (0, 1], lim b*(x) = — )/ 20(1 ~x?), Vxe[ — 1,0).

We then construct following Sect. 4 the 4 x4 matrix ¢, which, according to
(4.7), is determined by the quantities V_; ,, V,; _;. Due to the symmetry of the
problem:

0
Vi o1=Voi =4 [ )2V(x)dx=5(20)"">.
21

By applying now the estimates (4.7), (4.8) to the equation det(g; — I)=0 where I
is the 4 x4 identity matrix, we obtain for the values of a such that O<a
<exp{—h/2¢*} and lea(q’)

exp{(—3(20)"2 —h)/2e’} aexp{(—5(20)'* + h)/2e%} , (5.1)
or
e?exp{(—5(20)"2 ~h)/2*} SE, —E <& exp{(— 520> + 1)/2e%}  (5.2)

for the splitting of the ground state energy. Here, as well as in the next examples,
h=h(e, o) is a positive constant depending on ¢ and , where ¢ is the width of the
sets y;, I; from which the matrix g was constructed (see Sect. 4), which is arbitrarily
small for ¢ and J sufficiently small.

A more interesting situation can be obtained if we consider an asymmetric
double well potential obtained by a C* deformation of the previous case such that
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0 (x)

Fig. 4

the new potential still satifies all the assumptions of Sect. 2. We begin with the case
in which
V(x)— V(= x)=A4V(x)>0, Vxe(a,,a,)C(0,1),
AV(x)=0,Vx¢(a,,a,)(—a,, —a;).

In order to specify the sign of b* on the whole line we make use of the formula
(2.15) connecting the antsymmetric part of b*(x) with the symmetric one:

b¥(x)+ b¥(x) = —2/? To AV(x')exp {} (b*(x")— b*(x")) dx"/ez} dx’, (5.3)
where
b¥(x)=b*(—x).

From this formula it follows immediately that b*(x)+b%x)=0,Vx>a,; we
remark that this property also follows directly from the Schrodinger equation for
the ground state wave function. Besides by the positivity of 4V(x), xe(a;,a,),

b*(x) +b*(x) <0, Vxe(a,,a,).
From Proposition 2.1

lim b*(x) = + 1/2V(x), Vxe(— oo, —1), lim b*(x) = — |/2V(x), Vxe[1,00)

and from Proposition 2.3 applied to the interval (a,,a,) we get:
lim b*(x) = — |/ 2V(), ¥xe (a,,a,);

by Proposition 2.2, this holds for the whole interval [ —1, a,).

The situation is summarized in Fig. 4.

The case with 4V(x)<0, Vxe(a,,a,) and AV(x)=0, Vxé¢(a,,a)u(—a,, —a;).
can be treated analogously and the result is that the jump of b°(x) occurs at the
point x= —a, (see Fig. 5).
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b0(x)

T T T
—N:z a;  a,+! X

Fig. 5

As far as the splitting of the ground state level is concerned, in the first case
(4V >0) we obtain:

e2exp{(—V, 1, -1~ hie, 0))/2¢*} <E, —E,
<e’exp{(—V,, _, +h(e5))/2*}, (5.4

+1
where V., ,=min(V,, _, V_, ,,)=4 [ |/2V(x)dx; using the identity

wo(x)/wo(—l)zexp{f be(x’)dx'/sz} we get immediately that, as ¢—0, the in-
-1

variant measure [ip,(x)|* concentrates on the left hand side well.

By computing now the right eigenvector of g:(a=(E, — E,)/¢*) with eigenvalue
1, we can evaluate the first eigenfunction of — I, ¢, (x) =, (x)/p,(x) in the points
x=—1 and x=+1 and from this the ratio y,(+1)/p,(—1). The result is the
following

—exp{<z i ]/2V(x)dx+ﬁ(e,5))/282} < ‘q’leJFB
—az 1\

< —exp {(2 j 1/2V(x)dx — ke, 5))/282}, (5.5)

—ay

where h is the usual error term.

Analogous results can be obtained in the negative case 4V <0. We now
consider the situation in which the symmetry is broken in the region to the right
hand side of the point x= +1, that is AV(x)+0 only if xe(a,a,)u(—a,, —a,),
where (a,,a,)S(1, + ). We also make the technical assumption that Ilim

AV(x)

G—a)m =A, 0<n, <+ oo in order to simplify some estimates.
1
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The two main results in this case are the following:
i) If a, =1 then,

li_I)I(l) b(x)= —|/2V(x), Vxe(—1,+1), if AV(x)>0, Vxe(a,,a,)
li_{% b*(x)= +]/2V(x),Vxe(=1,+1), if 4AV(x)<0, Vxe(a,a,).
ii) There exists a point af>1 such that if a, >a¥ then
31_1}% b*(x)= —]/2V(x),Vxe[1,0),
11_{13 b*(x)=+]/2V(x),Vxe(0,1]
independently of the sign of AV.

Proof. i) We treat only the case 4V >0, the proof of the opposite one being
identical. Let us first assume that there is no point y° such that b*(y*)=0,

%b‘g(x)[x= ,+>0; by Proposition 2.2 we conclude:
lim b*(x)= + 1/2V(x),¥xe[—1, +1]. (5.6)
On the other hand formula (5.3) with 4V >0 tells us that
b*(x)+ b*(—x) <0, Vxe(0, +1)
and this implies with (5.6) that
lim b*(x) = — |/2V(x), Vxe(~1, +1).

£=0

Now if a jump point y° is present, the negativity of b*(x)+ b*(—x) implies y*>0,
VYe>0; we will show that the boundedness of b*(x) for xe[ —1, +1] implies
lirr(} y*=+1. Suppose in fact that 1—y*>C for some ¢<g¢,, Ve,>0, with C an

arbitrary positive constant. Then by Proposition 2.2
b (x)>+1/2V(x)—Ke’, 0O<y<2, Vxe(l1-C,1)
for some e<¢,, Ve, sufficiently small; but this in turn implies:
+1 _ +1
exp{ [ (b*(x)—b*(x')) dx//gz} > exp {(2 I 1/2vx) dx’—K13> / 82}
-¥Yxe(1-C,1),
where K, is a positive constant. Inserting this estimate in (5.3) we get:

|b%(x) + b*(x)| > exp {(2 } 2V(x')dx' — K18>/82}T AV(x) (5.7)

-exp {} (b5(x") — b*(x")) dx”/sz} ax’, vxe(1-C,1),
1
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for some ¢ <e¢,, Ve, sufficiently small. The integral on the right hand side of (5.7)
can be estimated by:

az x’ _ 1+e2
j AV(x') exp {j bix")— be(x"))dx”/az} dx' > f AV(x)
+1 1 1
. £ _ he ’ 2(np+1)
.exp{ .dnax (b(y)—b (y)|} dx'>K,Ae , (5.8)

by the assumption on AV(x), K, being a positive constant.
Combining (5.8) and (5.7) we would get:

1
[b*(x) + b*(x)| > exp {(2 [ V2v(x)dx' — Kla)/ez} K,Ag*m* D yxe(1—-C,1)

for some e<g,, Ve, sufficiently small; but this is forbidden by the uniform
boundedness in ¢ of b*(x) for xe[ —1, +1].
In conclusion, if an y°® exists, ling y*=+1 which in turn implies lin& b¥(x)

=—]/2V(x), Vxe[ -1, +1].

ii) In order to prove ii) we observe that for 0<x=<1

T (o)~ Feedx < [ 2)/ 2@ dx—2 | 1/2Vdx -+ Kse,
x 0 1

for some constant K;>0. Let a¥ be the point such that:
a’; 1
[ V/2V(x)dx= | |/2V(x)dx,
1 0

then for any a, >a¥, | b%(x)—b*(x)< K, <0 for ¢ sufficiently small. From (5.3) we
have thus that if a, >a¥ then:

li_I}é b*(x)+ b*(x) =0, Vxe(0,1),

and this implies:

lim b*(x)= + }/2V(x), ¥xe(0,1]

li_{r(} b*(x)= —]/2V(x), Vxe[—1,0).

The picture of b® in the case a, =1 and a, >a¥ is summarized in Figs. 6 and 7.

Once the sign of b°(x) is determined, the computation of the splitting of the
ground state level and the estimate of the concentration as ¢—0 of the invariant
measure [ip,(x)|* can be carried out exactly as in the previous cases. In the first
situation, i.e. when a, = £ 1, the tunneling disappears in the sense that there are no
values of the parameter a such that 0 <a <exp{— h/2¢*} and det(q: — I)=0 where I
is the identity matrix.

In the second case the situation of the symmetric case is recovered in the sense
that for the value of a such that a<exp{—h/2¢*} and det(q° — I)=0 we obtain the
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b0(x)
+1
-1 \ X
\
Fig. 6
(x)
-1 +1 a} X
\
\
Fig. 7
estimate :

exp{(— V., -y —h(e,0))/2e?} <a<exp {(= V., _ +hz )2},

0
with V., _, =4 | |/ 2V(x)dx, which is identical to estimate (5.1) at least for the
-1

main logarithmic term.

6. Multiwell Potentials

Let us consider a C* positive function F(x) with support (—7, ) such that:
1) F(x) is symmetric, ie. F(x)=F(—x).

. F(x)
2) F(r)=F(—mn)=0 and xl—l»@nm =w?>0.



Multiple Tunneling in One Dimension 243

With such a function we construct a potential V(x), which is periodic over the
finite interval [ — Nz, N7] with period 2x, and grows at infinity outside, as follows
(Fig. 2)

(i) V(x)=F(x—Kn)for xe[(K— l)n,(K+ 1)n] with K evenand 0S K <N —1.

(i1) V(x) for x=Nm is a C* positive function such that hrIIVl V(x)/(x— Nm)*

=w®?>0 and there exists a real number 1 <« < oo such that lirﬁp V(x)/x* exists
x> 2]

and it is finite and positive.
(i)) For xe[N=, (N + 1)x], V(x)> F(x — (N + 1)x), for x> (N + 1)z, V(x)

> max F(x).
xe[0,n]

(iv) V(x)=V(—x).

We analyze the quantities b(x) + b*(x) and b?(x) — b%(x) as before but we now let
the point with respect to which the inversion x— — x is taken, vary over the points
|x|=Kn, K even, 0< K <N —1. Since this technique is explained in detail in the
next more general case, we omit the proof of the following result: 11_{% b*(x)=b"(x)

exists in the complement of the points x, |x|=K=n, K even, 0K <N —1 where

b°(x) jumps from — |/2V(x) to + ]/2V(x). Besides b°(x)= — |/2¥(x) for (N —2)n
< x,b%x) = + |/2V(x) for x < —(N —2)m. Once the sign of b° is determined we can
easily conclude that the invariant measure as far as the main logarithmic term is
concerned is equally distributed among the different wells except the ones at
extreme left and right.

As for the computation of the splitting of the ground state energy, as before, we
must estimate using (4.7) and (4.8) the values of 0 <a<exp{—h/2¢*} such that
det(q;, — I)=0 where ¢’ is a 2(N + 1) x 2(N + 1) matrix defined in the usual way, and
I is the 2(N +1) x 2(N + 1) identity matrix. E_E

i 0

We find that for e—0 there are at least N — 2 eigenvalues of I, o with the

same exponential term exp{—V/2¢*}, V=4[ |/2V(x)dx >.
(o]

More interesting is the case in which one of the barriers is lowered slightly and
the symmetry is thus destroyed (see e.g. Fig. 2).

We consider the case in which, for example in the interval [a,,a,], a, =(— )z,
a,=(i+1)m, i even, 0<i< N —1, the function F is replaced by a symmetric C*
function 0= f(x)<F(x) with support (—m,m) such that f(—=n)=f(n)=0,
li_l;lfl[ f(x)/(x —m)*> = w?, there exists a real positive number n, and a constant 4 such

that lim (F(x)— f(x)/(x +m)"=A. We want now to prove that in this situation as
-0 the ground state wave function is localized in neighborhoods of each of the
points a, and a,.

Since our potential is obtained from the symmetric one by a perturbation
localized between the points a,, a,, formula (2.15):

bi(x)+bi(x)= — | 2/e2AV(X') exp{j (ba(x”)—Be(x”))dx”/sz}dx’
X X

tells us that b%(x)+b*(—x)=0, Vx = a,, i.e. b*(x) is antisymmetric for x=a,.

3 Weremark here that there is a theorem of Ventsel [17] which provides an estimate as e—0 of these
values of a for any N x N matrix g%
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Let us take as an inversion point the point a,. With this choice we are in the
hypotheses of Proposition 2.3 and we conclude

El% b*(x)= —]/2V(x), Vxe(a,,a,+2m).

If we let the inversion point move over the points Kx, K>i+1, we can use
Proposition 2.3 each time and conclude:

Eleré b (x)=—1/2V(x), Yx>a,.

By the antisymmetric property of b*(x), for x>a, we get
ll_r}gb (x)=+1/2V(x), Vx<—a,.

If we then take as the inversion point precisely the symmetry point of the original
potential (x=0) and we observe that in this case V(x)—V(—x)<0 only for
xe(ay, a,), we get by Proposition 2.3 that:

1i_{1(1)b‘(x)= 2V(x) for xe(—a,, —a,).

It remains then to determine the sign of b%(x) in the region [ —a,,a,]. To do
this we put the inversion point in 7. In this case it is no longer true that V{(x)
—V(2n—x)=A4V(x) has a definite sign for x > =, in fact it is negative for xe(a,, a,)
and positive between N7 and infinity.

However, we can show that b®(x)+ b%(x), where b%(x)=b*(2n— x) is positive for
xe(a,,a,), provided e is sufficiently small.

In fact

— 2 1@ —
bi(x)+b¥(x) = 2XP {; J (B°(x") — b*(x")) dx”}

X

. [ajz [AV(x")] exp { - 81—2{152 (b*(x")— b*(x")) dx"}

N=n ©
—exp{ | 06 ~Bax'| - | 14V

az

>

-€Xp {aiz 1§ (b*(x") = b*(x")) dx"} ax’

and the expression inside the square bracket is positive if ¢ is sufficiently small. We
have in fact:

az 1 as _
J 14V(x)] exp { — 5 J )= b)) dx”} dx’

>exp { - aizj (") — B dx”} Tlavieyas 6.1)
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b%(x)

x

Fig. 8

Nn
exp {Siz j‘ (ba(xn) a(x//) dx//} j‘ IA V(X
1 ~
exp {8—2 Nj (b(x")— b(x”))dx”} dx’

zexp {3 | ()= B’} ] 14V(e)

az Nn
-exp { -V 2V(x”)dx”} dx', 6.2)
Nn

and for ¢ sufficiently small (6.1) is greater than (6.2) if we observe that by the
Nn

previous results | — (bs(x”)—l;e(x”))dx” is negative and greater in absolute value
€

az

for ¢ sufficiently small than 5 = (bg(x”)—Eg(x”))dx” because V(x)<V(y) for
xe(ag,a,), y¢(ay, a,).

Thus b*(x) + b*(x) >0, Vxe(a,, az) and ¢ sufficiently small ; this implies that b%(x)
>0forxe(—a,, —a,+2n)fore sufficiently small. If we repeat the same discussion
with the inversion pomt varying over x=Kn, 0<K=<i—1 we get b%(x)=0 for
X <ay, i.e. by Proposition 2.2

li_{r(}be(x)z—l- 2V(x) for x<ay.

As a final step one can show that b°(x) has a jump for y=in by taking in as the
inversion point and by noting that by formula (2.15), b*(in) is small like exp { — e%}’

if ¢ is sufficiently small, for some constant ¢>0. The shape of b° may look
something like in Fig. 8.

. . * bH(x")
By the identity y,(x)/wo(a)=exp1| 2
a
measure g concentrates as ¢é—0 on each of the two wells on either sides of the
lower barrier, and that, as far as the splitting of the ground state is concerned, this

dx’} it is clear now that the invariant
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situation is similar to a double well potential, i.e. there is a unique exponentially
small splitting E, — E, for which the following estimate holds:

1 ai+=n
exp{—zg—2[4 I V2V(x)dx+h

a1 +mn
<exp{——[4 | V2V(x)ydx—h

with h as the usual error term.

}<E1—E0

g

Appendix A

Let y,, v, be the eigenfunctions of the Hamiltonian corresponding to the n™
energy level and to the ground state respectively. If the potential V satisfies the
assumptions of Sect. 2 then y,/ip, grows at infinity at most as a power law.

Proof. Let d(e,n) be such that for xe(d, 4+ o)
1) V(x)—E,>0,

2) V'(x)/)/2V(x)>2E,/¢?,
3) V(x)>Cx? for some positive C.
Due to our hypotheses such a point clearly exists. From 1) and the Schrodinger

equation it follows that in (d, +0), |y,| decreases monotonically due to the fact
2

. d
that y” has the same sign as . We have therefore that b= 8—~—(1n1p,,)<0 in

(d, + co). The ratio y,/yp, can be written

1 x
B o(3) =Dl d-exp ] (500~ by e .
d
Exploiting as we did, in Sect. 2 the quadratic structure of the Riccati equation for

b and bf), we can express the difference b — b, in terms of their sum b +bj. We
have in fact:

bi(x)—b( T%— E, Eo)exp{ j(b‘(x”)+b (x”))dx”} dx', Vxe(d, + ), (A.1)
that is

bi(x)—bj(x) < 822 (E,—E,) Ojo exp {iz? by(x") dx”} dx’

1
= (E —E,) | exp{— — Inf b5(<)] (x' —x)} dx'
_ 2AE,—E,)
nf (650 (A2)
Using now the estimate (2.10) on bj:

1B ()| = 1/2V(x), Vxe(d, +o0)
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and the estimate 3), we conclude that:

2AE,—E,)

Vex

b, (x) = bp(x) =

that is

u)n(x) < wn(d) ex p{z(E EO)I ( )} C/ wn(d) C (A.3)

Polx)  wold) 2)/c pold)
where C’ and C” are positive constants.
The same discussion holds for the study of the growth of

(x)

for x— —o0.
V’o(x)

Appendix B

This appendix is devoted to the proof of the theorem stated in Sect. 3. For the all
necessary notations we refer to that section.

We recall for simplicity the statement of the theorem: let a>0 be such that
|MEe?*™ | <oo* Then there is a one-to-one correspondence between the
a- elgenfunctlons of I and the eigenvectors of (¢;);; with eigenvalue 1.

Proof. We first prove that if f is an a-eigenfunction then:
M
fix)=Y Mz e fAX ) ulx,, =X )= ME ™ filx, ) Vi=, ..., M.
ji=1

It is sufficient to show that f7(x)=M;(e"" f;(x,,)) for any x in an arbitrary compact
set. Due to the fact that both fi(x) and M(e*f;(x, )) are continuous in x any
compact set it is enough to show:

I1fa ()= M fi(x )| =0.

The following inequality is straightforward for any T=0:

[l f3(x) = ME(e*™ fi(x N S 1 fa () — Me™ f(x..))
+ M fr0c, ) (e, 2 T)) = My(e fiGep) y(z, Z )|
+ M £, ) xlty Z T + IIMEeT flxp) x(zy Z T - (B.1)
The first term of the right hand side of (B.1) is zero; in fact it is equal to the
norm of fi(x)—M:ie“" "D fi(x,, 1) where a Ab=min(a,b) and this function is

shown to be zero on each compact set by means of the strong Markov property
applied to the equality:

et Mi(fixp)) = £(x).

4 The symbol |- | will denote in this Appendix the L,(ip2(x)dx) norm
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By means of the dominated convergence theorem and using the assumption on
| Mie**™)|| the second term of the r.h.s. of (B.1) goes to zero as T— oo. Finally we
estimate the last term.

Using twice the Schwartz inequality we get:

IMe™ faer) x(ty Z THIN S | Mife> (e Z THIZ - (2?12

and this last quantity goes to zero as T— oo because [|(f7)?|!/* < co [see Sect. 2d)].
We now prove the theorem in the opposite direction, that is, from an
eigenvector of (q}); ; with eigenvalue 1 we construct a unique a-eigenfunction of
L.
Let us denote by {f(X,)}, an eigenvector of (CATSS with eigenvalue 1. With
this eigenvector we define two continuous functions: fl(x) f>(x) as follows:

XX,

fi0)= M‘(‘”EZf(x)x( = )) Meerf(x)

[o(x)= M(e®fi(x.,)).

Clearly f,(xX)=f(X,)Vi=1,...,M and f;(x)=f,(x) on D. Because {f(X)}!, is an
eigenvector with eigenvalue 1 of (¢%); 5, by the definition of 7,, we get

[i(xX)=fX)=Lfo(X)Vi=1,..,.M
Lemma 1. h™(e” P"f{(x)— f(x))—0, i=1,2 as h—0 uniformly on any closed set
F disjoint from E for f; (D for f,).
Proof. By the strong Markov property we get

fl(-x) = Mfc(emEfl (er)) = M;(ea(rl;/\ h)fl (x(tE A h))) s
so that

h= e P f,(x) — f1(x))=h~ "M {y(tg <h) [e®f,(x,)— e B f1(x, )1}
=h7 M (g < h)e” =™ 2, (x,) — £ (x, )1}
=h""M{y(t, <h)e‘”EM‘,”Crb_[e““'_‘E)f1 (X)) — [1 ()1}

again by the strong Markov property. This last term is less than:

a ¢ (o8 Pirg<h)

e sup sup [M "/ (x)) — fi(R)| =] —

From the continuity of the process x! with respect to t it follows that

pi(tp<h)
h

[M(e“f1(x,)) — fL(¥)| goes to zero as t—0 uniformly on compact sets. A proof of this
assertion goes as follows:

IMS(e“f 1 (x)) — L= M (x) xllx, — yI < M) = fL(D)]
+ My (x) x(lx, — yI 2 M))| (B.2)

—const uniformly on each closed set F disjount from E. Besides
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for any M >0. By the dominated convergence theorem, the first term in (B.2) goes
to zero as t—0. The second term can be estimated by:

Mi(e” fi(x) x(lx, — yl =2 M)
e (M f20e )2 pylx, — v Z M)V2.

If we observe that fZe [*(p3dx) since
|f1(x)| = C1Mi(exp{a7:1 D= C1(Mi(exp{2arl}))1/2

and || M;(exp{2art,})|| < + co we can conclude that M; f(x,) is uniformly bounded
for any t=0 and any y in a compact set. Since pj(|x,—y|=M)—0 for (-0, we
conclude also that the second term of (B.2) goes to zero as t—0. Similarly Lemma 1
can be proved for f, by substituting D for E.

Lemma 2. For all x in an arbitary compact :
fix)=Mi(explatg p} filX.p ). =12,
Proof. It is enough to show that
Jix)=M(exp{atg} fix.2),

where K is the complement of an arbitrary closed set K disjoint from EuD, and x
is in an arbitrary compact.

Indeed for arbitrary x there exists a sequence of bounded open sets U,2 EUD,
U,D>U,,, such that with pi-probability 1, 1, rt , as n— + co. The continuity of
the process implies almost surely that x., —x.  so that fi(x  )- fix., ). Thus
almost surely ’

exp{aty, } fix., )>exp{atg,p} filx., )
whereby the sequence is majorized by

exp{‘”};up} sup | £i(x)]

xeUg

so that a limit passage in the equality
fx)=M fc(exp{arvn} fi(xrvn))
yields
fix)=M(exp{atgp} fi(x.,, )

We now introduce the notation a(h)= suph lexp(ah)P"f{(x)— fi(x); by de-

finition o(h)—0 as h—0". Put t(h)= mm{kh xkhe K}, k integer.
Applying the strong Markov property we get

|M; exp{al[t(h) A N1} Sy a ) — S|
h= ey A N]— 1

=M, ) exp{akh}(exp{ah}P"fi(xy) — fi(xi))| (B.3)

k=0
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in fact:

h=1[z(h) AN]— 1
M > expla(k+ 1)h} Pf(x,,)

k=0

I
"
8

DMs 1

exp{a(k+1)h} Mi{x(x(h) AN 2 (k+ )h) M, fi(x,)}

Xich/ 1

(B.4)

exp{a(k+1)h} M {x(z(h) AN Z(k+ 1)h) fi(x(k+ 1)h)}

=
]

0

h~ 1[t(h)A N]
v 3 explakh) fosu-
k=1

From this (B.3) follows immediately.
The r.h.s. of (B.3) can be estimated as follows:

h=1(z(h) A N)—1

ML Y e Pr (o) — fil)

k=0

©oh) A N

<a(M: | e"dt<a(h)Ne™.
(0]

But as n— oo, the first hitting time 7(27") of K on a lattice with mesh 27" tends
from above to 7y, this means that x ,-.—x,. and f(x,;-»)= f(x.z). A limit
passage in (B.3) for h=2""-0 yields

M (e®®" N)fi(x(rz )= fiX).
Exactly as in the first part of the proof one gets
M (e X filx.2)) = fi(x)| =0 as N-—oo,

iLe. Mye"*f(x .)) = fi(x) in any compact set. Lemma 2 is proved.
Because f,(x)= f,(x) for xe EUD, by Lemma 2 it follows

[)=Me =P fy(x., ) =Mle*=fi(x., )= fi(x),

ie. f; and f, coincide for x in an arbitrary compact.
Covering the whole line by two closed sets one of which does not intersect E
and the other D, by Lemma 1 we find that f, = f, = f; satisfies

h™ e P fi(x)— f(x)[| >0, as h—O0,

ie. f; is an a-eigenfunction of — L.

Appendix C

h(e, d)
We prove here that |MZe*|, ., <o provided 2a<e 222 where h(e,0) is
arbitrarily small, for ¢ and § sufficiently small (see Sect. 4). We will use in the sequel
all the notations of that section. By definition of L,(i3dx) norm we have:

IMie?|2= | pj(x)(Mie**)dx+ [ i(x)(Mie*™) dx, (C1

r\ ¥ p, U b
i=1 i=1

where D, are the closed neighborhoods of the points x; introduced in Sect. 4. The
second term of the r.h.s. of (C.1) is finite if we use the estimate (4.8) with “a”
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<exp{— F} By definition of expectation the first term of (C.1) is finite if and

only if
2
dx<o0. (C2)

f yi(x)|2a fez‘“px(r > t)dt

lR\uD,

In order to estimate the probability pi(t, >1) it is convenient to work with the
Wiener measure W..

The relative density # is given by:
1

(W) exp{— >

n(wz) =

O ey

1
mu’o (V(Ws)-Eo)dS}~

We have thus

Po(W,)
Po(x)

By the Schwartz inequality we get:

1t ]
pite, >0 =By [ e S ¢ ws>—Eo>ozs}x(u>r>J 3

t 11/2
P, > D S (o) ! [E\Wx (wé(w,) exp { - izg V(W) Eo)ds})

&

(C4)

. wa(exp{—}ij WVS)—EO)ds}Xr >t))]
0

The second factor in (C.4) is estimated by:
1 t 1/2
[wa (exp { = f V(W) — Eo)ds} Ty > t))J
0

sexp{~ g int (VO)-Eqi)}

y¢ v Dj
i=1

where inf (V(y)—E,)>0 if ¢ is sufficiently small. The first factor is less than:
y¢uD,

sup wo(}’)}llz Lwo(x)]~ 1z

YeR

1t _ A
we have used the fact that y,(x)=E,, (tpo(WV,)e sz (V) Eold )}

In conclusion:

1 .
Pt > SClyg(x)]~ 1/2-exp{— = 1gf (V(y)—EO)t}. (C5)
¢, :ID;
Now combining (C.2) and estimate (C.5) and the fact that [y,(x)]*/? is still in
L,(dx) we have that | M:[**"|| is finite provided

_ h(z,0) V(V)—E _h
2a<e 22 A inf (ﬂz—(l> =e 2¢
véuD, 2¢

for ¢ sufficiently small.
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Appendix D

We verify the right hand side of (4.4). It is sufficient to compute p, (a;,,4;,) using
(4.3) (see Fig. 3 for reference)

-1

pc,z(ajlaalz :[ Y(x)dx|- j ¢%(x)dx
5 " aj1 -1
S 5 max  ¢f(x)- j ¢*(x)dx

From the definition of ¢%(x)

X€lai2,¢:2]

c(9,¢)
<
max ¢(x ):eXp{ e }
where c(0,6)=2 max |b%(x)|6 is small for J, & small.

xela,2, 2]

aj1 y9+A(e)

f Pi(x)dx = j d¥(x)dx,

@12

where y? is the position of the jump of bo(x) between x; and x; 4(e) is a small
interval which decreases with ¢

5 T‘(S) di(x)dx = A(e) exp{ — 5» yf b¥(x) dx} exp { — 21 = A(e) . Orr:%M(E)] b¥(x )}

a2

z exp {_'_J_E(:_gg’.é}}

>

where (e, 6) includes also the errors coming from the substitution of b® with

—Y/av.

In conclusion we have proved

1
Peay ) Sexp {5 (- 0|

with
h(e, 6) =c(e, 0)+ (e, 5).

The left hand side of (4.4) can be obtained along similar lines.

Appendix E. Estimate of the Probability pi(r,<t)

Let D be the interval [¢;;, ¢ ,] around the i zero of V(x), x;, of length 6. It is known
(see [15]) that pi(z), <t) where 7, is the exit time from D for the Markov process
starting at x, is the solution of the first boundary value problem:

ue o O e? 0%u
E(tax)=b (x) ax (I,X)+ Eé;{z’(tsx)’

u(0,x)=0, u¥t,0D)=1. (E.1)
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The behaviour of the solution u* for small ¢ has been studied by Levinson [18] and
Ventzel and Freidlin [19]. In particular in [19] the following result is proved:

li_pg 2e% Inu(ty, x)= — I o(tg, X), (E.2)

to
where Iy(ty,x) is the infimum of | [b%¢,)— ¢ *ds taken over all the absolutely
0

continuous functions ¢, starting at x and reaching the boundary of D within the
time f,, provided b¥(x)—b°(x) as ¢ goes to zero, uniformly in D. In our one
dimensional case it is not difficult to study the quantity I,(¢,,x). First of all we
observe that

to

[1%(0) — ¢, ds=0<b%(p)=,, @o=x. (E.3)

0

By choosing now the time ¢, in such a way that the solution of (E.3) does not exit
from D=[¢;,,c;,] within the time ¢, we get I,(t,,x)>0. We remark that if the

. . . . 0 0 o
starting point x is equal to one of the two points x; + PNy and if ¢ is such that

the potential ¥(x) is quadratic in [¢ ;, ¢ ,] with an error proportional to 6°, which is
true by our assumptions, then the time ¢ is essentially independent of . Besides it
is easy to show that I(t,,x) is as small as we like for ¢ sufficiently small; it is

to
sufficient to evaluate the integral |[b%¢p,)— ¢ *ds for the trial function ¢ =x
0

+(c;, —x) _ts_ We get:
0

0 N2 862 862 B
Io(to, x) < max [b°(x)|*t, + — =4 max V(x)+ — = 0(6°).
xeD tO xeD tO
In conclusion from (E.2) we have:
_ h” (e, d,10) —Ig—h —Ig+h _ h'(g,d,1t0)

e 2 <e 22 Zpi(tp<ty)Se 2 <e 2

where h'(e,d,t,), h"(¢,0,t,) can be made arbitrarily small for § and ¢ sufficiently
small.
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