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Abstract. We propose a new approach for the estimate of the rate of
degeneracy of the lowest eigenvalues of the Schrodinger operator in the
presence of tunneling based on the theory of diffusion processes. Our method
provides lower and upper bounds for the energy splittings and the rates of
localization of the wave functions and enables us to discuss cases which, as far
as we know, have never been treated rigorously in the literature. In particular
we give an analysis of the effect on eigenvalues and eigenfunctions of localized
deformations of 1) symmetric double well potentials 2) potentials periodic and
symmetric over a finite interval. Theses situations are characterized by a
remarkable dependence on such deformations. Our probabilistic techniques are
inspired by the theory of small random perturbations of dynamical systems.

1. Introduction

The estimate of the semiclassical rate of degeneracy of the lowest eigenvalues of the
Schrodinger operator H in the presence of tunneling is not a new problem and has
been solved in special situations, for example in connection with the theory of
phase transitions in statistical mechanics [1]. More recently Harrell has produced
two papers [2, 3] in which a rather complete analysis of the above problem for the
case of symmetric double wells is given and where one can find a wide list of
references. The methods employed in these papers require in general a detailed
analysis of the eigenfunctions of H as h-+Q and their generalization to non-
symmetric cases does not appear so easy. Here we propose a different approach
based on the theory of diffusion processes which requires only an estimate of the
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log-derivative of the ground state wave function in the semiclassical limit in order
to extract lower and upper bounds for the splittings of the lowest eigenvalues and
for the rates of localization of the corresponding eigenfunctions. Our method
enables us to discuss cases which, as far as we know, have never been treated
rigorously in the literature.

In particular we give an analysis of the effect produced on the splitting of the
eigenvalues and on the eigenfunctions by localized deformations of 1) symmetric
double well potentials (Fig. 1); 2) potentials symmetric and periodic over a finite
interval (Fig. 2). As we shall see, tunneling in these situations is very unstable
under deformations.

The techniques presented here were inspired by the theory of small random
perturbations of dynamical systems [4]. On the side of physics however, it is
reasonable to see the origin of our approach in the stochastic quantization in the
form developed by Nelson some years ago [5].

If for illustrative purposes we restrict ourselves to one dimensional systems, the
scheme of stochastic quantization for stationary states goes as follows: the
position of a particle in a potential V(x) obeys the stochastic differential equation

where Wt is the Wiener process with unit variance and b(x) a drift term determined
by

6aw+^έw=l(Flx)-£) (L2)

The connection with the Schrodinger equation is straightforward as we note that
(1.2) is a Riccati equation which can be linearized in the usual way by putting

~--v ' 2m dx

From this the Schrodinger equation for ψ follows and one realizes that φ2 is the
density of the invariant measure of the process described by (1.1). The description
of time dependent states is more complicated but shall not be needed here.

The connection between stochastic processes and quantum mechanics has a
long history. The relationship among the Schrodinger equation, the heat equation
and brownian was pointed out a long time ago by Kac [6]. After the
work of Nelson [5], Guerra and Ruggiero [7] remarked that the process
corresponding to the ground state according to stochastic quantization is
essentially the same as the process described by the imaginary time functional
integral, i.e. the process generated by the heat equation. More recently this aspect
has received a general mathematical formulation [8, 9] in terms of equivalence
between the quadratic form associated to the Hamiltonian and the Dirichlet form
(or "energy" form in the terminology of [8]) constructed with the ground state
measure ψ%dx. The interesting fact is that the differential operator associated to
this Dirichlet form
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Fig. 1

with ε= I— , bε(x)= — — IΠI/JQ, can be studied as an operator on L2(ψQdx) by
\iιίi £ me

direct probabilistic techniques. These techniques show that the study of the lower
part of the spectrum of — U can be reduced as ε->0 to the study of the spectrum of
a finite stochastic matrix which approximates, in the same limit, the transition
probabilities between the absolute minima of the potential V(x) of the process with
infinitesimal generator U.

We now come to a crucial question. In order that the general approach we
have described may work, we need the drift bε(x) of U which is equivalent to the
knowledge of the ground state wave function φ0. We must therefore construct the
solution of the Riccati equation (1.2) corresponding to the ground state in the limit
ε-»0. This is a nontrivial matter and Sect. 2 of this paper is entirely devoted to such
a problem1.

In Sect. 2 besides establishing various properties of bε(x) for smooth positive
potentials which increase sufficiently rapidly at infinity (the precise hypotheses will

be given there), we prove that for ε small enough \bε(x)± ]/2F(x)|<Cεy in the
complement of εy-neighborhoods of finitely many points, 0<y<2. In those

neighborhoods bε(x) can exhibit a rapid increase from — j/2F(x) to + ]/2F(x).The
most difficult part of the job consists then in determining the location of such
points of rapid increase. This problem is solved completely in several situations
with the aid of an integral equation connecting the symmetric part of bε(x\ bε(x)
+ bε( — x), with respect to an arbitrary reflection point, with the antisymmetric part
bε(x) — bε( — x). The method appears to be of general applicability at least in one
dimension.

We now describe the main results of the paper. First of all, as a test for our
method, we calculate the level splitting for the symmetric double well potential and
we recover in a simple way well-known upper and lower bounds [10]. We then
consider localized deformations of the previous case (see Fig. 1) and compute

1 There are points of contact between our Sect. 2 and the work of Harrell in [2] which however was
brought to our attention only after completion of the present work
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V ( x )

Fig. 2

in the new situation. £0, £1? φ0, \pl are of course the energies and the wave
functions of the ground and the first excited state respectively.

The interesting conclusion is that only the part of the barrier between x = a2

and x= 1 determines the leading logarithmic term of the splitting El—EQ7 in the
sense that we prove bounds of the form

exp< l— £02ε2 J""1 ~o—F|_ 2ε2

On the other hand for the eigenfunctions φ0 and ιpl we get

ί-2 / yiV(x)dx-h"

6XP '" 2ε2 ^

(1.4)
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)dx + h'

eXpl 2ε2 (1.5)

i.e. small local deformations are enough to produce exponential localization of the
wave functions, ft, ft', ft" can be made as small as we like (compared with the
integral) for ε sufficiently small. We show in addition that if the deformation is
moved, for example, to the right beyond the point x = 1 and beyond a critical
distance αj, the situation approaches for ε->0 the symmetric case in the sense that
in (1.4) and (1.5) one can take α2 = 0. In other words if the deformation is moved
sufficiently far it does not influence the tunneling.

We next consider the effect of deformations of a potential which is symmetric
and periodic over a finite interval (see Fig. 2). In the undeformed situation the
particle tunnels through all the barriers and the wave function has equal maxima
in correspondence of the minima of the potential. However, as soon as we lower
one barrier only tunneling through the lower barrier is effective and the wave
function is localized in the two wells at the sides of it.

As for the splitting of the levels we have a transition from a situation where a
number of levels exponentially near to the ground state is present (the number of
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such levels is of the order of the number of barriers) to a situation which is close to
the symmetric double well. We have therefore only one level at exponentially small
distance from the ground state energy while the others are pushed up. We think
that this type of results may be interesting in connection with problems in solid
state physics. These results are discussed in Sects. 5 and 6.

We finally give some indications on the structure of the other parts of the paper
where all the necessary techniques are developed. In Sect. 2 we discuss the ground
state solution of the Riccati equation (1.2) as ε->0 for a certain class of potential
functions. In Sect. 3 we adapt to our case a theorem of Ventzel [11] which in one
dimension will permit us to reduce the study of the lowest part of the spectrum of
— U to the study of a finite matrix q\-. In Sect. 4 we give estimates of the elements
qε

tj as ε->0 using well-known explicit formulas for one-dimensional diffusion
processes.

Applications of these techniques to excited states and multidimensional
situations will be discussed in subsequent papers.

2. The Drift bε(x)

We begin by stating some hypotheses on the potential V(x). These will certainly
not be the most general and have been chosen so as to simplify as much as possible
the exposition. The reason for doing so is that one of the main purposes of this
paper is to illustrate in some nontrivial cases and in the clearest possible way the
possibilities of a new interesting technique.

The potential V is assumed to be a real valued function on IR such that :
1) F(x)^0and FeC00.

r(X)
2) V has a finite number of zeros : x ., i = 1, . . ., N and lim - - ̂  = ω?, that is

x^x-Xt)2

V has quadratic minima.
V(x)

3) There exists a real number 1 < α < oo such that lim - exists and it is
x^ + w χα

finite and positive. This implies that there exists a positive constant c and a point
V'(x)

Xf, such that : V(x) > Cx*+ 1 for x > xπ and lim — , = + oo.

Similarly we assume that there exists a real number !</?<oo such that

h2

L I R , x, Hφ= —

+V \φ for φeC^R), from 1), 2), 3) it follows that:

V'(x)
lim — β— exists and it is finite and negative.

x^-co XP

I
Calling H the Friedrichs extension of the operator on L2(IR, dx), Hφ= —

d2

2
dX

a) The eigenfunctions of H are C00 functions and the spectrum of H is discrete
and positive (see e.g. [10, 12]).

b) The ground state wave function ψ0 is strictly positive and has at least an
exponential fall off at infinity (see [10]).

c) If E0(h) is the energy of the ground state, then there exists a constant C>0

such that lim — — < C this follows from the mini-max principle using as a trial
-
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function the ground state wave function of one of the harmonic oscillators

d) Let ιpn be an eigenfunction of H then φn/φ0 grows at infinity at most like a
power law: this result will be proved in Appendix A, as it will be needed only in
Appendix B.

e) The operator -^(H—E0) on L2(IR, dx) is unitarily equivalent to the Friedrichs
ε

extension of the operator on L2(1R, ipίdx), —Lεf=\ ~ Jτbε(x)— /,
\2 dx dx]

/eC^(IR), where ε2 = h/m, ψ0(x) is the ground state of H with eigenvalue E0(h)
ε2 d

and bε(x)= — —-In|φ0(x)|2. The unitary operator realizing the equivalence

U :L2(^dx)-+L2(^ipv(x)dx) is given by: Uf=f/ψ0. We remark that this important
result holds under much more general hypotheses on V(x) (see [8,13]).

In this section we give a qualitative analysis of the solution of the Riccati
equation corresponding to the ground state φ0:

for ε-»0, where the potential satisfies the above hypotheses. Although some of the
results of this section could be reduced to known facts in the theory of ordinary
differential equations (see [14]), we prefer to give a direct proof of the main
statements in order to keep the paper as self contained as possible.

Proposition 2.1. If we define xN = mo,x{xi V(x^ = ϋ} then on every compact interval

[c,d} C(xN9 + oo) the solution bε(x) of Eq. (2.1) tends uniformly to — |/2F(x) as ε-»0.
Analogously, if we define xi=mm{xi; V(x^ = 0} on every compact interval

contained in (—00, xx), bε(x) tends uniformly to 4- |/2F(x) as ε~»0.

Proof. First of all we observe that :

y(x) = ε2 VoW <Q? Vχe[C5 oo) (2.2)
ιp0(x)

for ε sufficiently small. In fact given C > XN there exists an ε0 > 0 such that V(x)
>£0(ε), V x e [C, oo), Vε < ε0 from the Schrodinger equation and from the positivity
of φ0, if V(x) — £0(ε)>0 then ΨQ(X)>Q, hence φ'0 is monotonically increasing and
therefore has to tend to 0~.

We now turn to the proof of our first statement. It is obvious that — y2V(x) is
a first solution of the equation

O/ \ '

xe[C,+oo). (2.3)

Exploiting the quadratic structure of the Riccati equation it is possible to study the
difference bε(x) — b°(x) between a solution of (2.1) and a solution of (2.3), in terms of
their sum bε(x) + b°(x).
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We have in fact that

Oε(x) - 6°(χ)] [b*(x) + b°(xϊ] = (bε(x))2 - (b°(x))2

2 F/W 2 d 0

°β ε 1/2 F(x) β dx

Solving with respect to fc°(x) — feε(x), we find

{ JC

- ί (b°(xO + bfiM)^7ε2

where
X /Λ T7 TΛ// ' , ./\ \ Γ X'

L exp I J (foV) + kε(x"))ώc7fi2
F(x) - F(x0) = f ft -

x o \ ε

(2-4)

(2.5)

(2.6)

By the assumption 3) on the derivative F'(x), we have that F'(x) for x-> + oo
becomes eventually negative, that is lim F(x) exists, possibly — oo.

χ-> + 00

Let us now choose fe°(x) = — |/2F(x) and use (2.2). It is easy to see that in this

case we must impose lim F(x) = 0, otherwise from (2.5) |l/2F(x) + fcε(x)| would
χ-> + 00

diverge at infinity at least exponentially, but this is forbidden by the Riccati
equation (2.1).

In fact if we put in (2.1) bE(x)= — exp{/(x,ε)}, xe[C, oo) with /(x,ε) such that

ιm — = + oo, Mn<oo we obtain for x sufficiently large and fixed ε:
X^ + oo χn J &

) - E0] > exp{2/(x, ε)} (1 - C)

C'

- exp{2/(x, ε)} -

with C < 1 by an integration

exp{ - /(x, ε)} < exp{ - /(x0, ε)} - -y (x - x0) , C > 0 .
o

But for large x this inequality cannot clearly be satisfied.

We have thus that : lim F(x) = 0 that is, taking now x0 = C,
χ-> + 00

eχp

2V(x')l c

With this choice of F(C), Eq. (2.5) becomes:

exp
.. \ ^ Y2V(x')]

If we use the a priori estimate (2.2) on bε(x) we obtain:

2£0(ε)

") + b°(x"))dx"/ε2 dx' . (2.8)

J
2V(x')

exp - l/2F(x")Jx"/ε2 [ ̂ '̂ (2.9)
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Some simple computations now show that

cdβ
y, V γ ; 0<y<2

uniformly in [c, d]. The second part of the proposition goes in the same way.

Remark. Equation (2.8) gives an estimate on bε stronger than (2.2) :

bε(x)< - 1/2 7(x), Vxe(α, + oo), (2.10)

where α is such that

This point a always exists for the hypothesis 3) on F'(x).
We now prove some properties of bε(x\ which allow us to study its behaviour

between the points x1 and XN.

Proposition 2.2. (i) Let [_p,q] be an interval such that F'(x)>0(<0), Vxe[p, q] then
in lp, q] there is at most one minimum (maximum) of b\x).

(ii) Let [p, <?]ClR ^e a finite closed interval containing in its interior the points
x l 5 XN; then given η>0for ε sufficiently small, \bε(x)\ is bounded by:

max ]/2V(y) + f / , Vxe[p,q].

(iii) Between two consecutive zeros of V(x) there exists at most one point yε such

that bε(yε) = 0 and dbE(x}

dx
(iv) Let us fix ε and suppose that between two consecutive zeros of V(x\ say x ,

X f + i , there is a point yε

t defined as in (iii); then for any xe[y? + εy, xί+1]:

\bε(x)-}/2V(x)\<Cεy

for some constant C and any 0<γ <2. Analogously for all xe[xί? y\ — εy] :

for some constant C' > 0 and any y, 0 < y < 2.
(v) // there is no such point y\ between x. and xi + 1 then:

for any xe[xί + εy, x ί+1 — εy], some constant C">0 and any 0<y<2. The choice of
the sign of the square root ofV(x) is determined by the specific form of the function
V(x).

Proof, (i) By the derivative of the Riccati equation :

b\xW'(x) + y &'"(*) = V'(x) , (2.1 1)

2V' (x]
if bε'(x) = Q, then bε"(x)= — f— . The statement follows if in [p,q] the sign of V'(x)

is constant.
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(ii) From the Riccati equation (2.1) we know that whenever bε(x) has an

extremum then \bε(x)\ = |/2F(x)-2£0. Besides bε(p)-+ + ]/2V(p)9 bε(q)-> - ]/2V(q)
as ε->0 (by Proposition 2.1).

(iii) We first remark that by the Riccati equation bε(x) can have a zero with
negative derivative only for those x such that V(x) < E0(ε). Let us now take two
consecutive zeros of F(x), say xt and x ί+1, and the corresponding two turning
points 3c , xε

i+1

2 between them, and suppose that there exists a point yεe(xi,xi+1)
such that bε(yl) = Q, bεf(yε)>0. By the previous remark bε(x)>0, Vxe()^,5cε

+1).
Analogously bε(x)<0, \/xe(xε,yε).

(iv) We compare, as in Proposition 2.1, the solutions of the two equations:

82V'(X)

with initial conditions bε(yl) = 0, b°(yε) = -f ]/2F(yε), in the interval (yε, x/ + j). From
the above equations we obtain:

(2.12)

Using now the explicit expression, for b°(x), fe°(x)= + |/2F(x), the estimate
bε(x)>0, Vxe(j; ,3cε) (see iii)] we get:

for some C>0 and any
Similarly :

\bε(x)+

for some C">0 and any 0<7<2
(v) In this case the proof follows the previous one iv) with the difference that

the proper intial condition for bε(x) is unknown.
But this is not important for the estimate we need because from ii) we know

that in any case έ>ε(x;) is bounded by some ε-independent constant.
Summarizing from Propositions 2.1 and 2.2 we can conclude that for ε small

enou'gh, \bε(x) ± ]/2V(x)\ < Cεy in the complement of εy-neighborhoods of the
points yl with i g J V — 1, for some constant C and any 0< /y<2. Proposition 2.2
however, does not exclude the possibility that, in general situations the limit for
ε-»0 of the points yε may not exist. We now describe a technique which solves
completely this problem in situations of practical interest and allows us to
compute explicitly the limit y?. In other words, as we shall see in Sects. 5 and 6, one

is able to prove that limbε(x)= ± ]/2F(x) in the complement of the points y°.

2 xε

t is called a turning point if 7(xJ) = E0(ε)
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We choose an arbitrary point x0 and we consider the symmetric and the
antisymmetric parts of bε(x) with respect to the point x0. For simplicity we put the
origin of the x-axis in x0.

Exploiting again the quadratic structure of the Riccati equation we can express
the symmetric part of bε(x\ bε(x) + bε(x) (bε(x) = bε( — x)\ in terms of the anti-
symmetric one bε(x) — bε(x). In fact the following nonhomogeneous differential
equation holds :

(2.13)

where A V(x) = V(x) —V( — x). Equation (2.13) can be solved explicitly, and we get :

bε(x) + bε(x) = F(x) exp I - { (bε(xf) - bε(x'})dxf/ε2} (2. 14)
I o J

with

F(x) - F(0) = ]^A V(x') exp I) (bε(xff) - bB(x"))dx"/ε2} dxf .
o ε lo J

From the previous general discussion on the behaviour of bε(x\ as |x|— >oo, it is
clear that bε(x) + bε(x) cannot go to infinity exponentially and this implies that the
constant F(0) must be chosen equal to

__

-\-ϊA V(xf) exp \ J (bε(x") - bε(x"))dx"/ε2 \ dxf .
o ε lo

We have thus the following form for Eq. (2.14)

-
exp H (b\x") - bε(x")) dx"/ε2 dxf . (2. 1 5)

By using this formula we prove the following :

Proposition 2.3. a) Let us suppose that the potential V(x) satisfies the following
additional assumptions :

(i) there exists a point x0e(x1 ?xN) (xt is the zth zero of V(x)), such that

V(x) - V(2x0 - x) ̂  0, VXG (x0, + oo) .

(ii) The open set I = {x>x0; (F(x) — F(2x0 — x))>0} is nonempty; I will be in
general a (possibly infinite) union of disjoint open intervals (α , fe .), x0 ̂  αf ̂  bt ̂
+ 00.

Then limfeε(x)- - ]/2F(x), Vxe/.
ε->0 v

b) Analogously ifV(x) - F(2x0 - x) ̂  0 Vx > x0 and ifϊ= {x < x0 (V(x) - V(2x0

— x))>0} is nonempty, then limbε(x)= + 1/2 F(x), VxeJ.
- v



Multiple Tunneling in One Dimension 233

Proof, a) We consider the function bε(x) + bε(2x0 — x), e.g. the symmetric part of bε

with respect to x0. By Eq. (2.15) with inversion point x0 we get

bε(x) + bε(2x0-x)<0, V x ε / .

We will show that this implies

limbε(x) = - l/2F(x), V x e / .
ε-> 0 κ

Let us begin by examining bε(x) in the interval O^,^). If a1>xN then the
proposition follows from Proposition 2.1. If b1<xN and F(x)>0, Vxe(α1? bj, then
it is easy to show that, if (aε

9bί)Q(aί,bi) is the set where bε(x) is strictly positive,
then aε ̂ bί as ε->0. In fact if for any ε0 > 0 there exists an ε < ε0 such that (b1 — cf)
>C for some ε0-independent constant C, then by Proposition 2.2 (v), in the

interval (cf,b^ there exists a point such that 6ε(x)> ]/2F(x) + 0(ε). From this we
would get for such points x:

bε(x) + foε(2x0 - x) > l/2F(x) - l/2F(2x0-x) + 0(e0) > 0

for ε0 sufficiently small, and this is forbidden by (2.15). We have thus proved that
lim aε = b1 and this, again with the help of Proposition 2.2, is sufficient to conclude

that:

The proof for the remaining intervals (ai9bt)Cl is just the same. Part b) is
proved in an analogous way.

3. Reduction of the Study of Lε to the Study of a Finite Matrix

This section follows essentially the paper by Ventzel [11] with the difference that
Ventzel treats processes with their semigroup acting on the Banach space of
bounded continuous functions, while we are dealing with a diffusion process
possessing an invariant measure ψl(x)dx with its semigroup P* acting on
L2(ψQdx). We recall that the action of the semigroup generated by — Lε can be
defined by :

(exp(Lεί)/) (x) = (Pf) (x) = Mε

xf(xt),

where Mε

x denotes the expectation over the diffusion process Xε starting at x
generated by Lε, i.e. the solution of the stochastic differential equation (1.1). We are
interested in the eigenvalues and eigenfunctions of — E defined by the equation:

where fε is in L2(ιpldx). We will refer to fε as an α-eigenfunction of — Lε.
Let E and D be two finite unions of points such that Er\D = 0. Define τE(τD) to

be the hitting time of the diffusion process Xε

t to the set E(D). Clearly both τE and
τD are Markov times [15]. Now let τ1 be the Markov time defined as follows:
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c:1 αι1 α l 2 C l 2 Cj! Qj, Q j 2 t j2

Fig. 3

where θf is the usual shift over the process Xε

t [15]. τ t is the time the process Xf

ε

completes the cycle of motion taking it for the first time to D and from there
subsequently to E.

Let M be the number of points of E we then define the M x M matrix :

where χ(A) is the characteristic function of the set A, provided

Mε

x{Qxp(aτ i)} < oo, VxeE.

Theorem. Let α>0 be such that ||M* exp(2ατ1)||L2(v2)<oo. Then there is a one-to-
one correspondence between the a-eigenfunctΐons of — E and the eigenvectors of (q^
with eigenvalue 1.

The proof, given in Appendix B for completeness, follows step by step that
given by Ventzel in [11]. The interest of the above theorem resides in the fact that
one can take advantage of the arbitrariness of the sets E and D. Of course there is a
price one has to pay in going from E to (q^ due to the condition
(|M^.exp(2ατ1)||L2(φ2)<oo which implies an upper bound for a.

In Appendix C we will show that the upper bound for a is large enough for our
purposes.

4. Probabilistic Estimates

Our main purpose is to provide an estimate as ε-»0 of the elements of the matrix qε

a

defined in the previous section for a particular choice of the sets E and D. These
sets are defined as follows: for each zero of the potential V(x), xt, i = l, ...,N, we
take two closed neighborhoods £. and Dί such that x eE^CD^ DinDj = 0 if iφ j ;
let y. and Γf be the boundaries of Eί and D{ respectively, y^α^uα^, Γi = cnucί2,

N N

then we define E= U γi9 D= M Γt.
i = l i = l

The situation is summarized in Fig. 3.
With the above definition of E and D we have

Jχ^j;), (4.1)

where x = αίk,y = αjί, i,j=ί, ...,N;k, if =1,2 and the parameter α^O must be such
that:

IIMyexppατ^U^^ + co.

Using now the Holder inequality we have :

J>Kxτι = 30 ̂  (̂  ̂  [M lexpίαKτJ] 1/κ [p|(xτι = y)]^, (4.2)

where K: is an arbitrary constant > 1. To compute p|(xτι = y) we have to distinguish
different cases. First of all if the points 3c = αik, y = α £ are such that \i—j\>\ then by
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the definition of τί p|(xτ =p) = 0. We suppose then that x and y are nearest
neighbours that is | i—j|^l, fcφΛ If i=j using the strong Markov property we
have the decomposition:

PίαK = ̂ 2) = P;ιl(ci2, Cίi) Pίί2(αj2, α£ + 1 § i)

where pε

x(y,z) is the probability that xε

t starting at xe[y,z] exits at y.
If x = y the analogous decomposition reads:

and similarly for ai2. If i = l : pε

aιk(xτι

=aιι) = Palk(
cιι>ci2)> analogously if i = N:

γf (jζ :== cι ^ — nε (c c ) Finallv if / i== 1 * ρε ίx —- $ Ί — z?ε ίc c ^
Pcl2(

αji» αii)' and similarly if 1 — 7 = 1. This decomposition is useful because the

probabilities p£(y, z) are solutions of the differential equation: ^2/2—-^pj. -f bε(x) —

Px = 0 with boundary conditions pε

y(y, z) = 1, p^(j;, z) = 0 and are given by the simple
formula [16]:

') dx' J φβ(x')dx', (4.3)
x / y

where

0ε(xr) -exp - ] 2/ε2bε(x")dx"\.

We now assume that lim bε(x) — ± ]/2F(x) in the complement of finitely many

points y9, where b°(x) jumps from + |/2F();Ϊ

0) to + ]/2FOf). This allows
estimation of the integrals appearing in (4.3). It is enough to make the com-
putation for j — ί=l as all the other cases are obtained taking complementary
probabilities. By taking now the width of the intervals [tfίl5αί2], [cίlscί2] equal to
δ/2 and δ respectively, it is not difficult to verify (see Appendix D) that:

exp{(- ^—Λ(ε,5))/2β2}^^ι2(xτι =αj.1)^exp{(- ϊ̂ . + /ι(β,(5))/2ε2} (4.4)
yO yO

with Vtj = 4 j ]/2F(x)ίiχΞ4 J \b°(x)\dx where y? is the jump point between x. and
Xi Xl

xp i.e. the integral has to be extended to the region between x. and Xj where b°(x)
^ 0 h(ε, δ) is an error arbitrarily small for ε and δ sufficiently small h(ε, δ) includes
the error coming both from the approximation on bε(x) and from the estimate of
the integrals. We now need estimates for ε-»0 of M|exp(ακτ1), xe£, appearing in
(4.2). First of all we have the obvious inequality:

M|(exp(ακτ1)) g: 1 + aκMε-τD ^ 1 + aκt0p
ε-(τD > ί0), xe £,

where τD is the hitting time defined in the previous section, ί0 being an arbitrary
time. From Appendix E, we have :

Pl(τj) > *o) ̂  ! - exP{ - h'& δ> ̂ l2^} >
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where /z'(ε, δ, ί0) is again as small as we like for ε and δ sufficiently small. Therefore :

Mlίexptα;^)} ̂  1 + aκ(ί - exp{ - Λ'(ε, δ, ί0)/2ε2})ί0 . (4.5)

To obtain an upper bound we apply the strong Markov property :

Mε-(exp(aκτ J) g sup M|(exp(ακ:τI>)) sup M|(exp(ακ:τ£)) . (4.6)
xeE yeD

Let us estimate for example the first factor, the calculation for the other one being
identical. Let ί0 be an arbitrary time, then :

00

sup Mε-(Qxp(aκτD)) = sup j exp(aκt)dpε-(τD^t)
xeE xeE 0

xeE o = n

exp(φ+l)κt0)
xeE Q = n

sup Σ exp(αφ+l)ί0)
xeE o = n

^ exp(ακί0) + {exp(α/cί0) — 1 }
oo

• Σ exp(nκ;αί0)[supp|(τD>ί0)|w,

and this sum converges provided exp{ακ;ί0}supp|(τI)>ί0)<l. By summing the
xe E

series and doing some other obvious majorizations

sup M| Qxp{aκτD} ^ 1 + aκt0 111 - aκtQ - sup pε-(τD > ί0)l ,
xeE j ( xeE

provided aκt0< ί l — sup p^(τD > ί0)l C, C<1.
\ *eE I

Using again the result of Appendix E

In conclusion we get :

5ce£ 1 — ̂

ifaκt0<Cexp{-h"/2ε2}.

The same holds for sup Mε- exp(α/cτ£). If we choose the Holder constant K
yeD

appearing in (4.2) in such a way that p|(xτι =y)(ιc~ 1)/κ is still of the form (4.4), that
is κ~i/h(s,δ) which in turn implies α<^exp{ — h"/2ε2}, we finally have for the
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elements of the matrix qε

a the following inequalities :

exp{(- ^.-ft(ε,δ))/2ε2} ̂ X,fl;, ^exp{(- ̂  + h(ε,δ))/2fi2} . (4.7)

For \i—j\ = l where h(ε,δ) is slightly bigger than h(ε,δ)

£ Σ fc,<V
^=1 7=1

(4.8)

Now using these inequalities it is possible to estimate in concrete cases the
values of a for which 1 is in the spectrum of qε

a9 i.e. to estimate the eigenvalues of
-E.

5. Double Well Potentials

In this section we consider some typical tunneling problems in which it is clear
how the previous techniques work in view of the determination of the drift term
bε(x) and the calculation of the main logarithmic term of the splitting of the ground
state. The simplest situation is provided by the symmetric double well potential. In
this case, by symmetry reasons, the drift bε(x) has a unique "jump" in the symmetry
point of the potential V(x). The precise form of the function V(x) is not important,
however, for definiteness, we shall refer to the function V(x) — ρ(l — x2)2 . In this
case by Proposition 2.2 we have :

lim bε(x) = + ]/2ρ(l~x2\ Vxe (0, 1], lim b\x) = - |/2ρ(l - x2), Vxe [ - 1,0).
ε->0 v ε->0 y

We then construct following Sect. 4 the 4 x 4 matrix qε

a which, according to
(4.7), is determined by the quantities V_lf + 1, V+ίt_ί. Due to the symmetry of the
problem :

By applying now the estimates (4.7), (4.8) to the equation det(g* — /) = 0 where /
is the 4 x 4 identity matrix, we obtain for the values of a such that 0 < a
<exp{ — h/2ε2} and ieσ(qε

a)

(5.1)

or

2} (5.2)

for the splitting of the ground state energy. Here, as well as in the next examples,
h — h(ε, δ) is a positive constant depending on ε and δ, where δ is the width of the
sets y , Γ from which the matrix qε

a was constructed (see Sect. 4), which is arbitrarily
small for ε and δ sufficiently small.

A more interesting situation can be obtained if we consider an asymmetric
double well potential obtained by a C°° deformation of the previous case such that



238 G. Jona-Lasinio, F. Martinelli, and E. Scoppola

Fig. 4

the new potential still satifies all the assumptions of Sect. 2. We begin with the case
in which

, Vxe(α1 ?α2)c(0,l),

( —α2, — a^).

In order to specify the sign of bε on the whole line we make use of the formula
(2.15) connecting the antsymmetric part of bε(x) with the symmetric one:

bε(x) + bε(x) = - 2/ε2 J A V(x') exp \ ] (bε(x'f) - bε(xff))dx"/ε2 \ dx', (5.3)

where

From this formula it follows immediately that bε(x) + bε(x) = 0,Vx>02; we
remark that this property also follows directly from the Schrodinger equation for
the ground state wave function. Besides by the positivity of AV(x),xe(α1,α2),

From Proposition 2.1

x\ Vxe(-oo, -1), )- - ]/2V(x)9 Vxe[l,oo)

and from Proposition 2.3 applied to the interval (α1?α2) we get:

limbε(x)= - l/2F(x
-ε-> 0

by Proposition 2.2, this holds for the whole interval [— I,α2).
The situation is summarized in Fig. 4.
The case with zlF(x)<0, Vxe(α l 5 α 2 ) and AV(x)=Q, Vx£(α l 5α 2)u( — α2, — α1).

can be treated analogously and the result is that the jump of b°(x) occurs at the
point x = — a2 (see Fig. 5).
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Fig. 5

b°(x)

As far as the splitting of the ground state level is concerned, in the first case
(ΔV>ϋ) we obtain:

s2εxp{(-V+lί_1-h(ε,δ))/2ε2}<E1-E0

(5.4)

where ^+ 1 > _ 1 =min(F + 1 > _ 1 , F_ l j + 1) = 4 j J/2F(x)d;x; using the identity
«2

ί * 1

Ψo(x)/Ψ0( — l) = exp< J bε(x')dx'/ε2> we get immediately that, as ε-»0, the in-
l-i J

variant measure |tp0MI2 concentrates on the left hand side well.
By computing now the right eigenvector of qε

a(a = (E1 — E0)/ε2) with eigenvalue
1, we can evaluate the first eigenfunction of — Zf, φι(x) = Ψι(x)/ψ0(x) in the points
x=— 1 and x= + l and from this the ratio ψ^+ty/ψ^— 1). The result is the
following

-exp 2 f

(5.5)<-exp<|(2 J

where /ι is the usual error term.
Analogous results can be obtained in the negative case AV<0. We now

consider the situation in which the symmetry is broken in the region to the right
hand side of the point x= +1, that is JF(x)φO only if xe(α1,α2)u( —α 1 ? —a2),
where (α1,α2)g(l,-f-oo). We also make the technical assumption that lim

ΔV(x)
(x-aj

— =v4,0<n 0 <4-oo in order to simplify some estimates.
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The two main results in this case are the following :
i) If α t = 1 then,

= - j/2F(x),

ε->0

if ΔV(x)>Q9

if

ii) There exists a point αj > 1 such that if aί>af then

lim bε(x) = - l/27(x), Vxe [1, 0) ,
ε->0 κ

lim bε(x) = + l/2F(x), Vxe (0, 1]
ε-»0 '

independently of the sign of zl V.

Proof, i) We treat only the case zlF>0, the proof of the opposite one being
identical. Let us first assume that there is no point / such that fcε(/) = 0,

— bε(x)\x=ye>0'9 by Proposition 2.2 we conclude:

lim bε(x) = ± 1/2 F(x), Vxe [-!,+!].
ε->0 v

On the other hand formula (5.3) with ΔV>0 tells us that

bε(x) + bε( — x)<0, Vxe(0, + 1)

and this implies with (5.6) that

' ), Vxe(-l,+l).

(5.6)

Now if a jump point / is present, the negativity of bε(x) + b\ — x) implies yε>0,
Vε>0; we will show that the boundedness of bε(x) for xe[ — 1, +1] implies
lim/= + l. Suppose in fact that 1— yε>C for some ε<ε0, Vε0>0, with C an
ε^ O

arbitrary positive constant. Then by Proposition 2.2

Vx6(l-C,l)

for some ε<ε0, Vε0 sufficiently small; but this in turn implies:

r + i _ 1 f/ +1 \ / 1
exP1 I (bε(x')-bε(x'))dx'/ε2\>exp\\2 f }/2V(xf)dx' -K^ /εH

I x J l\ Λ; // J

where X1 is a positive constant. Inserting this estimate in (5.3) we get:

2 ] ] / 2 V ( x ' ) d x f - K ί β ΔV(x') (5.7)
i

exp<j J (bε(x")-bε(x"))dx"/ε2\dxr, Vxe(l-C,l),
,ι
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for some ε<ε0, Vε0 sufficiently small. The integral on the right hand side of (5.7)
can be estimated by:

α2 (x' _ Λ 1+ε2

J AV(x'}exp\$(bε(x")-bε(x"))dx"/ε2\dxf> f ΔV(x')
+ 1 l l J 1

•expf- max \bε(y)-bε(y)\\dx' >K2Aε2(flo+1\ (5.8)
I y e ( l , l + ε 2 ) J

by the assumption on A V(x\ K2 being a positive constant.
Combining (5.8) and (5.7) we would get:

' 1 \ / ]

2 J }/2V(x')dx'-K^} ε2\K2Aε2(no+1\ Vxe(l-C,l)

for some ε<ε0, Vε0 sufficiently small; but this is forbidden by the uniform
boundedness in ε of bε(x) for xe[—1,4-1].

In conclusion, if an / exists, lim / = +1 which in turn implies lim bε(x)
ε-»0 ε-"0

ii) In order to prove ii) we observe that for 0 ̂  x ̂  1

J (bε(xf) - bε(xf))dxf < f 2 γ 2 V ( x ) d x -2 J ]/2V(x)dx + K3ε,
jc 0 1

for some constant K3>0. Let αj be the point such that:

αΐ 1

J γ2V(x)dx= j }/2V(x)dx,

then for any aί>a%, J bε(x)-bε(x)<X4<0 for ε sufficiently small. From (5.3) we
X

have thus that if a1>a^ then:

lim bε(x) + bε(x) = 0, Vxe (0,1),
ε->0

and this implies:

lim bε(x) = + l/2F(x), Vxe(0,1]
ε->0 κ

lim5ε(x)- - l/2F(x), Vxe [-1,0).
ε^ O F

The picture of bε in the case α1 — 1 and α1 >α* is summarized in Figs. 6 and 7.
Once the sign of b°(x) is determined, the computation of the splitting of the

ground state level and the estimate of the concentration as ε->0 of the invariant
measure |tp0(x)|2 can be carried out exactly as in the previous cases. In the first
situation, i.e. when a1 = ±1, the tunneling disappears in the sense that there are no
values of the parameter a such that 0 < a < exp{ — h/2ε2} and det(^ — /) = 0 where /
is the identity matrix.

In the second case the situation of the symmetric case is recovered in the sense
that for the value of a such that α<exp{ — h/2ε2} and det(qε

a — I) = Q we obtain the
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Fig. 6

Fig. 7

estimate:

G. Jona-Lasinio, F. Martinelli, and E. Scoppola

b°(x)

with F+1 _ ! =4 j ]/2V(x)dx, which is identical to estimate (5.1) at least for the
-i

main logarithmic term.

6. Multiwell Potentials

Let us consider a C°° positive function F(x) with support ( — π,π) such that:
1) F(x) is symmetric, i.e. F(x) = F( — x).

F(v\
lim
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With such a function we construct a potential F(x), which is periodic over the
finite interval [ — Nπ, Nπ] with period 2π, and grows at infinity outside, as follows
(Fig. 2)

(i) F(x) = F(x - Kπ) for xe l(K - l)π, (K + l)π] with K even and 0 ̂ K ̂  N - L
(ii) F(x) for x^Nπ is a C00 positive function such that lim V(x)/(x-Nπ)2

χ->Nπ

= ω2 >0 and there exists a real number 1 <α< oo such that lim F(x)/xα exists
χ-> + oo

and it is finite and positive.
(iii) For xe[ΛΓπ, (7V+l)π], 7(x)>F(x-(ΛΓ+l)π), for x>(7V+l)π, F(x)

> max F(x).
xe[0,π]

(iv) F(x) = F(-x).
We analyze the quantities bε(x) + bε(x) and bε(x) — bε(x) as before but we now let

the point with respect to which the inversion x-> — x is taken, vary over the points
|x| = Kπ, K even, O^K<N—l. Since this technique is explained in detail in the
next more general case, we omit the proof of the following result: lim bε(x) = b°(x)

ε->0
exists in the complement of the points x, \x\ = Kπ, K even, Q^K<N—l where

b°(x) jumps from - ]/2F(x) to 4- j/2F(x). Besides b°(x)= - |/2F(x) for (JV-2)π

rg x, b°(x) = + |/2 F(x) for x < — (AT — 2)π. Once the sign of fo° is determined we can
easily conclude that the invariant measure as far as the main logarithmic term is
concerned is equally distributed among the different wells except the ones at
extreme left and right.

As for the computation of the splitting of the ground state energy, as before, we
must estimate using (4.7) and (4.8) the values of 0<α<exp{ — h/2ε2} such that
det(^ — /) = 0 where qε

a is a 2(N +1) x 2(N +1) matrix defined in the usual way, and
I is the 2(JV+1) x 2(JV+1) identity matrix.

T? F

We find that for ε-»0 there are at least N — 2 eigenvalues of Z5, l

 2 ° with the
ε2

same exponential term exp{ — F/2ε2}, F=4 J j/2F(x)dx
o

More interesting is the case in which one of the barriers is lowered slightly and
the symmetry is thus destroyed (see e.g. Fig. 2).

We consider the case in which, for example in the interval [αl5 α2], aί = (ί — l)π,
02=(ί+l)π, i even, 0<z '<JV— 1, the function F is replaced by a symmetric C°°
function Ogj/(x)<F(x) with support ( — π, π) such that /( — π) = /(π) = 0,
lim /(x)/(x — π)2 = ω2, there exists a real positive number n0 and a constant A such
jc->π

that lim (F(x) — /(x)/(x + π)"° = A. We want now to prove that in this situation as
x -> — π

ε-^0 the ground state wave function is localized in neighborhoods of each of the
points a1 and a2.

Since our potential is obtained from the symmetric one by a perturbation
localized between the points al9 α2, formula (2.15):

_
bε(x) + bε(x) = - f 2/ε2zl F(x') exp \ J (bε(x") - bε(x"))dx"/ε2\dxr

x (x J

tells us that foε(x) + 5ε(— x)=0, Vx^α 2 , i.e. bε(x) is antisymmetric for x^α2.

3 We remark here that there is a theorem of Yenisei [17] which provides an estimate as ε->0 of these
values of a for any N x N matrix qε

a
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Let us take as an inversion point the point a2. With this choice we are in the
hypotheses of Proposition 2.3 and we conclude

lίmbε(x) = - 1/2V(x) 9 Vxe(α 9,α 2 + 2π).
ε->0

If we let the inversion point move over the points Kπ, K>i+l, we can use
Proposition 2.3 each time and conclude:

Urn bε(x) = - ]/2V(x), Vx > a2.ε->0

By the antisymmetric property of bε(x), for x > a2 we get

lim bε(x) = + 1/2 7(x), Vx < -a2.ε->0

If we then take as the inversion point precisely the symmetry point of the original
potential (x = 0) and we observe that in this case V(x)— V( — x)<0 only for
xe(α1,α2), we get by Proposition 2.3 that:

lim bε(x) = V2V(x) for xe (- a2, - αx).
ε—>0

It remains then to determine the sign of bε(x) in the region [ —α l 5α2]. To do
this we put the inversion point in π. In this case it is no longer true that V(x)
— V(2π — x) = A V(x) has a definite sign for x> π, in fact it is negative for xe(aί,a2)
and positive between Nπ and infinity. _

However, we can show that bε(x) -f bε(x\ where bε(x) = bε(2π — x) is positive for
xe(aί9a2), provided ε is sufficiently small.

In fact

'(x) + bε(x) = ̂  exp K f (bε(x") - bε(x"))d:

| f μ V(x')\ exp { - 4r f2 (bε(x") - 5£(x"))dx"

00

Nπ

• exp J4r ] (bε(x") - b°(x"))dx"\ dx'],
lε Nπ J J

and the expression inside the square bracket is positive if ε is sufficiently small. We
have in fact:

}2 \Δ V(x')\ exp I - — T (b\x") - ^(x"))^"} dx'
x [ ε x' }

4- T \b\x"} - b\x"}\ dx"\ J\A F(x')| dx', (6.1)
£ αi J x
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Fig. 8

Nπ

exp I-, J (b*(x")-b*(x"))dx" J \ΔV(x'
Nπ

-τ ί (bε(x")-b(x"))dx"\dxf

Nπ

gexp -j J (b\x")-b*(x"))dx" J \ΔV(x')\
Nπ

• exp - J ]/2V(x")dx" \ dx', (6.2)
I Nπ J

and for ε sufficiently small (6.1) is greater than (6.2) if we observe that by the
Nπ 1

previous results { ~^(bε(x"} — bε(x")}dx" is negative and greater in absolute value

for ε sufficiently small than j -^(bε(x") — b\x")}dx" because V(x)<V(y) for

Thus bε(x) + ί?ε(x) > 0, Vxe (α l9 α2) and ε sufficiently small this implies that bε(x)
> 0 for XE ( — fl1? — ύf j + 2π) for ε sufficiently small. If we repeat the same discussion
with the inversion point varying over x = Kπ, 0<K^ί—l we get bε(x) ^ 0 for
x<α1 ? i.e. by Proposition 2.2

limfcε(x)- + l/2F(x) for x<aί.
ε— ̂ 0

As a final step one can show that b°(x) has a jump for y = in by taking in as the

inversion point and by noting that by formula (2.15), bε(ίπ) is small like exp < — 2 >,
I ε J

if ε is sufficiently small, for some constant c> 0. The shape of 6° may look
something like in Fig. 8.

(x bε(x') }
By the identity ψQ(x)/ψ0(a) = QXp< — ~dx'> it is clear now that the invariant

measure ψ% concentrates as ε-^0 on each of the two wells on either sides of the
lower barrier, and that, as far as the splitting of the ground state is concerned, this
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situation is similar to a double well potential, i.e. there is a unique exponentially
small splitting El—E0 for which the following estimate holds:

with /ι as the usual error term.

Appendix A

Let ψn, ψ0 be the eigenfunctions of the Hamiltonian corresponding to the nth

energy level and to the ground state respectively. If the potential V satisfies the
assumptions of Sect. 2 then ψjψ0 grows at infinity at most as a power law.

Proof. Let d(ε,n) be such that for xe(d, + oo)
1) V(x)-En>0,

2) F'(x)/|/2FW>2£0/ε2,
3) V(x)>Cx2 for some positive C.
Due to our hypotheses such a point clearly exists. From 1) and the Schrόdinger

equation it follows that in (d, +00), \ψn\ decreases monotonically due to the fact
ε2 d

that φ" has the same sign as ψ. We have therefore that bε

n= — — (Inφ2)<0 in

(d, + oo). The ratio ψjψ0 can be written

Exploiting as we did, in Sect. 2 the quadratic structure of the Riccati equation for
bε

n and bε

Q, we can express the difference bε

n — bε

0 in terms of their sum bε

n + bε

Q. We
have in fact :

&;(*)- &β

0(x)= ί (£Π-£0)exp ί (^(x'O + fcSίx"))^" dx', VXE(^, +cx)), (A.I)
x ε lε x J

that is

^ ] (b'0(x"))dx"\ dx'
J

- inf
x

2(En-E0)

χrr>x

Using now the estimate (2.10) on bε

0:

(A.2)
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and the estimate 3), we conclude that :

r—ye*
that is

(A.3)

where C' and C" are positive constants.
The same discussion holds for the study of the growth of

for x-» — oo .

Appendix B

This appendix is devoted to the proof of the theorem stated in Sect. 3. For the all
necessary notations we refer to that section.

We recall for simplicity the statement of the theorem: let a > 0 be such that
\\Mε

xe
2aτι\\ < co4. Then there is a one-to-one correspondence between the

α-eigenfunctions of E and the eigenvectors of (q^tj with eigenvalue 1.

Proof. We first prove that if fε is an α-eigenfunction then:

M
fε(γ\ y Mε eaτι f£(ic}y(x — χ}=Mεeaτιfε(x Wi— MJa^i'— Z-j ιyj χi^ . / α v ^ j / Λ V ^ τ i — ~ ^ j ' — 1VAXι JαV-^τj/ ^l — , 9ivJ

j=ί

It is sufficient to show that f^(x) — Mε

x(eaτιfε(xτι)) for any x in an arbitrary compact
set. Due to the fact that both /α

ε(x) and Mε(eflτι/fl

ε(xτι)) are continuous in x any
compact set it is enough to show:

The following inequality is straightforward for any TΞϊO:

||/»-M:(e "'/α

ε(xτι))|| ̂  li/>)-M:(e<»'/>τι))

<"'/;(*It)x(*i ̂  T)) ~ M'x(e"Tf:(xT)χ(^ ^ T))\\

(B.I)

The first term of the right hand side of (B.I) is zero; in fact it is equal to the
norm of ^ε(x) — M*(ea(riAT)./^(x τ)) where α Λ b = min(α, b) and this function is
shown to be zero on each compact set by means of the strong Markov property
applied to the equality :

4 The symbol |( || will denote in this Appendix the L2(φl(x)dx) norm
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By means of the dominated convergence theorem and using the assumption on
\\Mχ(e2aτί)\\ the second term of the r.h.s. of (B.I) goes to zero as T-»oo. Finally we
estimate the last term.

Using twice the Schwartz inequality we get :

and this last quantity goes to zero as T-> oo because ||(/α

ε)2|| 1/2 < oo [see Sect. 2d)].
We now prove the theorem in the opposite direction, that is, from an

eigenvector of (qε

a)XιX with eigenvalue 1 we construct a unique α-eigenfunction of
E.

Let us denote by {/(3cί)}fl1 an eigenvector of (qε

a)x.-. with eigenvalue 1. With
this eigenvector we define two continuous functions: f±(x\ f2(x) as follows:

M

Clearly fί(xJ = f(xi)Vi=l,...9M and fl(x) = f2(x) on D. Because {f(xi)}^L1 is an
eigenvector with eigenvalue 1 of (qε

a)XιX., by the definition of τ l 5 we get

Lemma 1. h'1(eahPhfi(x)-fi(x))-^Q, i=l,2 as Λ-^0 uniformly on any dosed set
F disjoint from E for fλ (D for f 2 ) .

Proof. By the strong Markov property we get

so that

h-ί(e"hP"fl(x)-fl(X)) = h-1M*x{χ(τE < h)

again by the strong Markov property. This last term is less than :

suj su

From the continuity of the process xε

t with respect to t it follows that

* ^ -- > const uniformly on each closed set F disjount from E. Besides

\ βoes to zero as ί-^0 uniformly on compact sets. A proof of this
assertion goes as follows :

, - y| < M) - f,(y}\

(B.2)
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for any M>0. By the dominated convergence theorem, the first term in (B.2) goes
to zero as ί-»0. The second term can be estimated by:

If we observe that ffel2(\p%dx) since

and ||M^(exp{2ατ1})|| < + oo we can conclude that Myf^(xt] is uniformly bounded
for any ί^O and any y in a compact set. Since pε

y(\xt — y\^M)->0 for £->0, we
conclude also that the second term of (B.2) goes to zero as ί->0. Similarly Lemma 1
can be proved for /2 by substituting D for E.

Lemma 2. For all x in an arbitary compact :

ft(x) = M« (exp{*τ£

Proof. It is enough to show that

where K is the complement of an arbitrary closed set K disjoint from EuD, and x
is in an arbitrary compact.

Indeed for arbitrary x there exists a sequence of bounded open sets Un^.EuD,
Un^Un+1 such that with ^.-probability 1, τUnfτEuD as n-> + oo. The continuity of
the process implies almost surely that xτu ->xτε D so that /ί(xτu )~^fί(χ

τE(jD) Thus
almost surely

whereby the sequence is majorized by

exp{ατ£ujD} sup |
jceί/o

so that a limit passage in the equality

fί(x) =

yields

We now introduce the notation a(h)=suph 1\exp(ah)Phfi(x) — fί(x)\; by de-
xeK

finition α(/z)—>0 as /z—»0+. Put τ(h) = mm{kh', xkheK}, k integer.
Applying the strong Markov property we get

|M« exp{α[τ(Λ) Λ IV]} /£(χτ(Λ) Λ N) - ft(x)\

(B.3)
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in fact :

exp{a(/c+ l)h}Ml{χ(τ(h)

*=0 (B.4)

fc=l

From this (B.3) follows immediately.
The r.h.s. of (B.3) can be estimated as follows:

τ(h) Λ N

. J eatdt^oc(h)NeaN.
0

But as n-+ oo, the first hitting time τ(2~") of K on a lattice with mesh 2~" tends
from above to τKί this means that xτ(2-n)-^>xτ- and fi(xτ(2-n^-+fi(xτ$). A limit
passage in (B.3) for h = 2~n-+Q yields

j^ε ίea(τκ Λ N) f/χ _ \ _ f/χ\

Exactly as in the first part of the proof one gets

\\Mε

x(eaτRfJ(xτg)) — fJ(x)\\-+Q as N-+OQ,

i.e. M^-(eaτκfi(xτ-)) — ft(x) in any compact set. Lemma 2 is proved.
Because fί(x) = f2(x) for xεEuD, by Lemma 2 it follows

i.e. /! and /2 coincide for x in an arbitrary compact.
Covering the whole line by two closed sets one of which does not intersect E

and the other D, by Lemma 1 we find that fl =/2 = /. satisfies

0, as Jι->0,

i.e. yj is an α-eigenfunction of — E.

Appendix C
h(ε,δ)

We prove here that ||M^2ατι||L2(ψ2d:c)< oo provided 2a<e 2^ where ft(ε,δ) is
arbitrarily small, for ε and (5 sufficiently small (see Sect. 4). We will use in the sequel
all the notations of that section. By definition of L2(\pldx) norm we have :

||MJ*2">||2= J ψ2

0(x)(M*xe
2aτ>)2dx+ J Vg(x)(M;β2ατι)2Λc, (C.I)

where D are the closed neighborhoods of the points xt introduced in Sect. 4. The
second term of the r.h.s. of (C.I) is finite if we use the estimate (4.8) with "α"
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<exp< — —y>. Ey definition of expectation the first term of (C.I) is finite if and
I ^ε J

only if

(C.2)
R \ ι > ,

In order to estimate the probability Jp^(τ1>ί) it is convenient to work with the
Wiener measure Wχ.

The relative density η is given by:

>/(Wt) = -4lΨo(Wt) exp ( - ~ ] (F(WS) - EJdsl
ΨQ(X) ( ε o J

We have thus

^(T1>i) = £wl^fexp]-~i(F(Ws)-£0)rf5U(T1>0| (C.3)
L VoW I ε 0 J J

By the Schwartz inequality we get:

- j l / 2

(C.4)

o

The second factor in (C.4) is estimated by:

11/2

exp^-4ί(F(Ws)-£0)8 o

u Df

where inf (V(y) — E0)>Q if ε is sufficiently small. The first factor is less than:

o(F(Ws) Eo)

J

f /
we have used the fact that ιp0(x) = Ew\ψ0(Wt)e

In conclusion:
r ι
-~j inf

f =1

Now combining (C.2) and estimate (C.5) and the fact that [φ0(x)]1/2 is still in
L2(dx) we have that ||M£/2βtl|| is finite provided

_/ι(ε,<5)

2ε2

for ε sufficiently small.
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Appendix D

We verify the right hand side of (4.4). It is sufficient to compute pCι2(dj^ ai2) using
(4.3) (see Fig. 3 for reference)

Cι2

f ΦW<

From the definition of φε(x)

ί Φ\x)dx\
Ϊι2 J

δ \ajί Γ1

<- max φε(x) \ f φε(x)dx\
~ 2*e[α l2,c l2Γ [αΊa J

max
xe[α l2,c l2]

2

where c((5,ε) = 2 max |feε(x)|(5 is small for £, ε small.

j ΦB

α t 2 yV

where y? is the position of the jump of b°(x) between xt and x^ . Δ(ε) is a small
interval which decreases with ε

1 j φε(x)dx ^ Δ(ε) exp I - ̂  ί be(x)dx\ exp { - ̂  Δ(s) max bε(x)
V® I

where φ,(5) includes also the errors coming from the substitution of bε with

-|/2F.
In conclusion we have proved

with

/z(ε, δ) = c(ε, δ) + c(ε, δ).

The left hand side of (4.4) can be obtained along similar lines.

Appendix E. Estimate of the Probability pε

x(τD < i)

Let D be the interval [cfl, c.2] around the zth zero of F(x), xί? of length 5. It is known
(see [15])thatpε(τD<ί) where τD is the exit time from D for the Markov process
starting at x, is the solution of the first boundary value problem:

duε

 ε duε ε2 d2u

dt dx 2 dx2

1. (E.I)
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The behaviour of the solution wε for small ε has been studied by Levinson [18] and
Ventzel and Freidlin [19]. In particular in [19] the following result is proved:

lim 2ε2 In κe(ί0, x) = - /0(ί0, x) , (E.2)

to

where 70(ί0,x) is the infimum of J \b°(φs) — φs\
2ds taken over all the absolutely

o
continuous functions φs starting at x and reaching the boundary of D within the
time ί0, provided bε(x)-»b°(x) as ε goes to zero, uniformly in D. In our one
dimensional case it is not difficult to study the quantity J0(ί0,x). First of all we
observe that

]\b0(φa)-φs\
2ds = OobQ(φ8) = φ89 φ0=x. (E.3)

o

By choosing now the time ί0 in such a way that the solution of (E.3) does not exit
from D = [_cn,ci2] within the time ί0 we get 70(ί0,x)>0. We remark that if the

starting point x is equal to one of the two points x + -, xf — - and if δ is such that

the potential V(x) is quadratic in [c.1? c.2] with an error proportional to δ3, which is
true by our assumptions, then the time ί0 is essentially independent of δ. Besides it
is easy to show that 70(ί0,x) is as small as we like for δ sufficiently small; it is

to

sufficient to evaluate the integral j \b°(φs) — φs\
2ds for the trial function φs = x

o

+ (cί2-x) A We get:
fo

0^2 oz2

I0(t0,x)< max|b°(x)|2ί0 + - ^4 max V(x)+ - =0(δ2).
xεD υ ί0 xeD tQ

In conclusion from (E.2) we have :

_Λ"(ε,<5, fo) -ΪQ-h -Io + h _h'(ε,δ,t0)~

where h'(ε, δ, ί0), h"(s, δ, ί0) can be made arbitrarily small for δ and ε sufficiently
small.
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