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Abstract. If cutoffs are introduced then existing results in the literature show
that the Schwinger model is dynamically equivalent to a boson model with
quadratic Hamiltonian. However, the process of quantising the Schwinger
model destroys local gauge invariance. Gauge invariance is restored by the
addition of a counterterm, which may be seen as a finite renormalisation,
whereupon the Schwinger model becomes dynamically equivalent to a linear
boson gauge theory. This linear model is exactly soluble. We find that different
treatments of the supplementary (i.e. Lorentz) condition lead to boson models
with rather different properties. We choose one model and construct, from the
gauge invariant subalgebra, a class of inequivalent charge sectors. We construct
sectors which coincide with those found by Lowenstein and Swieca for the
Schwinger model. A reconstruction of the Hubert space on which the Schwinger
model exists is described and fermion operators on this space are defined.

1. Introduction

In a series of previous papers [1-6] we have developed a definite metric quanti-
sation procedure for linear boson field theories which contain massless particles.
In the case of the free electromagnetic field this rigorises Fermi's original quantisa-
tion procedure [7] and among other things provides a natural framework for a
discussion of gauge transformations [3], [4]. It has an advantage over the inde-
finite metric approach in that standard C* algebra and Hubert space methods
may be applied.

To see how these ideas might work in a fully interacting theory we decided
to attempt an analysis of the Schwinger model [8] [(QED)2 with massless Ferm-
ions] and (QED)2 itself. In this paper we discuss only the Schwinger model from
our viewpoint. There is a fortunate accident which occurs as a consequence of
the masslessness of the Fermions in the Schwinger model. Namely the model
may be "bosonised" in the sense that, as far as the observables of the model are
concerned, the dynamics can be expressed solely in terms of currents without
reference to the fermion fields themselves. This possibility does not seem to be
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open in (QED)2 and there more subtle methods seem to be required. Now the
Schwinger model has received quite a lot of attention recently (we cite for example
[9-11] and references listed therein). What we are going to say is new in the
sense that we will give a detailed account of the structure of the model as a local
gauge theory and show how the ideas of Doplicher, Haag and Roberts [12] may
be applied so as to reconstruct the charge sectors of the model from the gauge
invariant algebra.

In our approach the usual difficulties of zero mass field theories [13], [14]
manifest themselves. Our philosophy is however, that these difficulties occur
because one is trying to impose physical constraints on unobservable quantities.
From this viewpoint the field algebra, which contains unobservable fields (e.g. in
the case of QED, the electromagnetic potential), should be constructed to satisfy
a version of the Haag-Kastler axioms (i.e. to have a local structure) as an abstract
algebra, while its representations and the field equations should be regarded as
adjuncts to constructing the observable algebra and its dynamics.

We remark that our approach to (QED)4 (as sketched in [5]) would be to
emphasise the local gauge invariance of the theory (in the sense of exploiting
harmonic analysis on the gauge group). In this respect we differ from Frohlich [15].

The paper is organised as follows. In Sect. 1 we discuss the dynamics of the
Schwinger model. We not that the interaction part of the "bare" Hamiltonian for
the Schwinger model is not locally gauge invariant. The requirements of gauge
and Poincare invariance eventually lead us to an equivalent Boson model. In
fact we consider two versions of the Lagrangian for the Schwinger model. The
first has a gauge fixing term of the form (dμΛμ)

2 appropriate to the Fermi method
for quantising the electromagnetic field [7]. The second introduces an auxiliary
field and has a gauge fixing term of the form ξ(x)dμA (x). This second version
turns out to be "smoother" than the first in that the former Lagrangian leads to
a Boson model in which the dynamics cannot be implemented in any obvious
irreducible representation of the field algebra. Interestingly enough both Lagrangi-
ans lead to the same algebra of observables and at this level it is the requirement
of time translation invariance of the appropriate states which distinguishes them.

We note that Lundberg [10] has also "bosonised" the Schwinger model,
however he works in radiation gauge and, as will become clear in our treatment,
it is precisely the properties of the Schwinger model as a local gauge theory that
make possible the reconstruction of the charge sectors by an algebraic approach.
These sectors do not seem to be "accessible" from a radiation gauge representation.

Most of the results of Sect.2 are in fact well known. Consequently we have only
sketched our argument briefly. In Sect. 3 we discuss the Boson models which arise
from each Lagrangian. These models are themselves local gauge theories with
quadratic Hamiltonians. Manuceau's variant [16] of Segal's Weyl algebra for-
malism [17] is used to construct field algebras. We then concentrate on the model
which leads to an implementable dynamics while the treatment of the other is only
sketched. We follow our discussion [6] of the same model in 4 dimensions. Most
of the results of [6] carry over without change although there are a number of
important differences in our viewpoint in the 2-dimensional case.

In the final section we reconstruct the charge sectors of the Schwinger model
from automorphisms of the gauge invariant subalgebra, say a, of the field algebra
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for the boson model. We find that, with an appropriate choice of gauge, we can
relate our results to those of Lowenstein and Swieca [18]. This gauge freedom in
our approach is a consequence of the fact that ^ has a non-trivial centre. We
necessarily start from a faithful (but not irreducible) cyclic representation of a in
order to reconstruct charge sectors. It is possible that this departure from the
approach of [12] is typical of abelian local gauge theories. We conclude with a
sketch of the reconstruction of the Fermion fields themselves. We are guided here
by the results of [18]. Unfortunately our construction is ad hoc, as we have not
found a method of characterising the Fermion fields in an algebraic way.

There is one aspect of our work we would like to emphasise here. In all previous
rigorous approaches to field theories containing massless particles at least one
of three expedients is adopted:

(a) eliminate massless fields by giving them masses
(b) work in Coulomb gauge
(c) use an indefinite metric.

Now (a) and (b) automatically destroy the feature of greatest importance, namely
local gauge invariance, while (c) leads to "gauge automorphism" implemented
by unbounded operators and hence serious technical difficulties. In this paper
we succeed in avoiding all these expedients.

2. The Schwinger Model

In this section we discuss various aspects of the model which will provide an
appropriate starting point for the rigorous discussion of the remaining sections.
Although most of the statements made in this section are well known and, if a
space cutoff is introduced, are rigorous, there seem to be some difficulties involved
in removing the cutoff. We will see that there is a well defined path from an appro-
priate linear boson model to a theory of interacting photon and fermion fields
but that the converse argument still contains gaps.

As mentioned in the introduction there are two formulations for the Schwinger
model which lead to the same theory of observables and each has its advantages.
The first involves the Fermi method for quantising the electromagnetic field
which follows closely our treatment [1] of the free electromagnetic field in 3 + 1
dimensions while the second is the so-called Landau gauge method [9]. The Fermi
method in this context gives a linear boson model in which the existence of a
pure ground state or vacuum for the Hamiltonian is problematical. We suspect
that this is a feature of 2 dimensions only. The Landau gauge method does not
suffer from this difficulty.

The classical Lagrangian densities for the two models are

Fermi K.v ^ ^ μ ~ UlAJψ (2.1a)

L̂andau = ~ K . v ^ ~ A ^ + « V + ^ + ^ ~ l H > ί2"1^

where

o ίl °\ i ( ° Λ s o i ί°y = h γ =o - i h γ = - i o ' Ύ =yy = i o



4 A. L. Carey and C. A. Hurst

and

φ+=φy°. (2.2)

The conjugate momenta are

πo= -A°-VA, πι=Λ + VA°, π = iφ, (2.3a)

πo = ξ9 π^A + VA0, π = ίφ (2.3b)
respectively, where V Ξ 3 1 and A = A1. As the first Eq. of (2.3b) is a Dirac cons-
traint, further discussion requires the use of the Dirac formalism (cf. discussion
in [6]), and so for the present the more straightforward case of the Fermi method
will be considered.

From (2.1a) and (2.3a) the Hamiltonian is

= ϊ dx[-^π2

0 + ̂ π2-π1VA°-π0VA (2.4)
— 00

- πy5 Vφ + ie(πφA° - πy5φA)]

Now by introducing cutoffs (specifically, putting the system in a box and re-
placing the spatial continuum by a lattice) (2.4) gives a well-defined operator on the
tensor product # ' A ® # ' ψ of the Fock spaces for photons and fermions (see for
example Ito [9]). However it is not difficult to see that (2.4) cannot define a sensible
dynamics. Included in H1 is the current j μ :

H^ldxfWA^x) (2.5)
with

;>(x)= -ie:φ + {x)yμφ{x): (2.6)

The smeared version of (2.6) (for/: U -> U2 smooth of fast decrease)

j(f)=4= 1 dk] dk' Σ2 Φ)*<{k)y»uβ(k')aβ{k')fμ{k-k') (2.6')
yj L% —oo —00 tX,β=l

has been often discussed and it is known [19] that if we take the Fock representa-
tion for the Fermions then j(f) is self adjoint with commutation relations (in
terms of Fourier transforms)

U°(k)j1(k')]=-δ(k + k'). (2.7)

Here ax (k) and a2 (k) are the usual fermion and anti-fermion annihilation operators
and

It is also well known [20] that the commutation relations (2.7) are a consequence
of choosing the Fock representation for the fermions, and with different representa-
tions, different Schwinger terms are obtained (a good account of this phenomenon
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is contained in [10]). (The current operators are affiliated with the weak closure
of the fermion algebra in a quasifree representation). Furthermore, as a conse-
quence of (2.7), the contribution to the equations of motion for the current opera-
tors, from the free fermion Hamiltonian Hψ, is obtained when H^ is replaced by a
purely boson Hamiltonian according to Kronig's identity [21]. In fact, if a scalar
massless boson field φ is defined by

(2.9)

then (2.4) can be replaced by

tfboson- ί φ

-°° +ϊ(Vφ-gA)2-y2((A0)
2 + A2)] (2.10)

where g2 = e2/π. (With cutoffs present this may be proved rigorously cf. [19]).
Now (2.10) arises, as a classical Hamiltonian, from the boson field theory with
Lagrangian

" °° + \{dμφ + gAμWφ + gA") + V 2 ] . (2.11)

It is not surprising therefore that a rigorous analysis of the Schwinger model
dynamics based on (2.10) leads to difficulties, as (2.11) is clearly not Poincare
invariant. Equally serious however is the fact that/^x) is not locally gauge invariant
This is a result of the same limiting process which led to the appearance of the
Schwinger terms in (2.7). Instead the gauge transformations of the current operators
follow from the additive transformation

φ(x)~^φ(x)-gλ(x) (2.12)

when ψ(x)~-^eα wιfM, Π^(x) = 0. In order to make (2.11) both Poincare and
gauge invariant we must add a term of the form — \gA2 to the integrand. Such
an additional term is to be expected from the results of perturbation theory.
If the photon self energy is evaluated in a Poincare and gauge covariant way
it is found to be non-zero, contrary to expectations. The result obtained is precisely
of the form suggested above.

One could proceed now with a corrected cutoff Hamiltonian in place of
(2.4) and attempt to establish the existence of the dynamics in the limit as the
cutoff is removed (cf. [9]). For the Euclidean version of the model this has been
discussed in [22]. This is not however, central to our purpose. Our interest lies
in the algebraic structure of the model, and as we shall see, the boson form provides
a shortcut to these aspects. We make one remark however. Although the classical
Schwinger model is locally gauge invariant, the process of quantising the Fermi
fields in the Fock representation of the CAR breaks this symmetry which must
then be restored by the ad hoc addition of a counterterm. There is every reason
to expect that this phenomenon is typical of the present constructive approach
to field theory. It would obviously be desirable to develop a quantisation procedure
which, like gauge invariant renormalisation in perturbation theory, leads un-
ambiguously from the classical to the quantum model in a gauge invariant way.
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It is not clear that the Euclidean lattice approach to guage theories is such a
procedure.

Returning to the Schwinger model, we note that the Fermi method with
appropriate counterterm, gives a Poincare and gauge invariant boson Hamiltonian.
However, as we shall sketch in the next section, this Hamiltonian does not define
an implementable dynamics in the Fock representation of the boson model.
This problem does not arise in the Landau version. It is not necessary to repeat
the foregoing discussion for the Landau Lagrangian as the only changes which
need to be made are in the term HA (whereas the preceding concerned Hψ + Hj).

With these preliminaries we shall now abandon the Schwinger model in its
various forms and argue as follows. The fermion fields are unobservable, and
insofar as the current and photon fields are concerned, their dynamics is contained
in the boson Hamiltonian (2.10) and its modifications. Therefore we shall now
treat the Schwinger model as a boson theory using a Poincare and gauge invariant
Lagrangian and shall attempt to reconstruct the fermion fields from their algebraic
properties with respect to the boson fields. We remark again that this equivalence
of the Schwinger and boson dynamics is exact if cutoffs are introduced. We
believe that this is sufficient evidence for concentrating on the bosonised form of
the Schwinger model, particularly as we are primarily interested in investigating
what happens to a Doplicher, Haag, Roberts analysis [12] in the presence of a
local gauge symmetry.

3. Linear Boson Models

3.1 Classical Solutions

We will consider the two boson models arising from the Lagrangians (2.1a) and
(2.1b). These models have Lagrangian densities

μ + gA"dμφ (3.1)

ξdμA" + gA"dμφ (3.2)

respectively (we will write xQ = t, x1 = x, however for many purposes one can

treat these as four dimensional models). The equations of motion are

and

n2\A —

(Π+g2)Aμ=-gdμφ, ΠΦ=-gd»Aμ, ΠδMμ = 0 (3.3)

(Π+g2)Aμ = dμη, Dί7 = DΦ = 0, 5M μ = 0 (3.4)

respectively, with
η = ξ-gφ. (3.5)

A brief calculation gives the most general real solutions of these equations of
motion as follows.

For (3.3) we obtain

φ(t,x) = β(t,x)-igtχ(t,x)
and

Aμ(t, x)=-- dμφ(u x)-\ dμ{dyAv(t, x)) + aμ(t, x) (3.6)
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where β and otμ are solutions of Πβ = 0 and (• + g2)aμ = 0 while χ is defined
by setting

χ ( ί ? x) = J e**( e -
t o *fl ω , fe) - y(ω, - k)eiωt)dk/4ω2 (3.7)

— oo

where ω = | k | and

aM,(t, x) = J e^( e - ί ω t y(ω, fc) - f(ω, - / c ) e t o t ) ^ . (3.8)
— oo

For (3.4) the general solutions are

AJ<t,x) = %{Ux) + ̂ d^{ux) (3.9)

where

and η satisfies (3.5).

3.2 Cauchy Problem

Our aim is to obtain linear spaces of solutions, for each of these models, which
are Poincare invariant and possess Poincare invariant symplectic forms. To do
this we need to specify our initial data. Given solutions of (3.3) and (3.4) we will
write the initial data as sextuples

Ξ :x -> (4(0, xl A(0, x), Ao(0, x), io(0, x), φ(0, x), # ) , x)) (3.10)
and

Γ:χ -> (4(0, x\ i(0, x), 40(0, x),φ{0, x)9 0(0, x), iy(0, x)) (3.11)

respectively, where all the functions are smooth and of compact support on
U (here we have set 41(0,x) = 4(0, x)). This initial data will be constrained to
satisfy further conditions later. It is a simple matter to deduce from (3.1) and (3.2)
the canonical variables of each model. We take our Poisson bracket (or symplectic
form) to be given by the canonical expression. For example for (3.1) it is

J(4(0, xJπ^O, x) - π^(0, x)4'(0, x) + 40(0, x)π^o(0, x) - π^o(0, x)4'0(0, x)

+ 0(0, x)πφ/(0, x) - 0'(O, x)πφ(0, x))dx

where

π^ = ̂  + V4'0, πAb=-A'0-VA\ πφ/ = φ' + gA'o

(here V = —. In terms of the initial data (3.10) and (3.11) we obtain the expressions:

B(Ξ, Ξ') = \(φ(x)φ'(x) - φ'(x)φ(x) + A'0(x)A0(x) - Λ0(x)A'0(x)

+ A(x)A'(x) - A'(x)A(x) - gφ(x)A'0(x) + gφ'(x)A0(x))dx
(3.12)

where A(x) = A(0, x) etc.
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and

B(Γ, Γ) = $lA(x)A'(x) - A(x)A\x) + VA{x)A'0(x) - VA'(x)A0{x)

+ η(x)A'0(x) - η'(x)A0(x) + # # ' ( * ) - φ(x)ψ'(x)]dx (3.13)

respectively.
In order that the global gauge symmetry φ -+ </> + c{ceU) of the Boson

Lagrangians is not spontaneously broken in the representations of the various
algebras we will be considering, we need to impose additional constraints on
our initial data (cf. [23]). For (3.10) we require

j φ(x)dx = 0 (3.14)
— oo

(which forces constraints on 3M (0, x)) and for (3.11) we have

f ξ(x)dx = 0 (3.140
— OO

in addition to (3.14). Denote by Mx and M2 respectively the real linear spaces
spanned by the initial data (3.10) and (3.11). That the respective symplectic forms
(3.12) and (3.13) are invariant under Poincare transformations is most easily
verified by Fourier transforming the solutions (3.6) and (3.9). For both models
we write

άμ(k) = - i = Je-**(ωΛ(x) + iάμ(x))dx
/2π

where

ωg = > 2 + g2 and <xμ(x) = αμ(0, x), άμ(x) = άμ(0, x).

We let

1
ikx

In
(ωη(x) + iή{x))dx

β(k) = ~\e-ikx (ωβ(x) + iβ(x))dx9

/2π

while for (3.9), • φ = 0 so that

However, for (3.6) we have φ(t, x) = β(t, x) — igtχ{t, x) and this leads eventually
to the expression

B(£, Ξ') = ^dkg2[

1 dk

+ 7 ί ^ [βik)*?(k) - β(k)f(k)* + y(k)*β'(k) -
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In the case of (3.13) we obtain

B{Γ
9
 Γ) = j

. (3.16)

Here we have used άo(x) = — Vα(x) to simplify the expressions.
Now a tedious but straightforward calculation shows that (3.15) is Poincare

invariant while the Poincare invariance of (3.16) is clear.
Note that the Poincare group acts on solutions of (3.2) and (3.4) in the obvious

way ([6] contains the details). That M1 and M 2 are themselves Poincare invariant
needs some calculation, in particular the invariance of (3.14) is not immediately
apparent (a similar calculation appears however in [23]). In the case of M 1 5

Poincare invariance forces constraints on the functions dμA (x\ however the
details are not relevant for the subsequent discussion so we omit them.

Now we have the necessary structure to define a C * algebra for the CCR
over M1 and M 2 in the usual way (cf. [16] and [24]). In the case of M 2 this is
done in some detail in [6]. To complete this discussion we need to find a complex
structure on Mί and M 2 which makes them complex pre-Hubert spaces and also
defines the Fock representation of the corresponding C*-algebras. For Mt we let

JFά{k) = ίa(k); JFβ(k) = ίβ(k); JFλ(k) = ίλ(k); (3.17)

where λ(k) = β(k) + I - + —-3 mfc); giving the positive definite inner product:
\g 4ω )

Ξ,Ξ>). (3.18)

For M2 we set

F F JFη(k)=-ίή(k); (3.19)

with a corresponding inner product (Γ,Γ} defined as for M x . There are a number
of important observations to be made at this point.

1. In both cases there is a natural complex structure on Mγ and M 2 which
is suggested by the canonical Hamiltonian formalism. This differs from (3.17)
and (3.19) in being multiplication by + i for every field. This complex structure
leads to an indefinite inner product on both Mί and M 2 . If we were to pursue
the indefinite metric programme [14], [25] we could quantise these models in
an indefinite metric space.

2. We denote by A^MJ and Ac(M2) the CCR algebras over M1 and M 2
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(these are discussed in more detail in the next section). Then the complex structures
(3.17) and (3.19) define the Fock representations of these algebras in the usual
way [24]. However in the case of (3.19), JF commutes with Poincare transfor-
mations on M 2 so that the Poincare group is unitarily implemented in the Fock
representation. It is not difficult to verify that JF does not commute with the
action of time translations (or boosts) on M x . To see this observe that JFy(k) =

iy(k) + 2iβ(k)/ε(ω) where ε(ω) = - + -—~ while the time evolution is given by
g 4ω 3

the one parameter group t -> Tt teU, where

Ttα(fc) = e~ toίά(fc), Ttβ(k) = (β(k) - igty(k))e-iωt (3.20)

It is easy to demonstrate that the only complex structure which commutes with
(3.20) is the canonical indefinite metric one. A case by case analysis of quadratic
Hamiltonians [26] shows that this is not a typical. (In fact there appears to be a
general no-go theorem which restricts the application of Segal's Weyl algebra
formalism).

3. An analysis of the indefinite metric quantisation of the M1 model reveals
that the Hamiltonian is the sum of two commuting operators, one with a discrete
spectrum and one with a continuous spectrum ranging from 0 to oo.

3.3 Field Algebras

With the structure of the previous section we may define the C*-algebra ΔC(M^)
and Δc(M2) as the CCR algebras over Mί and M 2 . We use the notation:

to denote the elements of Δc(M^) and Δc(M2) respectively defined by

with

and a similar multiplication for Δc(M2) (cf. [16] and [24]). As we mentioned
in the previous section, in the Fock representation π* of ^C(M1) specified by the
generating functional

Poincare transformations are not unitarily implemented. For the Fock repre-
sentation πp of Δc(M2\ Poincare transformations are implemented but the genera-
tor of time translations is not a positive operator. This is the price we pay for
choosing a definite metric quantisation. We take the view that Δc{Mt) and Δc(M2)
are field algebras. That they have unphysical properties in the Fock representation
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appears to be an inevitable consequence of the presence of zero mass fields in
the model. We shall define however, algebras of observables which, for both
Δc(Mγ) and Δc(M2), satisfy all the Wightman axioms in an appropriate repre-
sentation.

To define observable fields we need some criterion. We take the view that
observables must be locally gauge invariant. To see what this means we need
to define local gauge transformations on the algebras ^C(M1) and Δc(M2). We will
do this in detail only for Δc(M2). The case of Δc{M^) follows similarly.

As in [6], we introduce certain subspaces:

of form (α,ά,α0,0,0,0)},

= {ΓeM2 of form (0,0,0,0,0,0)},

of form —2 Vη, —^ Vή, 2ή, 0,0, — η

Mξ = {ΓeM2 of form (Vξ, V£ - 4 ffξ, ff^, - ^ 2^)}.

Restricting the time zero initial data to these subspaces defines C*-subalgebras
Δc(Ma)9Δc(Mφ)9Δc(Mη) and Δc(Mξ) respectively, of Δc(M2). The quantised
versions of the classical fields are defined by setting (with π2 = πF)

for ΓeM2, and then restricting Γ to lie in the appropriate subspace of M 2 .
Corresponding to each ΓξeMξ there is an automorphism ocξ of ΔC(M2) given by

ξ) δΓ. (3.21)

This is the transformation of the quantised fields corresponding to the classical
gauge transformation φ -• φ + gξ, Aμ -> Aμ - dβ ξ where ξ is the solution of
Π ζ = 0 with initial data ξ9 ξ. The Lagrangian (3.2) is invariant under these gauge
transformations and this is reflected in the quantised theory by the fact that (3.21)
is an automorphism of Δc(M2). The gauge group ^ is defined to be the group of
all local gauge automorphisms ocξ as Γξ ranges over Mξ.

Now define the gauge invariant algebra as the C*-subalgebra of Δc(M2) which
is fixed by the action of 9. This algebra is necessarily generated by those δΓ e Δc (M 2)
for which B{Γ9 Γξ) = 0 for all ΓξeMξ. A brief calculation shows that this is pre-
cisely the algebra Δc(MaφMξ) (i.e. the completion in Δc(M2) of the algebra
generated by the δΓ with ΓeMa®Mξ).

In the classical model one would expect that the conserved Noether current
(arising from the in variance of the Lagrangian under the global gauge transforma-
tion φ-*φ + c,ceU) should be observable. In the quantised theory therefore
we would expect to find an operator-valued distribution/-• J(f) (where/ : U2 -•
U2 is smooth of compact support) which could be interpreted as the quantum
analogue of the classical Noether current:
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If for the moment we write (by an abuse of notation)

0 « μ ( / μ ) + ^ ( 0 V μ ) (3-22)

interpreting ocμ and ξ as the quantised versions (in the Fock representation) of
the corresponding classical fields, then it is a simple matter to show that there is
an element ΓfeMa@Mξ such that

(this calculation appears in [6]). Furthermore as/ranges over the test function

space, so Γf ranges over Ma © Mξ.

Thus if we regard the quantised Noether current as observable then the gauge
invariant algebra and the algebra of observables coincide. We note the following
facts.:

1. The gauge automorphisms (3.21) are implemented in the Fock representa-
tion of Δc(M2) via

πF{aξ{δΓ)) = nF{δΓξ)πF(δΓ)πF(δΓξ)~γ

δΓξeΔc(Mξ).

2. πF(Δc(Mξ))" is an abelian von Neumann algebra and

πF(Δc(Ma@Mξ))^πF(Δc(Mξ)y.

In [6] we showed that πF(Δc(Mξ))" determines a direct integral decomposition
of the Fock space and hence a direct integral decomposition of the representa-
tion %F Γ Δc(MaQ}Mξ) of the gauge invariant algebra. The representations oc-
curring in this decomposition are all irreducible.

3. An analysis similar to the above goes through for zlc(M1). However we
feel that it is necessary to find a time translation invariant pure state on J c ( M 1 )
before it could be regarded as a physically reasonable field algebra.

4. There is a local structure on the field algebras Δ^M^) and Δc(M2) deter-
mined by taking, for each double cone Θ c [R2, the algebras Δc{M1 (Θ)) (respective-
ly Δc(M2(&))) to be generated by the δΞ (respectively δΓ) where the solution to
the field equations determined by Ξ (respectively Γ) has initial data on some space
like hyperplane P with support in PnΘ. The various subalgebras of Δc(M2)
defined in this section inherit this local structure in the obvious way. In particular
the algebra Δc(Mξ) generated by the gauge transformations has a local structure.

5. The conditions (3.14) and (3.14') are suggested by the analogous condition
in [23]. They arise because it is δμφ which is of importance in the Schwinger
model (being the free current) not φ. They also ensure that the infrared divergence
associated with massless fields in 2 dimensions does not cause difficulties here.
Finally they allow us to avoid the vacuum degeneracy which preoccupies the
indefinite metric approach [27] (a degeneracy we regard as unphysical).



A C*-Algebra Approach to Schwinger Model 13

For the remainder of the paper we will refer to πF ΐΔc(Ma®Mξ) as the Fock
representation of the gauge invariant algebra. We record the following result
(whose proof appears in [6]) for later use
Lemma. πF\Δc(MaφM^ is cyclic (with cyclic vector equal to the Fock vacuum).

3.4 Observables

As we remarked above, the gauge invariant algebra is observable if we assume
that the classical Noether current should have an observable quantum analogue.
This leads us to consider the Fock representation of the gauge invariant algebra
in which the generator of time translations is not positive. The question there-
fore arises: what are the physical states of the theory ? It is not difficult to write down
irreducible representations of Δc(Ma@Mξ) in which time translations are im-
plemented. As Δc(Mξ) is central in Δc(MaφMξ), it will be represented by scalars
and so such representations reduce essentially to representations of the massive
boson algebra Δc(Ma) and here positivity of the energy is easily ensured. Hence
a natural class of physical states on Δc(Ma φ Mξ) may be obtained in this way.

There is a difficulty with considering only these states. Since we are in the business
of constructing the Schwinger model and not just the superselection sectors of a
boson model, we must reconstruct a Hubert space on which fermion operators
may be defined. In order to do this we are forced to begin with non-irreducible
representations of Δc(Ma®Mξ). Moreover πF appears to be the "minimal"
representation of Δc(Ma® Mξ) which will serve. Thus we are forced back into the
difficulty with negative energies.

Now the fields giving rise to these negative energies may be dynamically
decoupled from the other fields and hence no transitions to negative energy
states are possible. The Schwinger model is just a little too unphysical for us to
decide whether this resolution of the difficulty is acceptable. We nevertheless
believe that a definite metric approach to (QED)4 in which the full 4-component
vector potential is quantised (and hence local gauge transformations implemented)
will have to overcome a similar difficulty.

We therefore favour the following line of argument.
Although only positive energy states on the observable algebra are physically

acceptable (and hence the only observable field in the Schwinger model will be the
massive boson field) the dynamics of the observable algebra are derived from a
representation in which local gauge automorphisms (and hence fermion opera-
tors) are defined. This representation produces a non-positive generator of time
translations, in which the "negative energy fields" evolve independently of the
rest of the field algebra, and hence produce no observable effects. This is the price
necessary to pay for avoiding an indefinite metric, and whether it is too big will
only become clear when less trivial models are analysed.

Henceforth we will therefore reserve observable for the boson algebra Δc(Ma)
and in the next Section analyse the sectors arising from the gauge invariant
algebra Δc(Ma ®Mξ). This raises the question of how one might try to construct
candidates for a gauge invariant algebra given only Δc(Ma) and the gauge group
M,.
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Although this is peripheral to our main purpose we will sketch a line of argu-
ment here. We note firstly that Ac(MaφMξ)^ Ac(Ma)®Ac(Mξ) (this follows
directly from the fact that Ac(M2)ά Ac(Ma)®Δc(Mη®Mξ), cf.Manuceau [16])
and that the sequence Ac(Mξ) -» Δc(Ma@Mξ) -• Ac(Ma) is exact. It would appear
therefore that we are looking for extensions of Ac(Mξ) by Ac(Ma) and the question
is therefore whether the tensor product Ac(Ma)(g)Ac(Mξ) is the only acceptable
one. As stated this is a rather difficult problem. If however we restrict attention
to those extensions which arise from the underlying abelian groups Mα and Mξ9

then we can obtain a reasonably satisfactory answer. (In practice such extensions
are probably the only ones that could be written down.) Such extensions are
determined by 2 cocycles σ : Mα x Ma -» Mξ satisfying

σ(Sβ, Sβ,) + σ(Ξα + Ξa,9 ΞΛ..) = σ(Ξu,9Ξgr) + σ(Sβ, Sβ, + Sβ,,).

Since we require λ -» π(δλ~J to be a one parameter unitary group in physically
acceptable representations, we need to impose the condition that σ be bilinear.
Moreover if the generator of λ -• π(δλΞJ is to be an operator valued distribution
then σ will need to be continuous in the Schwartz topology on the product Mα x Mα

of the initial data space Ma. It is now not difficult using the (Schwartz) kernel
theorem to write down many such cocycles. There is however one further re-
quirement, namely that the actions of the Poincare group on Mα and Mξ extend
to automorphisms of the extension. This forces the condition:

(α, Λ).σ{Ξa, 3β,) = σ{{a-Λ)3Λ, (α, A)ΞU.)

for Poincare transformations (α, A). Writing out this equation in terms of kernels
in the case of time translations and differentiating, immediately leads to the con-
clusion that σ(Ξa,Ξιχl) = 0 for all Ξα,Ξα,. So in terms of group extensions, the
direct sum Ma φ Mξ is the only acceptable solution to the problem.

4. Reconstructing the Schwinger Model

4.1 Streater-Wilde Sectors

Here we apply the analysis of Streater and Wilde [23] to the gauge invariant
subalgebra of Ac(M2). We firstly recover the charge sectors of Lowenstein and
Swieca [18] for the Schwinger model using local automorphisms of the gauge
invariant algebra.

Let θ be a solution of the wave equation, Π θ = 0, such that the initial data
x -> (0(0, x\ 6(0, x)) are C00 and x -> 0(0, x) is of compact support. Then there is an
automorphism yθ of Δc(Ma@Mξ) given by

y f l (δ Γ . + Γ ϊ ) = e x p i β 0 ( θ , Γ 4 ) . δ r i i + r s (4.1)
where

B0(θ, Γζ)=9[ θ(0, x)ξ(09 x) - 0(0, x)ξ(0, x)dx.

If Θ ̂  U2 is a double cone then by choosing a solution ή of the wave equation
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such that 9 η t & = θ 10 and letting

where η, ή are the initial data of ή we see that yθ is implemented (as an automor-
phism of the local algebra Ac(Ma (Θ) + Mξ(Θ)) by πF(<5r ) in the Fock representa-
tion

The properties of these automorphisms are summarised in the following
proposition whose proof is identical to that of the corresponding results in Streater
and Wilde [23] (see also Streater [28]).

Proposition 4.1. (i) The automorphisms (4.1) are implemented in πF if and only
if 0( - oo) = 0(oo) and J θ(x) = 0.

(ii) The representation πθ = πF°yθ of Δc(Ma®M^ is strongly locally equivalent

F c a ^
(iii) Each automorphism yθ is localised in the sense of [12].
We note also that the conditions stated in [23] for the equivalence of two

representations πθί9πθ2, corresponding to distinct automorphisms yθί,yθ2 also
apply here.

Now by the Lemma at the end of the previous section πθ is cyclic and so there
is a G.N.S. Hubert space J^{πθ) on which πθ acts. We introduce the operator
W(θ): J^(πF) -> Jf(πθ) defined by

W(θ)πF(δΓ)ΩF = expiB0(θ, T)πθ{δΓ)Ωθ

where Ωθ is the cyclic vector in ffl(πθ). Then the definition of W(θ) may be extended
so that it may be regarded as an operator from Jf(πθί) to Jf {πθ+θί) for any re-
presentation πθί = πFoγθ^ arising in the above way. Specifically we write

W{θ)πβι(δΓ)Ωβι = eιp\ -^(6,0,) + iB0{θ,Γ) \πθ+θi{δΓ)Ωθ+βi (4.2)

where

Consequently
W(Θ)W(Θ1) = e-^'^Wφjwφ). (4.3)

By a suitable choice of θ, θχ it is possible to have anticommuting operators in
the model as in [23].

We refer to the representations πθ as Streater-Wilde sectors. These sectors
are "charged" and the charges are determined by the conserved currents of the
bare Schwinger model (namely δμφ and cμvd

vφ). These charges may be defined
as follows (cf. Streater [29]). Each solution θ of the wave equation may be de-
composed as

θ(t,x)=f(x + t) + g(x-t)
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(the decomposition is Poincare invariant). We define

Q+ (θ) = (/(oo) - / ( - oo)), Q_ (θ) = - (gf(oo) - g( - (X))).

Without loss of generality we may suppose that / ( — oo) = #( — oo) = 0. Hence
we let

J θ ( ) d ( Q ( θ ) Q ( θ ) )

and Q(θ) and Q5 (θ) are the charges of the sectors πθ.
Our eventual aim is to produce a Hubert space on which Fermion operators

may be defined. To do this we combine the above treatment of sectors with the
discussion of Streater [28] on the Thirring model and the analysis of DelΓ Antonio,
Frischmann and Zwanziger [29].

Fix a C°° -function of compact support in [R, say ή and define

X

η{x)= J ή{x)dx.
— 00

Choose ή so that 77(00) = 1. Now the solution of the wave equation having initial

data(x/τπ7,λ/π^) is a function ή+ of t + x. Similarly the solution ή_ of the wave

equation having initial data ( - y/πη,y/πή) is a function of x - t. We write γη+

and y for the automorphisms of Δc(Ma®Mξ) defined by these solutions. The

space i f m n is defined to be the GNS Hubert space carrying the representation
71F ° ymη+ +nη- °ϊΔc(Ma ® Mξ). Form the direct sum

00

j f = (g) #e . (4.4)
^-^ m,n v /

m , « = — 00

We will see in the next section that Fermion fields may be defined on Jf. Notice

that on J?mn, Q = (m + n)^/n and Q5 = {m- n)yfπ. There are two charge shift

operators defined on J«f, namely W(ή+) and W(fj_), which as a consequence of

(4.2) and (4.3) satisfy

W(ή+) W(ή_)= - W(ή_) W{ή+).

These operators represent the charge changing aspect of the Fermions.

4.2 Reconstructing the Field Algebra

In the preceding section we obtained a number of inequivalent "charged" sectors
of the gauge invariant algebra. In this section we wish to make a number of observa-
tions on the problem of determining the field algebra given the gauge invariant
algebra and these different sectors.

Firstly we note that the preceding analysis, although based on regarding
zl c (M α φ Mξ) as a subalgebra of Δc(M2), could equally have been carried through
if Δc{Ma@Mξ) were thought of as the gauge invariant subalgebra of Δc{Mx).
(It is not difficult to show that the gauge invariant subalgebra of Δc(Mx) is indeed
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isomorphic to Δc(Ma®Mξ)). Thus there are two states on Δc(Ma($Mξ) deter-
mined by the Fock representations of Δc(Mγ) and Δc(M2). The discussion of the
preceding section shows that the former is not time translation invariant while
the latter is, thereby leading us to prefer Δc{M2) over Δc(Mx) as a field algebra.
We remark in this direction that the elements δΓ of Ac(M2) define transportable
automorphisms (in the sense of Roberts [30] of Δc(Ma φ Mξ) via

δΓa+Γξ H> exp iB{Γη9 Γξ)δΓχ+Γξ.

(These automorphisms are of course implemented in the Fock representation of
2ίc(Mα0Mξ)). It would be interesting to know whether the local 1-cohomology
of Roberts [31] serves, in the context of abelian gauge theories, to parametrize
in some sense, the dual of the local gauge group.

One final observation we can make on this is that the direct integral decompo-
sition of the Fock representation of Δc(Ma®Mξ), determined by the abelian
von Neumann algebra πF(Δc(Mξ))" decomposes the state:

into a direct integral of states [6] :

where ( ranges over the spectrum of Δc(Mξ). The localised automorphisms
yθ of the previous section define elements of the spectrum of Δc(Mξ) via

Γξ~->exp±B{θ,Γξ).

Thus the "charged" sectors are "embedded" in the spectrum of the gauge group
(a possibility suggested to us by Roberts [32]).

Turning now to the definition of the Fermion operators we note firstly that
it would be interesting to see whether some sort of algebraic characterisation
could be found for them. As we do not have one, we use the following ad hoc
construction. Following [28] and [29]1 we define an approximate δ-function by

Now define

θΛ(x)= J δΛ(u)du.
— oo

Let δy(x) = δΛ(x-y) and θy

Λ(x) = θΛ(x-y). Then ^(oo)= 1. We let ff+(y) be
the solution of the wave equation having initial data (y/τcθy

Λ9y/πδy

Λ) and let
#'()/) be the solution with initial data (—y/πθ^y/πδ3^). By proposition (4.1)
(i) the automorphisms yθ+iy)-η+ and yθ-{y)_η are implemented in the Fock re-
presentation of zl c(Mα0M ξ). In terms of the labelling introduced in the previous

1 We use their form of the Dirac matrices in the subsequent discussion
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section this means that they are implemented in J f 0 0 and hence in J f w n for all

m, neZ. By a slight abuse of notation we will write W(θ* (y) — ή*) and W (θ~ (y) —

ή_) for the operators which implement these automorphisms in

^ ^ τn,n'
m,n

Regarding
(t,x)^W(θΛ

±(x±t)-ή±)W(rj±)

as an operator valued distribution on ^(U2), Dell-Antonio, Frischmann and
Zwanziger show [29] that

lim W(9±(x±t)-ή±)W(ή±)
A —> oo

exists as an operator valued distribution (meaning of course that lim is taken
A —• o o

to be a distributional limit).
Now we consider the decomposition of M2 into the direct sum of Mα and

its orthogonal complement (with respect to the real inner product Γ,Γ' -*
B(Γ,JFΓ')\ say ML

a. This decomposition gives a corresponding decomposition
for B into its (non-degenerate) restrictions to Mα and ML

a. As Mα and M\ are
invariant under the complex structure JF we may define Δc(MJ and ΔJM1^
as the CCR algebras over Mα and ML

a and appeal to a theorem of Manuceau [16]
to give

Δc{M2)AΔ{Ma)®Δc{M1-a)

with a corresponding decomposition

where Jfι

0 0 , z = 1, 2 carry the Fock representations of ̂ c(Mα) and ^C(M^) respecti-

vely. This decomposition now carries over to 2/P because

where Jf ̂  n is defined in the obvious way (cf.discussion preceding (4.4)) so that

On the space Jf * 0 we have the Fock representation of a massive vector boson

field which, by an abuse of notation, we write as an operator valued distribution

/ -• aμ(fμ) where/ : U2 -• U2 is smooth of compact support. Now it is a standard

result in 2 dimensions that we can find a massive scalar boson field Σ such that

gocμ = —εμvd
vΣ. Furthermore there is a Wightman field corresponding to the

Wick ordered exponential: exp ± z yfπΣ : [20]. We may therefore define

ψ1 (t, x) = : exp is/πΣ(t, x): ® lim : W(d+ (x±t)-fj+):

ψ2(t, x) = : exp - iy/πΣ{u x): ® lim : Wφ~ (x-t)-fj_): (4.5)
A^ oo

where the Wick ordering in the second factor means insert W(fj±) between the
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annihilation and creation part of W{θ±

Λ(x±t) — ή±) (it is actually this Wick
ordered limit which is defined in [30]).

These expressions for φ1 and φ2 were suggested by those of Lowenstein and
Swieca [18] (where we have set their parameter α = ^/π). Notice that the solution
of Sec. Ill of [18] and the charge sectors defined in that paper involve an operator
gauge condition. This operator condition does not make sense in our formula-
tion, however an equivalent procedure is to regard fflmn as the GNS Hubert
space corresponding to the pure state

σm,n - δrκ+rξ - exp[iB0(mίj + + nfj_ , Γξ) - ±B(Γa JF(ΓJ)] (4.6)

of Δc(MΛ®Mξ). These states then define charge sectors as before. However,
the Fermion fields defined in [18] after the imposition of the operator gauge
condition do not transform correctly under local guage transformations whereas
those defined by (4.5) do.

We conclude with a number of remarks.
1. If we identify our field Aμ and the current Jμ defined in the previous section

with the interacting electromagnetic potential and current respectively of [18]
then dμξ corresponds to the "longitudinal part of the current" (Eq. (2.13) of [18])
which is precisely what is set equal to zero in the operator gauge condition ((2.18)
of [18]).

2. The original two Lagrangians for the Schwinger model imply that the
field in Δc(M2) is the analogue of dμAμ in Δc(Mί). With this identification we note

that setting J μ = gaμ + -dμξ&ndeAμ = eaμ+ -dμη, Maxwell's equations hold in

the form

which in (QED)4 would correspond to

compatible with what we would expect, in our approach, in (QED)4 [5].

3. The state (4.6) reduces on Δc(MJ to the Fock state. It is this fact which
leads to the observation that the only observable of the Schwinger model is a
massive boson field [18].

4. We return now to the discussion in the initial part of Sect. 3.4. In our
version of the Lowenstein-Swieca sectors (4.6) we would be led to form the
representation

m,n

and define charge shift operators in the obvious way. One would also define
fermion fields on the resulting space (these would be those appearing in Sect. Ill
of [18]) and moreover σ\Δc(Ma) is then just a direct sum of Fock representations
of a massive boson field and so no difficulty arises with positivity of the energy.
As we remarked above (4.6) can be thought of loosely speaking, as imposing the
operator condition ξ = 0, effectively eliminating the local gauge transformations
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of the Fermions from the theory. Thus on the one hand if we want a faithful
representation of the local gauge group and hence fermion operators transforming
conventionally under the resultant gauge automorphisms we are led to (4.4)
while on the other hand if we want positivity of the energy then (4.7) is suggested.
So it does not appear to be possible to have both local gauge automorphisms
and positivity of the generator of time translations in the Schwinger model.

We suspect that this difficulty is likely to persist in any definite metric approach
to (QED)4 which attempts to quantise the full 4 component vector potential.
As we remarked previously the negative energies would cause no difficulties
provided they were not dynamically coupled to the observable states.

Clearly an analysis of a more realistic model is required before firm conclusions
can be drawn.
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