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in 2 + 1-Dimensions

A. B. Zamolodchikov

Landau Institute of Theoretical Physics, Vorobyevskoe Shosse, 2, Moscow V-334, USSR

Abstract. The quantum S-matrix theory of straight-strings (infinite one-
dimensional objects like straight domain walls) in 2+1-dimensions is con-
sidered. The 5-matrix is supposed to be "purely elastic" and factorized. The
tetrahedron equations (which are the factorization conditions) are investigated
for the special "two-colour" model. The relativistic three-string S-matrix,
which apparently satisfies this tetrahedron equation, is proposed.

1. Introduction

The progress of the last decade in studying two-dimensional exactly solvable
models of quantum field theory and lattice statistical physics was motivated to
some extent by using the triangle equations. These equations were first discovered
by Yang [1] they appeared in the problem of non-relativistic 1 +1-dimensional
particles with (5-function interaction, as the self-consistency condition for Bethe's
ansatz. Analogous (at least formally) relations were derived by Baxter [2], who
had investigated the eight-vertex lattice model. These relations restrict the vertex
weights and are of great importance for exact solvability. In particular, for the
rectangular-lattice model they guarantee the commutativity of transfer-matrices
with different values of the anisotropy parameter v. In the case of Baxter's general
nonregular lattice S£ [3], the triangle relations for the vertex weights ensure the
remarkable symmetry of the statistical system (the so-called Z-invariance): the
partition function is unchanged under the deformations of the lattice, generated by
the arbitrary shifts of the lattice axes. Z-invariant model on the lattice i f is exactly
solvable [3] (see also [4]).

Recently Faddeev, Sklyanin, and Takhtadjyan [5, 6] have developed a new
general method of studying the exactly solvable models in 1 +1-dimensions - the
quantum inverse scattering method. The triangle equations are the significant
constituent of this method they are to be satisfied by the elements of the K-matrix
which determine the commutation relations between the elements of the monod-
romy matrix.

0010-3616/81/0079/0489/S03.40



490 A. B. Zamolodchikov

The triangle equations are also the central part of the theory of the relativistic
purely elastic ("factorized") S-matrix in 1 +1-dimensions (for a review, see [7] and
references therein). These equations (the "factorization equations") connect the
elements of the two-particle S-matrix they represent the conditions which are
necessary for the factorization of the multiparticle S-matrix into two-particle ones.
For the scattering theory including n different kinds of particles At; i = l , 2 , ...,n
the factorization equations have the form [7,4]

% 3 £ ±(θ), (1.1)
where, for instance, SW*(Θ) is the two-particle S-matrix, (il9 i2), (fcl9 k2) are the kinds
of the initial (final) particles having the rapidities1 θλ and θ2, respectively;
Θ = (Θ1 — Θ2). This equation has the following meaning. In the purely elastic
scattering theory the three-particle S-matrix is factorized into three two-particle
ones, as if the three-particle scattering were the sequence of successive pair
collisions. If the rapidities Θ19Θ2,Θ3 of the initial particles are given, the two
alternatives for the successions of these pair collisions are possible. The two
different (in general) formal expressions for the three-particle S-matrix in terms of
two-particle ones [the right- and left-hand sides of (1.1)] correspond to these
alternatives. The conservation of the individual particle momenta requires the two
"semifronts" of outgoing wave, which correspond to these two alternatives, to be
coherent. The Eq. (1.1) expresses this requirement. The diagrammatic repre-
sentation of the triangle Eq. (1.1) is given in Fig. 1, where the straight lines
represent the "world lines" of three particles moving with the rapidities θvθ2,θ3.
The two-particle S-matrices correspond to the intersection points of the lines
iJJJl a =1,2,3 are the kinds of the initial (final) particles; the summing over the
kinds ka of the "intermediate" particles is implied.

In [8] the version of factorized scattering theory in 2-f 1-dimensions was
proposed. In this theory the scattered objects are not the particles but one-
dimensional formations like infinite straight-lined domain walls, which are
characteristic of some models of 2+1-dimensional field theory. We shall consider
the quantum objects of this type and call them the straight strings. The stationary
state of a moving straight string is characterized by the uniform momentum
distribution along its length; its kinematics can be described completely by the
direction of the string and by the transversal velocity. We assume also that the
stationary states of any number of arbitrarily directed (intersecting, in general)
moving straight strings are realizable2. The intersection points divide each string
into segments, each being assumed to carry some internal quantum number i
which will be called "colour". The relativistic case of the straight-string kinematics
will be implied.

1 The rapidity of the relativistic 1 +1-dimensional particle is defined by the formulae

p® = mcoshθa; pl=msinhθa,

where pμ

a is the two-momentum p2 = m2

2 Solutions of this type are likely in some completely integrable classical models in 2 +1-dimensions
(S. Manakov, private communication)
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α)

Fig. la and b. Diagrammatic representation of the triangle Eq. (1.1)

b)

V . V

α) b)

Fig. 2a and b. The initial a and the final b states of a three-string scattering

In fact, if the number L of straight-strings is less than three, the nontrivial
"scattering" is impossible. The three-string scattering is "elementary". The nature
of this process is illustrated in Fig. 2. The initial configuration of three-strings
s1? s2, s3 is shown in Fig. 2a. The indices {z} = {il9 z2, i3, ί'v f2, i'3} denote the colours
of six "external" segments while {k} = {/c1? fe2, k3} are the colours of the "internal"
ones. The motion of the strings Sfl; α = l,2,3 is such that the triangle in Fig. 2a
shrinks with time. Shrinking and then "turning inside out" this triangle is the
three-string scattering. After scattering, only states of the type shown in Fig. 2b
appear. (This is, essentially, the meaning of the assumption of the "purely elastic"
character of scattering.) The directions and velocities of the outgoing strings
sl9 s29 s3 (Fig. 2b) coincide with those of the initial ones. The "internal" segments
of strings, however, can be recoloured (in general {k'} + {k}).

In quantum theory the process shown in Fig. 2 is described by the three-string
scattering amplitude

iifcii'ίfc'i

Si2W?(θvθ2,θ3), (1.2)
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where the variables θl9θ29θ3 ("interfacial angles", see below) describe the scatter-
ing kinematics.

One can imagine the three-string scattering as the intersection of three planes
in 2 + 1-dimensional space-time. These planes represent the "world sheets" swept
out by the moving straight-strings. Let nί9n29n3 \_n2

a = (nl)2 + (n2

a)
2-(n°a)

2 = l~] be
the normal unit vectors of the planes corresponding to the strings sί9s2,s39

respectively. The mutual orientation of three planes, and, hence, the kinematics of
the three-string scattering, is described completely by three invariants

w1π3 = — cos#2 n2n3=— cosθ 1 . (1.3)

The two-plane intersection lines divide every plane sα (α = 1,2,3) into four parts
which will be called plaquettes. The colours of string segments, denoted by the
indices ia9 ka, ϊa, k'a in (1.2) can be obviously attached to twelve plaquettes joined to
the three-plane intersection point. In what follows this point will be called the
vertex while the angles ΘVΘ29Θ39 defined by (1.3) - the vertex variables.

The L-string scattering for L > 3 has similar properties: the directions and
velocities of all the strings sa a = 1,2,..., L remain unchanged after the scattering,
the "internal" segments being, in general, recoloured. We assume the factorization
of the multistring S-matrix: the L-string S-matrix is the product of
L(L— 1)(L — 2)/6 three-string ones (1,2), according to the idea that the L-string
scattering can be thought of as the sequence of three-string collisions. The
succession of this three-string collision is not determined uniquely by the
directions and velocities of all the strings sα but depends also on their "initial
positions". Like the 1 +1-dimensional case, the self-consistency of the factorization
condition for the straight-string S-matrix requires the equality of different formal
expressions for the L-string S-matrix in terms of three-string amplitudes, corre-
sponding to the different successions of three-string collisions. It is easy to note
that this requirement is equivalent to the tetrahedron equation shown in Fig. 3. In
this figure the "world planes" of four strings sa9 a= 1,2,3,4 (undergoing the four-
string scattering) are shown. These planes form the tetrahedron in 2 + 1 space-
time. The vertices of the tetrahedron represent the "elementary" three-string
collisions; the corresponding S-matrices (1.2) are the multipliers in the expression
for the 4-string S-matrix. The tetrahedra shown in Fig. 3a and 3b (which differ
from each other by some parallel shift of the planes sa) represent two possible
successions of three-string collisions constituting the same four-string scattering
process. The colours of the "external" plaquettes are fixed and respectively equal in
the right- and the left-hand sides of the equality in Fig. 3 the summing over all
possible colourings of the "internal" plaquettes (which are the faces of the
tetrahedra) is implied. This tetrahedron equation should be satisfied at any mutual
orientations of the planes sί9s29s3,s4.

The 1 +1-dimensional factorized S-matrix can be interpreted, after euclidean
continuation, as the Z-invariant statistical model on the planar Baxter's lattice S£
(see [4]). The 2+1-dimensional factorized S-matrix of straight-strings admits sim-
ilar interpretation [8]. The natural three-dimensional analog of Baxter's lattice
JS? is the lattice formed by a large number L of arbitrarily directed intersecting
planes in three-dimensional euclidean space. The fluctuating variables ("colours")
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α) b)

Fig. 3a and b. Diagrammatic representation of the tetrahedron equations

are attached to the lattice plaquettes. The partition function is defined as the sum
over all possible colourings of all the plaquettes, each colour configuration being
taken with the weight equal to the product of the vertex weights over all the
vertices (the vertices are the points of triple intersections of the planes). The vertex
weights are assumed to be the functions (common for all the vertices) of the mutual
orientation of three planes intersecting in a given vertex. Identifying the vertex
weights with the elements of the three-string <S-matrix (1.2) (continued to the
euclidean domain), one can note that, due to the tetrahedron equation (Fig. 3), the
statistical system thus defined possesses Z-invariance.

The tetrahedron equation (Fig. 3) turns out to be highly overdefined system of
functional equations; even in the simplest models the independent equations
outnumber (by several hundredfold) the independent elements of the three-string
S-matrix (1.2). Therefore, the compatibility of these equations is extremely crucial
for the scattering theory of straight-strings. In [8] the two-colour model of straight-
string scattering theory was proposed, and the explicit solution of the correspond-
ing tetrahedron equations was found in the special "static limit" which cor-
responds to the case ι>α->0, where va are the velocities of all the strings. In this
paper we construct the relativistic three-string S-matrix for the two-colour model,
which is apparently the solution of the "complete" tetrahedron equations.
Although the complete evidence of the last statement is unknown we present some
nontrivial checks.

The qualitative aspects of the factorized straight-string scattering theory have
been described briefly in this Introduction more detailed discussion can be found
in [8]. In Sect. 2 the formulation of the two-colour model is given for the
relativistic case. The corresponding tetrahedron equations are discussed in Sect. 3.
In Sect. 4 the explicit formulae for the elements of the three-string S-matrix are
proposed and the arguments that this S-matrix satisfies the tetrahedron equations
are presented. In Sect. 5 it is shown that the obtained S-matrix is in agreement with
the unitarity condition for the straight-string S-matrix.
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2. Two-colour Model of Straight-strings Scattering Theory

Consider the relativistic scattering theory of straight-strings (see the Introduction)
in which the strings' segments can carry only two colours - "white" or "black".
Further, let us allow only the states satisfying the following requirement: the even
number (i.e., 0, 2 or 4) of black segments can join in each point of two-string
intersection. In other words, in any allowed state the black segments form
continuous polygonal lines (which may intersect) without ends. Certainly, all the
elements of the three-string S-matrix converting the allowed states into unallowed
ones (and vice versa) are implied to be zero.

As it is explained in the Introduction, the three-string scattering kinematics can
be represented by means of three intersecting "world planes" sv s2, s3 in 2 + 1
space time, the vertex being the "place of collision". In the two-colour model each
of the twelve plaquettes joining the vertex can be coloured into black or white so
that the black plaquettes form the continuous broken surfaces without
boundaries.

Each allowed coluring of these twelve plaquettes corresponds to some
nonvanishing element of the three-string S-matrix.

It is convenient to perform the considerations in terms of the euclidean space-
time: the "world planes" sa can be treated as imbedded in the 3-dimensional
euclidean space; each of the variables θ, defined by (1.3) being some interfacial
angle. The "physical" amplitudes of scattering in the Minkowski space-time can be
obtained from the euclidean formulae by means of analytical continuation.

Let us picture the "colour configuration" of the twelve plaquettes joining the
vertex as follows. Consider the sphere with the vertex as its centre. The planes s l 3

s2, s3 draw three great circles on this sphere; the variables θί9 θ2, θ3 [see (1.3)] are
exactly the intersection angles of these circles. The intersection points divide each
of the circles into four segments the colours of the plaquettes can be obviously
attached to these segments. Performing the stereographic projection one can map
these three circles on the plane as shown in Fig. 4. This picture can be interpreted
as follows. The spherical triangle Iγ in Fig. 4 corresponds to the triangle in Fig. 2a
and represents the initial state of some three-string scattering process. The final
state of this process (shown in Fig. 2b) is represented by the spherical triangle Fv

The variables θί9 θ2, θ3 are the interior angles of the triangles / 1 and i 7

1 (obviously,
these triangles are equal on the sphere). Alternatively, one could consider, for
instance, the triangle I2 as representing the initial (and F2 as the final) state of
some other three-string process. This is just the cross-channel. Evidently, the
transfer to this cross-channel is associated with the variable transformation

θ^π-θi', θ2-»π-θ2; Θ3^θ3. (2.1)

As it is clear from Fig. 4, each three-string scattering process has four cross-
channels 1^FV I2->F2, I3->F3, / 4 - + i v

We shall assume the P and T invariances of the straight-string scattering
theory [8], and also its symmetry under the simultaneous recolouring of all black
segments into white and vice versa ("colour symmetry"). Then the three-string
S-matrix contains 8 independent amplitudes which are shown (together with the
adopted notations) in Fig. 5.
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Fig. 4. Stereographic projection of the sphere surrounding the vertex

α) S{θvθ2jθ2) b) Q[Θ]JΘ2JΘ3) C) \/(ΘVΘ2JΘ3)

d) R(θvθ2>θ3) f) ω{θvθ2Jθ3)

Q) d{θvθ21θ3) h) 1{ΘVΘ2JΘ3)

Fig. 5a-h. Eight "colour configurations" of twelve plaquettes joining the vertex, and the notations for
corresponding three-string scattering amplitudes. The white (black) circular segments are represented
by the ordinary (solid) lines
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It is convenient to introduce, apart from the amplitudes defined in Fig. 5 the
following 5 functions

θ^θ^diπ-θ^π-θ^), (2.2a)

Lψ1,θ2,θ3)=V(π-θ1,θ2,π-θ3), (2.2b)

Ω(θί,θ2,θ3) = R(π-θ1,π-θ2,θ3), (2.2c)

H(θι,θ2,θ3) = R(π-θι,θ3,π-θ2), (2.2d)

θ2,θ3) = σ(π-θvπ-θ2,θ3), (2.2e)

which describe the cross-channels of the processes shown in Fig. 5. The three-
string amplitudes should possess the following symmetries, which are the con-
sequences of P, T, "colour" and crossing symmetries

S(θlf θ2, Θ3) = S(Θ2,01S 03)=S(01, 03,02)

= S ( π - 0 1 , π - 0 2 , 0 3 ) . (2.3a)

a(θ1,θ2,θ3)=aφ2,θ1,θ3)=a(θ1,θ3,θ2),

U(Θ1,Θ2,Θ3)=U(Θ2,Θ1,Θ3). (2.3b)

V(θvθ2,θ3)=V(θ2,θ1,θ3)=V(π-θvπ-θ2,θ3),

L(Θ1,Θ2,Θ3) = L(Θ2,Θ1,Θ3). (2.3c)

R(Θ1,Θ2,Θ3) = R(Θ2,Θ1,Θ3), H(θι,θ2,θ3) = H(θ2,θ1,θ3),

Ω(Θ1,Θ2,Θ3) = Ω(Θ2,Θ1,Θ3). (2.3d)

ω(θ1,θ2,θ3)=ω(θ2,θ1,θ3)=ω(π-θ1,π-θ2,θ3)

= ω(π-0 1 ,0 2 ,π-0 3 ) . (2.3e)

κφ1,θ2,θ3)=κ(θ2,θvθ3)=κ(π-θ2,π-θ1,θ3)

= K{π-θuθ2,π-θ3). (2.3f)

σ(0 l s 0 2,0 3)=σ(0 2, Θ1,θ3)=σφ1, θ3, θ2),

w(0 1,0 2,03)=mβ 2 .βi,β 3). (2.3g)

7X01,02,03)=7X02,01,03)=7Xπ-01,π-02,03)

= T ( π - 0 1 , 0 2 , π - 0 3 ) . (2.3h)

The analytic properties of the three-string amplitudes will be considered in
Sects. 3 and 4.

3. The Tetrahedron Equations

The hardest restrictions for the three-string S-matrix come from the tetrahedron
equations, which are shown schematically in Fig. 3. Here we shall choose the four
"world planes" su s2, s3, s4 shown in this figure to be placed into the euclidean
space (see Sect. 2). The three-string S-matrices associated with the vertices of the
tetrahedra in Fig. 3 are the functions of corresponding vertex variables. In the two-
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Fig. 6. Stereographic projection of large sphere surrounding the tetrahedron

colour model each plaquette in Fig. 3 can be black or white. Recall that the
colours of 24 "external" plaquettes are fixed and equal in the right- and left-hand
sides of the tetrahedron equation while the independent summing is performed
over all colourings of "internal" plaquettes. Obviously, each allowed colouring of
the "external" plaquettes gives rise to some functional equation connecting the
three-string amplitudes.

To describe the colourings of the "external" plaquettes it is convenient to
introduce again the large sphere (its radius is much larger than the size of the
tetrahedra), taking some point near the vertices as the centre, and consider 4 great
circles on the sphere corresponding to the planes sv s2, s3, s4 (certainly, the
tetrahedra in Figs. 3a and 3b are indistinguishable from this point of view).
Stereographic projection of this sphere is shown in Fig. 6. The angles θv θ2, θ3, 04,
θ5, θ6, shown in this figure are just the interior interfacial angles (i.e., the angles
between the planes sa) of the tetrahedra.

Any allowed colouring of the "external" plaquettes in Fig. 3 corresponds in
obvious manner to some allowed colouring of the 24 circular segments in Fig. 6
into black and white. In Fig. 6 some colouring of this type is shown as an example.
This colouring gives rise, as it is evident from simple consideration, to the
following functional equation

S(θl9 0 2, Θ3)S(Θ19 0 4, Θ6)S(Θ5,04, Θ3)a(θ2, 0 5, 06)

+ a(θv Θ2, Θ3)aφv Θ4, θβ)aφ^ Θ39 Θ5)σφ2, ΘS9 Θ6)

= U{θ19 0 3 ,0 2 ) t7(0 l 9 β4,06)C/(04, θ3, Θ5)S(Θ2, θ59 06)

+ vφ19 03,02)7(01 9 04? Θ6)vφ3,04, Θ5)aφ2, ΘS9 Θ6) . (3.1)

The equation (3.1) is only one representative of the system of functional
tetrahedron equations which arises if one considers all possible allowed colourings
of the circular segments in Fig. 6. This system includes hundreds of independent
equations and we are not able to present it here the equation (3.1) is written down
mainly for illustration.



498 A. B. Zamolodchikov

Fig. 7. Fragment of the diagram in Fig. 6 which is enclosed with the dotted curve

It is essential that the variables θv θ2, θ39 04, θ5, θ6 in the tetrahedron equations
are not completely independent. Since the mutual orientation of four planes in
three-dimensional space is determined completely by only five parameters, there is
one relation between these six angles3. This relation can be derived, for instance,
from the spherical trigonometry. To do so, concentrate on the fragment of Fig. 6,
surrounded by dotted curve. This fragment is shown separately in Fig. 7, where the
circular arcs are drawn schematically as the straight lines. Using the formulae of
spherical trigonometry one can express the lengths of segments £32 and / 2 5 in
terms of the interior angles of the spherical triangles (123) and (256), respectively.
On the other hand, the length of the segment ^35=^32 + ̂ 25 m a y be expressed
independently in terms of the interior angles of the triangle (354). This allows one
to write

cos cos cos

θ1+θ2-{-θ3

cos

1/2

„ , Θ3 + Θ5-Θ4 2π-θ3-θ4-θ5f
2

=smfl 2 c o s — — ^ ^cos ^ - — - — (3.2)

Equation (3.2) is a variant of the desired relation.

4. The Solution of the Tetrahedron Equations

The relation (3.2) connecting the interior angles of the tetrahedron essentially
complicates the direct investigation of the tetrahedron equations. However, one
can concentrate at first on the special limiting case. Namely, consider the variables

3 Certainly, this relation is the imbedding condition of four vectors nl9 n2, n3, nA into the three-
dimensional space. Its general form is det|nJJ|=O, where four vectors nμ

a are treated formally as four-
dimensional α, μ = 1,2,3,4
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0 l 5 02, 03, 04, 05, θ6 satisfying the relation

which corresponds to the limit of coplanar vectors nl9 n2, n3, n4. In this case all the
spherical triangles in Fig. 7 can be treated as planar ones and the relation (3.2) is
certainly satisfied. From the viewpoint of straight-strings kinematics, the relation
(4.1) corresponds to the limit of "infinitely slow" strings therefore we call this case
the "static limit". In the static limit the variables 0 l 5 02, 03 (which are the
arguments of the three-string amplitudes) are just the planar angles between the
directions of three strings sv s2, s3. They satisfy the relation θί + θ2 + θ3 = π. Hence
the "static" three-string amplitudes are the functions, not of three, but of two
variables, 01? 02.

Most of the tetrahedron equations do not become identities in the static limit
[as it happens for the Eq. (3.1)]. Actually, considering the static limit, the number
of the independent tetrahedron equations even increase, since the different cross-
channels of the same "complete" equations give rise to the different "static"
tetrahedron equations.

In [8] the solution of the static-limit tetrahedron equation was constructed it
has the form

1,θ2) = Ts<(θ1,θ2)=Wst(θ1,θ2) = l;

1/2

Hs<(θvθ2)=Us<(θ1,θ2)=-ε1Ω«φi,θ2) =

1 u ->

cosl-^ + ̂ r-

1 2

cos—- cos 2 J

1/2

(4.2)

where the notations for the three-string amplitudes are the same as in Fig. 5 and in
(2.2), the θ3 being set equal to π-θ1-θ2; for instance,

Ust(θl9θ2)=U(θl9θ29π-θ1-θ2).

In (4.2) εί and ε2 are arbitrary signs; E\=&\ = \. Expressions (4.2) satisfy all the
"static" tetrahedron equations. We do not insist that (4.2) is the general solution
rather we think that it is not so.

Let us search for the solution of the "complete" tetrahedron equations which
corresponds to the static limit (4.2). First consider the power expansion around the
static limit. Namely, let the velocities of the scattered strings be not exactly zero
but small. In this case the three-string scattering amplitudes can be conveniently
considered as the functions of two angles θv θ2 (which determine the space
directions of the strings sί9 s29 s3, see Fig. 2) and "symmetrical velocity" w = ̂ dr/dt
where r is the radius of the circle inscribed in the triangle in Fig. 2. At small
velocities of the strings sv s2, s3, s4 the nonrelativistic kinematics is valid, and the
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"velocities" w, corresponding to four triangles (123), (256), (146), (453) in Fig. 7, are
connected as follows:

σί2
= W123 Z~

sin-^ c o s 2

(4.3)

sm -^^- sin -y cos -y sin

κv/453 g g —yvί23 g

sin -^ sin — ^ c o s ^ - sin-^
2 2 2 2

where the notations θί2 = θί + θ2; Θ25 = θ2 + Θ5 0i25
 = ^ i + ^ 2 + ̂ 5 a r e u s e d . The

investigation of the tetrahedron equations in the linear approximation (in w) leads
to the result

v~1/2

), (4.4a)[ n n

sin -y sin y sin
S(015 θ 2, w) = T{θv θ29 w) = 1 - λw + O(w2), (4.4b)

σ(0 l 5 θ 2, w) = W(θl9 θ29 w) = 1 + λw + O(w2), (4.4c)

(4.4d)

^ )) (4.4e)

^ ^ +O(w2)), (4.4f)

where Θ3=π — Θ1 — Θ2, L
st and L/Sί are given by Eqs. (4.2), and λ is an arbitrary

constant.
In studying the complete relativistic tetrahedron equations it is convenient to

introduce the variables (spherical excesses)

0 2 ,
(4.5)

- 0 3 ,

2δ = π + θ2-θί-θ3,

obeying the relation

π. (4.6)
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Any transmutations of θv θ2, θ3, and also any crossing transformations of the type
of (2.1) lead, as one can easily verify, to some transmutations among the variables
α, /?, γ, δ. In fact, the quantity 2α is the area of the spherical triangle I1 (and Fλ) in

respectively.
of the three-

are the areas of the triangles J2,J2, J3, / 4Fig. 4, while 2β9 2γ9 2δ
Therefore the four cross-channels Ix->Fl9 I2-+F2, I3~+F3, IA-*F4

string scattering will be called α, β, γ9 <5-channels, respectively.
In the static limit θί-\-θ2 + θ3-*π9 and we have

α-^0; β-+θ3; y^θ,; δ^θ2.

The following relation is valid up to the main order in w

1/2

(4.7)

(4.8)

Therefore, as it is seen from (4.4), the three-string amplitudes have the square-root
branching plane α = 0, which will be called the α-channel threshold. The crossing
symmetry requires the amplitudes to possess the branching planes (also square-
root) β = O;y = O; δ = 0, which are the thresholds of the β, γ, ^-channels.

These reasons allow one to write down the following formulae

aφ19θ29θ3)=R(θ19θ2,θ3)=ε2

. α
sin-

1/2

S(ΘVΘ2,Θ3)=T(ΘVΘ2,Θ3) = 1-

β y δ
cos — c o s - c o s -

2 2 2.

1/2

ί l 2

α β y δ]112

t g 2 t g r g r g 2j ;

1/2

1 / 2

1 2

(4.9a)

(4.9b)

(4.9c)

(4.9d)

(4.9e)

which are in accordance with the expansion (4.4) provided ε1 = — 1 and λ = ί, and
entirely satisfy the crossing relations (2.3). Therefore we suppose that the
expressions (4.9) give the exact solution of the "complete" tetrahedron equations
for the two-colour model.

Unfortunately, rigorous verification of this supposition is rather difficult.
Direct substitution of (4.9) into the tetrahedron equation is complicated because of
the relation (3.2), not to speak of the large number of equations to be verified.
However, we have performed some simplified verifications an example is given in
the Appendix. Moreover, our supposition has been confirmed in various numeri-
cal checks.

Note that, like the triangle equations (1.1), the tetrahedron equations are
homogeneous the three-string S-matrix is determined by the equations only up to
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the overall factor which can be a function of the variables θ. The formulae (4.9)
should be considered as expressions giving the ratios of different elements of the
three-string S-matrix the right-hand sides of all the equalities (4.9) are implied to
be multiplied by some function

[Zfafty,*)]-1, (4.10)

which is symmetric under arbitrary transmutations of the variables α, β, γ, δ [this is
forced by the crossing symmetry requirements (2.3)]. This function will be
determined by the unitarity condition for the straight-strings S-matrix, studied in
the next section.

5. Unitarity Condition

In the euclidean domain the variables α, β, γ, δ [connected by (4.6)] are real and
non-negative, and all the amplitudes (4.9) are real. The "physical" scattering of the
strings sa in Minkowski space-time corresponds to real negative values of a
(provided the velocities of the strings sa are not too large4. Here the amplitudes
acquire the imaginary parts. Let us introduce the cutting hyperplane Im α = Im β
= Imy = Ini(5 = 0; R e α < 0 (corresponding to the branching plane α = 0) in the
three-dimensional complex space of the variables α, β, γ, δ. Then the "upper" edge
(Im α = + 0 Re β > 0 Re γ > 0 Re δ > 0) of this hyperplane represents the "physi-
cal" domain of α-channel. Continuing some amplitude to the "lower" edge
I m α = — 0, one obtains the complex-conjugated amplitude of reversed process
(here we imply the Γ-invariance so that the amplitudes of direct and reversed
processes are equal).

In the physical domain of α-channel the three-string unitarity condition should
be satisfied, i.e.,

Σ sffifcΘ29Θ3)slιjfyl9θ29θ3r=K%%\, (5.i)
kίk'2k'3 *'3*3iS*3 lV3i3*3

where S is the amplitude of the process shown in Fig. 2 and the star denotes the
complex conjugation. If the second multiplier in the left-hand side of (5.1) is treated
not as the complex-conjugated amplitude but the result of analytical continuation
around the branching plane α = 0, the relation (5.1) becomes valid at any complex
ft

The requirement (5.1) for the two-colour string model leads, using (4.9), to the
single equation for the "unitarizing factor" (4.10)

a+β α+y a+δ
cos — - — cos —-— cos

Z(α, β, y, 5)Z<">(α, β, % δ) = — , (5.2)
(X β γ δ

cos - cos — cos - cos -

where the suffix (α) denotes the continuation around the branching plane α = 0.
This equation together with the requirement of symmetry under arbitrary

4 Actually, this is true unless the velocities of two-string intersection points exceed the speed of light
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transmutation of the variables, determines the factor (4.10). The investigation of
this equation is the subject of our further work.

It can be shown that, due to the factorization of the multistring S-matrix into
three-string ones, the three-string unitarity condition (5.1) guarantees the unitarity
of the total S-matrix of straight-strings.

6. Discussion

In a recent paper by Belavin [10] the remarkable symmetry of the triangle Eqs.
(1.1) was discovered. This symmetry reveals the reasons for the compatibility of the
overdefined system of functional Eqs. (1.1) and throws some light upon the nature
of the general solution of these equations. It would be extremely interesting to find
something like this symmetry in the tetrahedron equations.

As explained in the Introduction, the factorized S-matrix of straight-strings in
the euclidean domain can be interpreted as the three-dimensional lattice statistical
model which possesses Z-invariance and apparently is exactly solvable.
Unfortunately, for the solution found in this paper some of the vertex weights turn
out to be negative; therefore the existence of the thermodynamic limit of the
corresponding lattice system becomes problematic. We suppose that there are
solutions of tetrahedron equations which are free from this trouble. On the other
hand, if the thermodynamic limit exists, there is the hypothesis that the partition
function of a Z-invariant statistical system on the infinite lattice is simply
connected to the "unitarizing factor" (4.10). (The two-dimensional analog of this
hypothesis is discussed in [4].)

Appendix

Consider the Eq. (3.1) under the following condition

Since Ust = 0, Sst = σst = l, the Eq. (3.1) acquires the form

(Λyu^, U2rι u^jUyo^ %— u2 — u$, ϋ^)(Λ\U^ u^ , "^)

= U(θ4, θ3, Θ5)U(ΘV Θ4,π-Θ2 - Θ^Uiθ,, 03, θ2). (A.2)

After the substitution of the explicit expressions (4.9) into (A.2) it can be rewritten

Θ ι / ) ι / } Ω \ β Ω Ω Ω \ Ω \ Ω

i+C/^+C/o . "Λ~Γ"A — " ? — C/c C7o + ΌΛ + Uc
cos ——-=• sin — ^-r— cos ——-r -

2 2 2

= cos — — y sin — 2 4 cos — — y . (A.3)

The validity of this equality, assuming (3.2), remains to be proved.
The degeneration of the diagram in Fig. 7, corresponding to the case (A.I), is

shown in Fig. 8. The length of the circular segment can be expressed independently
in terms of the interior angles of two triangles in Fig. 8: either (123) or (124).



504 A. B. Zamolodchikov

Fig. 8. Degeneration of diagram shown in Fig. 7, corresponding to the relation (A.I)

Comparing the results one obtains the relation

cos
Θ1 + θ2-θ3 . Θ2 + Θ5-Θί-Θ4 .

cos — -sin— ^-r-1 -sm

= I cos cos sm sin

1/2

(A.4)

Doing the same with the segments *f34 and ί42 one gets two more relations

Θ1+θ2 + θ3 Θ2 + Θ3-Θ1 Θ5 + Θ3-Θι Θ3 + Θ4 +s ^ ^ c o s ^ ^ c o s ^ ^ i c o s ^ ^

0,+^,-θ. β +0 ί
r+Θ3- +Θ4-Θ

112

(A.5)

sm

sin

1/2

(A.6)

which are certainly equivalent to (A.4). Taking the products of the right- and left-
hand sides of (A.4), (A.5), (A.6), one obtains exactly the equality (A.3).
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