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Abstract. In this paper the construction of the two-dimensional abelian Higgs
model begun in two earlier articles is completed. First we show how to remove
the remaining ultraviolet cutoff on the gauge field, then we construct the
infinite volume limit and verify the axioms of Osterwalder and Schrader for the
expectation values of gauge invariant local fields. Finally it is shown that an
auxiliary gauge field mass that was introduced to avoid infrared problems can
be safely removed.

1. Introduction and Notation

In this paper we continue our investigation of quantized gauge fields begun in
[1, 2] by constructing a cutoff free version of the abelian Higgs model in two
dimensions obeying all the Osterwalder-Schrader axioms (except possibly cluster-
ing) and therefore corresponding to a Wightman theory. From our study of the
theory on the lattice we have reason to believe that this theory in fact does have
exponential clustering for gauge invariant observables this is the well known Higgs
mechanism. In order to verify this for the continuum theory, one would have to
work harder than we do in the present paper and construct a convergent
expansion around some mean field theory in the spirit of [3] : the mean field
configurations would presumably be configurations of vertices.

The plan of this paper is as follows: After fixing notation we show stability of
the theory in a finite volume by an expansion that is, of course, inspired by earlier
work in constructive quantum field theory, in particular [4]. This is done in
Sect. 2 some technical matters concerning Feynman graphs are deferred to an
Appendix. The difficulty of the problem lies somewhere between the two
dimensional Yukawa model and the three-dimensional φ4 theory the fields (in
particular the gauge field) have to be localized only in momentum space, not in
phase space. It is important to preserve gauge invariance in the form of the Ward
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identities at each step of the expansion in order to keep the cancellations between
divergent graphs and counterterms simple. A crucial role is also played by the
diamagnetic inequality proven in [1, 2] (we use it to prove what is usually called a
"Wick bound"). Since the expansion requires estimating a large number of
Feynman graphs, we prove a general power counting lemma in the appendix; it
covers the two kinds of boundary conditions that are used in the sequel to
construct the infinite volume limit: Periodic and mixed (half-Dirichlet for the
matter and free for the gauge field); free b.c. could be treated too but are not
needed.

In Sect. 3 we prove, using the stability expansion of Sect. 2, exponential (in the
cutoff volume) lower and upper bounds on the partition function. Some of the
methods used there might be slightly novel and of some limited independent
interest, but the main results of Sect. 3 have a technical flavor and the reader might
prefer to skip this section in a first reading. In Sect. 4 we prove existence and
Euclidean invariance of the thermodynamic limit of gauge invariant Euclidean
Green's (Schwinger) functions. A verification of all Osterwalder-Schrader axioms
except clustering concludes that section.

In Sect. 2 through 4, the bare mass of the gauge field Aμ is chosen strictly
positive (since the gauge group is abelian and Aμ couples to a conserved current,
the introduction of a bare mass in the gauge field propagator does not destroy
superrenormalizability. This is due to Ward identities which permit one to choose
the longitudinal part of the propagator arbitrarily). The mass in the ^-propagator
clearly prevents any (spurious) infrared divergences. In Sect. 5 we apply the
correlation inequalities and the infrared bounds of Paper I in conjunction with an
adaptation of the stability expansion to prove that the limit in which the bare mass
of the gauge field tends to zero exists and that the physical (gauge invariant)
Green's functions are free of infrared divergences. This might suggest that the
Higgs mechanism is at work. It is another confirmation of the experience that
constructive field theory methods seem to be particularly apt at avoiding artificial
infrared divergences.

It may be interesting to note that we can construct not only correlation
functions of gauge invariant local fields such as :\φ\2: and Fμv but also of so-called

"string" and "loop" observables such as :φ(x) exp j Aμdx'μ φ(y): and :exp§Aμdxμ:
\ x I

which might be more natural objects in gauge theories than local fields even
though an axiomatic framework for them is only beginning to emerge [5].

Let us now introduce some notation: A is a bounded open set in IR2, typically a
rectangle,

Aμ is an abelian gauge field, φ a complex scalar ("Higgs") field.

Covariances. CA is the kernel of (m2 — Λ^)~γ

-ΔA= Σ DχμDAyμ;DA^dμ-ieAlί,μ=l
μ=ί
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considered as an operator on L2(R2). CD A, CP A are the corresponding objects
with 0 Dirichlet and Periodic b.c. respectively

is the covariance for the gauge field with "free" b.c. t parametrizes an ultraviolet
cutoff

is the gauge field covariance with periodic b.c. p ( n ) = -,
\ aί a2

Gaussian Measures. dvA(φ) is the (normalized, centered) Gaussian measure on
S'(IR2) with covariance CA.

dnP"\A{k)) is the Gaussian measure with covariance

(C ( ίo) ΞO, tv t2 ... -+0 is a monotonically decreasing sequence of positive numbers
"cutoffs".)

dm{A) is the product Gaussian measure

dm(A)=Y\dm{k\Aik)).
k

We will use the same notation for the Gaussian measure with covariance
because

fdmcio) Λ(A)f(A) =
k

where in the right hand side

Let

\MD= Σ ^ I ^ ) 1 ' 2 ^ (s,e[0,lli = 1,2,3,...).
i = 1

dmt(A) is the Gaussian measure with covariance Cλv Λ.

Interactions, Counter terms, Partition Functions, etc. VΛ~ j :V(\φ\2):d2x;
2 φ2 Λ j :V(\φ\):d2

V(\φ\2)^0. V(\φ\2)^0 is a polynomial of degree at least 2 Λ
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δm2

(l) = e2\A2

μ>s{l)dm(A). (These counterterms differ by an irrelevant finite term from
the ones defined in [2].)

E^e2 f d2xd2y$Aμ(x)Ax(y)Πμv(x-y)dmt(A).
x,yeΛ

EΛ,s(i) = e2 ί d2xd2y$Aμs(l)(x)Avsil)(y)Πμv(x-y)dm(A),
x,yeΛ

where Πμv is the vacuum polarization tensor in second order, discussed in detail in
Paper II.

Graphically, ^-^

i μ v = -U~ + .

E(pA, E^Λ are defined analogously by replacing Πμv by the corresponding object
with periodic or O-Dirichlet b.c, respectively.

άQt-1 {{m2 - Δ)ll2{m2 - ΔA)-\m2 - Δ)112)

(this object was discussed in detail in [2]).

dωA(φ) = z(A)dvA(φ)>

Trace Norms. Ip(p^l) is the space of compact operators i o n a Hubert space such
that

For more details see [6].

2. Stability in a Finite Volume

We develop a rather simple expansion that reduces the proof of stability in a finite
volume to certain plausible estimates on a finite (not particularly small) number of
Feynman graphs their proof requires some machinery, however, and is therefore
relegated to the Appendix. The expansion as such is independent of boundary
conditions but in the appendix we prove the necessary bounds for periodic and
mixed (free-half-Dirichlet) b.c. since no other b.c. are needed. The volume, Λ, is
held fixed in this section, so we drop all subscripts, etc.

/. The Stability Expansion

The purpose of this expansion is to prove uniform upper bounds on unnormalized
expectations of observables, i.e., expressions like

(P}NZN = j P(A, φ)dμA(φ)dmtN(A) = FN,
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where P is a polynomial in the fields φ, φ, A. The idea is very simple: We introduce
a suitable sequence of cutoffs tl9t2, ...(ίN->0) and write FN as a telescopic sum:

FN= Σ (Fk-Fk-i) + Fo (2-1)
k=l

Fo = (PyoZo = J P(A, φ)dμo(φ)dm(Λ). Then we bound each term in this sum in such
a way that we obtain absolute convergence as N-+co. The differences Fk — Fk_ί

are estimated by interpolation, using the interpolating fields Λs(ly The first result is

Lemma 2.1. Let k^l. Then
1 1

Fk-Fk-i=ίdsi > .ldsk\dm{A)
0 0

•μμAsmKk...K1P, (2.2)

where Kv ...,Kk are functional differential operators acting on P (their action is to
be understood in the obvious "algebraic" sense). They can be represented graphically
as follows:

+ : φ —i 1— φ : + φ - ^ - Φ

A7 A A' A A

A A A A A A A (2.3)

\Ά stands for — A . m , / \ means χ \ gm2 . The graphical
\ 8sι A A A A s(ι>
notation is discussed in detail in Paper II [2] we do not repeat this discussion since

most readers are probably familiar with it.

Proof. This is essentially an exercise in the application of the fundamental theorem
of calculus. The following formula can be proven by induction. For / < k:

1 1

F —F _ =\ds ί
o

The formula is trivial for / = 0 to go from Z to / + 1 < k we write the difference of the
measures in (2.4) as

\A
 d <A A ^ ™

k-l-1 k-l-2
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(note that the expression in brackets vanishes at sι+1=0 due to the choice of
interpolating fields ASι).

Now

— - — dM-Δ(s s ) = ( Φ Ϊ — Φ + Φ —β— Φ) d μ A ( s )
υ i > 1 + 1 1 / \

A' A A (2.6)

where the prime stands for .
dsι+ί

Inserting (2.5) and (2.6) into (2.4) and integrating by parts with respect to the
free Gaussian measure dvo(φ) replaces

Φ j Φ + Φ βί Φ b y K / + 1

A A A

acting on the integrand; this gives (2.4) with / replaced by / + 1 .

Remark. We sketched the change of covariance and integration by parts here in a
slightly formal way; the procedure is justified in more detail in Sect. VI, [2].

To complete the proof of the lemma, note that for / + 1 = fc the second term in
(2.5) has to be omitted, so the last inductive step produces (2.2). •

From Lemma 2.1 and (2.1) we obtain the following expansion:

Theorem 2.2.
N 1 1

<P}NZN = <P}0Z0 + £ J dsί ... J ds J dm(A) \dμA Kx...KγP, (2.7)
i = 1 0 0

where K (reΈ) is defined in (2.3); the prime appearing there stands for — .
dsr

2. Convergence of the Expansion

The goal of this subsection (together with the Appendix) is to prove the following
bound on the terms of the expansion (2.1) or (2.7):

k

7 = 1

for some constants C l 5 c 2 ,ε ,r ,p>0. This will imply convergence:

Proposition2.3. Let t. = conste~ jΎ; (j=l,2, ...;0<γ<l). Then (2.8) implies con-
vergence of the expansion (2.7) as JV-κx).

Proof (sketch). Under the assumption about {t }:

ky+1

γ + l

. J < 00 . •
fc=l
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The remainder of Sect. 2 is devoted to reducing the proof of (2.8) to certain bounds
on Feynman graphs which in turn are proven in the appendix.

First we use Schwarz's inequality to obtain

• (Jdv^JK, . . .K ± P\ 2 ) 1 I 2 ($dω A s { i e- 2 V + δm2^\φ\2ψ2eE^. (2.9)

By the diamagnetic inequality (I, Theorems 2.3, 4.1 and Sect. 3, see also [7])

\z(Λ)\^l. (2.10)

So (2.8) will be a consequence of the following three lemmas:

Lemma 2.4. E(sv ..., sl9 0,...) ̂  α^log £,)2.

Lemma 2.5. ^dωAe~2V + δm2s^S:]Φl2:^Qxpa2(δm2

{l))
2 provided V contains a term

λ$:(φφ)2:,λ>0.Also

Lemma 2.6. ^dm(A)\dvA\Kι ...K^Sa'Jll ίί](/!)p|logίz|
Zr jor some δ>0, p>0,

r>0.

Remark. The assumption in Lemma 2.5 that V contain a quadratic term could be
replaced by the requirement that V contain an even power of \φ\ greater than two.
Lemma 2.5 would then hold with some other power of δm2 appearing on the right
hand side. (2.8) would still converge for an appropriate choice of t-.

Lemma 2.4 is a simple estimate on Feynman graphs, Lemma 2.5 is a
consequence of the diamagnetic bound [see (2.10)] and an easy P(φ)2 estimate,
whereas Lemma 2.6 contains the technical core of this paper. It should be rather

plausible, though, since \dm(A)\dvA

2

contains only strongly (powerlike)

converging Feynman graphs - notice that all cancellations of divergent graphs
with counterterms have already been accomplished by the integration by parts in
subsection (1) ([2], Sect. II).

We shall not give a proof of Lemma 2.4 since it can be easily deduced from

77μv(/c) = 0(log/e2) (/c2-+oo).

(Appendix A, [2]).

Prooj oj Lemma 2.5. By the diamagnetic inequality [1, 2]:

j ^ β - 2 F + ̂ ^ : ^ l 2 : ^ j Λ 0 ^ 2 F + ^ ^ : ^ l 2 : . (2.11)

So what remains to be shown is

Proposition 2.7. Let
V = λ$:\φ\4'.d2x-a$:\φ\2'.d2x.

Then

for a large positive. (Similar results may be found in [8, 9].)
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Prooj. Without loss of generality we assume that \Λ\ = 1. We split V: V— Vγ + V2

with

a
Claim ί.V^-^—,

A

The proof of this is trivial.

Claim 2. §dv0e~V2<co.

Prooj. This follows by Nelson's argument [10]: In reference to this note that

(a) jV2^$ :\φf:d2x-U$ '.\Φf'.d2x)2

= -O(log2κ)

in the last inequality we used

ax2 — bx> .
"" 4a

for some ε>0. This is a standard fact [16].

(a) and (b) together imply Claim 2 as in Nelson's proof [10,16] of stability in

P(Φ)2- •
Remark. A similar argument works for more general interaction polynomials.

Prooj oj Lemma 2.6. We begin by developing some notation to organize all the
terms that arise when the functional derivatives in X. are performed. First we split
Kt as follows

Ki = qt + at ( * = ! , . . . , / ) , (2.12)

where

ϊW)J())~dxdy (2.13)

whereas at is a multiplication operator (i.e. it does not contain functional
derivatives). Explicit expressions for qt, a{ follow by comparing (2.12) and (2.3). We
also define

qo=O ( / 0 = 0 ) ; ao = P
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because then we can write

i = 1

which will simplify many of the ensuing formulas.
Next we use Leibniz's rule to write

ΣίΠ ?) (2-14)
a,β\i = O I

where β.e {0,1} for ΐ = 0,..., Z and

(f^tf®...^; αr(i)e{0,l}.

i runs from 0 to /, r from i to /. Also

Σ«r(s)=l-0r
s = l

All products are ordered according to the index of the factors, e.g.

i = 0

In (2.14) qf is acting only on a{\
Notice that the degree of qaiafl as a polynomial in φ and φ is bounded

uniformly in i = 1,...,/.
We defer the integration over dm(/l) in Lemma 2.6 and estimate first

I 2 \ l / 2

By Holder's inequality and (2.14)

2 ^ Σ iW^IU+υ (2-16)

Now we use the well known "hypercontractive" estimate [10] for Gaussian
measures: If Q is a polynomial of degree q, then

This allows us to bound (2.15) by

Π \\qaiah2- (2-18)

The supremum is over α consistent with β, where r, C are some constants. Here we
used that the degree of q^a^ is bounded uniformly in i=l,..., / with an upper
bound depending only on deg V.

Expressions like ||gαίαfι||2 correspond to possibly large Feynman graphs (their
size depends mainly on α ) with external ,4-lines and internal lines corresponding
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to CA and Co. The next step, familiar in constructive quantum field theory, is to
bound large graphs in terms of a finite number of small ones. Because of our more
complicated interaction this requires some thought.

If we let an operator

qU) = ίΦ(x)Hx,y)~dxdy (2.19)

act on a Wick ordered monomial

I m

pn,m=ί • Π m Π Φ(yk)• pnjχ y)^dy (2.20)
i = l / c = l

(Wick ordering with respect to CA) it produces two terms:

where Pn m, Pn_ t m_ x are again Wick monomials of the form (2.20), but with new
kernel functions

nJ* >y)=Σ J / O Ί , r t P n J x \ y , , - , y \ , - , y M (2.22)
1 1

' SxSyPn, m(X>> X2, ,Xn'> / ' 3^2' ' ' ' > ^ m ) ^ ' ^ ' ( 2 2 3)

Sx (5^) symmetrizes over the x (j/) variables and

According to (2.21) q splits into two parts:

q = r + s, (2.24)

rPn,m = Pn-i,m-i, (2-25)

^ . m = A m (2-26)

(i.e. r reduces the degree of Wick monomials, s leaves it the same; for m = 0:
qPn>m = 0Jor n = Q:rPntm = 0).

The following estimates are straightforward:

Proposition 2.8.

y 2 1 / 2 | | L ^ L 2 | | P , , , J | 2 ) (2.27)

C-A

ίl2\\^s\\PnJ\2. (2.28)

Prooj. Equation (2.27) is obvious for n = 0, m = l . The left hand side is

The restriction n = 0 is clearly irrelevant the generalization to m > 1 follows from
the "functorial properties of second quantization" [11,12] it is also not difficult
to verify it directly.
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Equation (2.28) follows for m = n = 1 simply from Schwarz's inequality: The left
hand side is

\\{CJ\x, y)PlΛ(x, y)dxdy\ g | |CψjC~A

 1/2\\L2\\ CψV^ 1 \\L2

= \\C1J2jC-1/2\\H^\\Pul\\2. (2.29)

For general m, n the proof requires in addition very simple combinatorics which
we leave to the reader. •

Unfortunately (2.28) is not very suitable for our purpose because the Hilbert-
Schmidt norm will in general not exist for the operators qt we have to consider. To
get a finite estimate, we have to "borrow" something from P. In order to
systematize this we need some new definitions:

If Pn m is a Wick monomial as before we define sk(j)Pnm to be the Wick
monomial of the same degree with kernel function

k

(2.30)

where Sy denotes symmetrization over the y-variables. Note that s1(j) = s(j) = s
(2.26). If k>m we make the convention that

We also define operators sk(f) by interchanging the role of x and y variables in
(2.30): then obviously

[**(/), sz(0)]=O (2.31)
for any /, g, k, I.

We now have the following estimate:

Proposition 2.9. For, n,m^l

II < 1 / m ( h Λ - 1 Ϊ I I Γ " 1/2π~ 1 Γ / Γ ~ 1 / 2 I I II? (n*)P II
n,m\\2=\I ~~\K^ l)W^A V c A J ^A IIH.S. 1 1 ^ + l l » >rn,m\\

where g* denotes the adjoint oj g considered as a kernel.

Prooj. Again the proof reduces for n = m = 1, k = 0 to a simple Schwarz inequality
ίn-ί\

for general n9m,k the left hand side contains , nml/rn— l)(m— 1) terms (all

\ k I v

equal) which are bounded by Schwarz's inequality by the equal number of terms
on the right hand side. •
Remark, g will have to be chosen appropriately to make CA~

1/2g~1CAJCA~
1/2

Hilbert-Schmidt; a suitable choice is for instance g'1 = C1J2Cε+1/2C~1 (ε>0).
Next we combine Propositions 2.7 and 2.8 to obtain

Proposition 2.10.

N-ί

π SN\nιNsup \\sk(g*)P\\:*k\y >λ ιι 2
k

N-l

Π f | | / - l / 2 / ^ - l / 2 | i , 1 1 ^ - 1 / 2 - 1 ^ / / - - l / 2 ι ι Ί

\\\CA JicA I I L 2 ^ L 2 + IIW 9 ^AJί^A IIH.S./



364 D. C. Brydges, J. Frόhlich, and E. Seiler

Prooj.

We claim

= Σ

N-ί

i = 0

N-ί

i = 0

2a~1C ic~ll2\\yi

9 ^AJi^A IIH.SΛ

- ( 2 3 2 )

The proof is by induction with respect to N, using Propositions 2.8 and 2.9.
For N=ί it follows from (2.27) and Proposition 2.9. We assume (2.32) true for
N = N0. We obtain

= iv0. A 9

P II (2.33)

We commute 5 through s and use Propositions 2.8 and 2.9 to estimate the last
factor; we obtain

m
No \ y 0

n i = 0

llH.S.Hύy(iVo)Vί/ ^ ii,mil 2

Using the inequalities

No \y0

and inserting (2.34) in (2.33) proves (2.32) for JV = JVO + 1.
Using

(2.34)

and summing (2.32) over {y} completes the proof of Proposition 2.10. •



Quantized Gauge Fields. I l l 365

Now we are ready to estimate (2.18) and thereby (2.15):

Proposition 2.11.

U\\qa'a!<\\2^cι+I(l+1)\
ί = 0

I

t l l W Ji^A I I L 2 ^ L 2 + IIW 9 ^AJi^A IIH.S.)

i = 0

•Π supP^MIlS'
ϊ = 0 fc

αf is ίo be understood as having been expanded in normal ordered (with respect to
CA) polynomials.

Prooj. This follows directly from Proposition 2.10 if we recall that

s= 1

Corollary 2.12. For some constants c, r > 0 ,

I

ί = l

ί + l

i = 0

α is understood as having been expanded in normal ordered (with respect to CA)
polynomials.

Prooj. This follows from Proposition 2.11, (2.18), and the identity

Σ π«r^f ί =Π(« I +fe;). D
{β}e{0,l)N ί = l i = l

We have now achieved the objective of bounding large graphs by small graphs
because Corollary 2.12 only involves L2 norms of polynomials of low degree in φ
[occurring in s^g^aj. Unfortunately we have to normal order the at with respect
to CA and calculate L2 norms with respect to dvA(φ). This means our Feynman
graphs have CA propagators as well as Co. We now develop some operator bounds
to control CA by Co. The end result is found in Proposition 2.16.

We specialize now to the choice

a-C r~ε~1/2C~1/2

y — ^A^o ^A

Proposition 2.13.

(a) U C ^ / i C ; 1 ' 2 ! ^ !CY2C-^11 \\C-'l2Cy2\\ ||Cj/2/tC0-
1/2||. (2.34)

(b) | | c ; 1 ' 2 0- 1 c x / ί c; 1 ' 2 | | H . s . = ncj' 2 +v ic; 1 ' 2 | |H. s.
^ 2 1 / 2 ^ i C o 1 / 2 l l H . s . (2-35)

(2.36)
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Remark. || || denotes the operator norm denoted before by || | |L2^L2, || | l2c^
stands for the ZΛnorm with respect to the Gaussian measure with covariance CA,

( d e n o t e d be fore s i m p l y b y || | | 2 ) .

Prooj. (a) a n d (b) a r e t r i v i a l ; (c) c a n b e r e d u c e d t o t h e case fc = n = l , m = 0 ; i n th i s
c a s e it s i m p l y says

Proposition 2.14.

(a) \\c-v2cy2\\^\+e\\Acy2\\A.

(c)

where || | |p ( p ^ 1) is the Ip norm (jor operators on L2(IR2)J.

Prooj.

(a) Cy2C~A ' Cy2 = 1 - Cy\ΛA - Δ)Cy2 = I - Cy\ - ίeAd - ted A + e2A2)Cy2.

Taking norms and using | |3Cj / 2 | | ^ 1 we obtain

(b) CψC^Cψ = 1 - Cψ{Δ - ΛA)Cψ = 1 + Cψ{ - ieAδ - ieδA + e2A2)Cψ

= 1 - CA

I2( + ίeADA + ieDAA - e2A2)CA

12.

Taking norms as above and using in addition the diamagnetic inequality CA(x, y)
;£ C0(x, y) we obtain the same bound as above.

(c) Using CA = C0(AA - Δ)CA + Co we obtain

taking norms

(here again we used the diamagnetic bound). •
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We now improve Proposition 2.13, Part (c) by removing the requirement that
P n m be CA normal ordered - an obstacle to applying the lemma to av We
temporarily conflict with previous notation by taking Pnm to be un-normal ordered
and use : :0, : :A to distinguish Co, CA normal ordering.

A version of Wicks theorem says
GO i

Γ n , m ' O LJ : \ ' A ' £ n , m ' A >

where rA is defined in the same way as r (2.25), (2.23) but CAj is replaced by
CA~C0 in (2.23). By convention rJ

A annihilates Pnm if j>n or m. Repeated
application of Proposition 2.9 shows that we can bound each term on the right
hand side according to

A 9 V^ A L θ i L Λ II2

c is a constant depending only on the degree of Pn m. By substituting our choice for
g and applying operator bounds very similar to those used in the proof of
Proposition 2.13, we bound the I2 norm by a polynomial in

(2.37)

What we have obtained so far is that

I I W ) • Pn.m o\\2.cΛί sup \\sk(g*) :Pn,m:A\\2,CΛQ(A), (2.38)
k

where Q is a polynomial in the above norms (2.37). We wish to apply this bound to
a{ [the sum of terms not involving functional derivatives in (2.3)]. Therefore we
write n — -a - i t n -

aί~ α ϊ 0~r 'l0aiΌ

(which defines :ίo

αi :o) We take P n > m

: =α ί and toai in (2.38) and estimate the right
hand side using Propositions 2.13 [Part (c)] and 2.14. The conclusion is:

Proposition 2.15. For i: = 0,...,/, k = 0,1,...

Q{A) is a polynomial in

ihχA^ /sup ||Jk(Cβ

0) :at:||2 Co + sup \\sk(Cε

0) :toat: | | 2 Co\Q(A).
{ u k J

1||2, I ClACy21| 2 .

In this proposition and from this point on until the end oj the section, " : : " denotes
Co normal ordering.

Now we combine Propositions 2,15, 2.14, and Corollary 2.12 to obtain

Proposition 2.16. For some constants c,r>0

i

ί = o

sup \\sACn ) :<v U Γ
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where Q(A) is a polynomial in

\\2, \\c%Acy2\\2

which depends on P. (7 0 = 0, ao = P; /., at defined in (2.12), (2.13).;

Prooj. Bound the right hand side of Corollary 2.12 using Propositions 2.15 and
2.14. The common factor Q[A)1 can be extracted by taking Q(A)^1. •

Now we can substitute this bound into the left hand side of Lemma 2.6 and
start to consider the dm(A) integration. We use Schwarz's inequality to separate off
the Q(A) factors.

Also recall that A has to be read as A(sι) = A(sv ...,s ί ?0,0,...), therefore has a
cutoff tv

Proposition 2.17

$dm(A)(Q(A(sv ..., sl9 0, . . O ) 2 ( / + 1 ) ^ C W I I I W

with some integers r,p.

Note. We use the letter C for various constants appearing in our estimates, i.e., it
can change its meaning from estimate to estimate.

Prooj. By Nelson's hypercontractive estimate (2.17), we only have to estimate the
integrals with respect to dm(A) of

(2.39)

In the third norm, use the bound,

(2.39) corresponds to small graphs l i k e ^ V ^ jΓ^) * ^ S ^ Some of these

graphs, such as the second, may be estimated by the power counting lemma of the
Appendix. Others, like the first, are to be estimated directly. All are (for small
enough ε) less than O(log2tι)\A\. •

For the other factors in Proposition 2.16, we use again Holder's inequality and
the hypercontractive bound (2.17). This reduces our task to the estimation of
expressions like

(dm( A)\\Cί/2f C~1/2\\4 etc

We claim :

Proposition 2.18. For some δ>0

ί^O 112'

V ί βί llico.

supjΛn(Λ)||s ] t(C0

< !):ί0α J: |β i C o
k
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are all bounded by expressions oj the form Cή, uniformly in i and in the interpolation
parameters st that appear in them through the dependence on A(sz).

Prooj. All these expressions reduce to a finite (not particularly small) number of

convergent Feynman graphs; each of them contains at least one — 4 which
ost

enforces an upper ί-cutoff t{ by a power counting argument given in the appendix
the proof is completed.

Combining Propositions 2.16, 2.17, and 2.18 finally completes the proof of
Lemma 2.6 and in (2.8) and therefore proves convergence of the stability
expansion. •

We close this section by showing in more detail the graphs that arise from the
expressions appearing in Proposition 2.18.

Recall that graphically, for z + 0, t/0 = 0),

• Ξ 9 i + h i >

A1

where the prime stands for — . Inserting this in \dm(A)\\Cy2jiC0

 ll2\\\ produces
όsi

many topologically distinct graphs which, however, may be estimated in terms of
the following three:

(2.40)

if we use

and estimate the second term by a constant times

(2-41)

' θ 1 / 2 | l 2 ) 2 ( 2 4 2 )

using || || 4 ^ || II2 a n d t n e hypercontractive estimate (2.17).
Note that in each graph of (2.40) at least one of the lines is differentiated with

respect to s . The quantity

produces the graphs

(2.43)

where stands for
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The most complicated expression in Proposition 2.18 is

(Cθε)'-aί''W22C ( 2 4 4 )

Recall that graphically, for iφO, (ao = P),

Q j = - φ —, V ' - φ V'

: Φ

A7 A

Φ : + Φ - j ~pς- Φ + -

+ Φ - #

A' A A A A A

Φ + : A μ π μ v A'v : .

A A A A

For the special (but typical) case V(\φ\) = λ\φ\4 we have listed below the graphs that
arise from (2.44). We have used the bound || | | 4 ^ | | | | 2 together with hyper-
contractivity (2.17) which accounts for the appearance of the 6th graph instead of
four graphs with four vertices.

(2.45)

where in each graph the lines have to be interpreted as either CQ 2ε or Co.
In addition there is the term || :AμΠμvA'v\\\\ which may be represented as

Jμv

Jμv (2.46)

In Proposition 2.18 we also have
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This gives rise [for

371

to the graphs

(2.47)

It is now easy to apply the power counting lemma of the Appendix to the list of
graphs contained in (2.45), (2.46), and (2.47).

3. Volume Dependent Bounds

In this section we employ periodic and mixed (free-half-Dirichlet) boundary
conditions and their convexity properties in the volume to prove upper and lower
bounds on partition functions of the form expθ(|/l|). It is convenient to slightly
change the energy counterterm used in the stability expansion to the so-called
matched counterterm introduced in [13] which has the advantage of being

a) independent of boundary conditions
b) exactly proportional to the volume \Λ\.
In the introduction we defined the energy counterterm

IΛ= ί d2xd2yΠx

μv(x,y)Cfv(x-y)
x,ysΛ

(3.1)

(X stands for the boundary conditions F, P or D). The "matched counterterm" is

E<? = μ|β ( ί ) = \Λ\ J d2xΠF

μv{x)C%(x) (3.2)
R 2

[where we wrote Πζv(x) for Πμv(x, 0)]. We can replace £ by £ because we have the
following

Lemma 3.1. ForX = F, D or P

(1) \&»Λ-E$\£CΛ9

where CΛ is a constant dependent on A but independent oj ε.

(2) l i m ^ ^ - E ^ ) exists.

Proof (Essentially in [13]).

a) X = F

Ef,Λ= \ΠF

μv{x)Cfv{x)gΛ{x)dx,
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where

9Λ(X)=f XΛ*+y)χΛ(y)dy

]R2\2Λ

2Λ

which is easily seen to be bounded independently of t because

\ΠF

μv(x)\S const \x\~2

(see [2], Appendix A). Convergence follows easily by the dominated convergence
theorem.

b) X = D,P.

In Appendix B of [2] it is proven that

(Πp

μv-ΠF

μv)(x,y) and

(ΠD

μv-ΠF

μv)(x,y) are in L^ΛxΛ),

The discussion there actually shows that the above expressions are in L1+δ for
some δ > 0 (by a direct computation with image charges the reader may convince
himself that this is true by virtue of

where y is the location of the image charge closest to y). By the dominated
convergence theorem it is then easy to see that E^Λ — EftΛ converges as ί-»0
which is sufficient to complete the proof of b). •

From now on we understand the partition functions ZD Λ and Zp Λ to be
defined with the energy counterterm EΛ instead of Ex Λ. Then the following
theorem holds:

Theorem 3.2. Let Abe a rectangle oj sides L>3δ and T> 3δ (δ > 0). Then there are
constants c,c+,c_eIR; K,K+,K_ > 0 such that

a) ZD

b) ZP>

c) Z D t t

where A is a rectangle oj sides L — δ, T—δ.

Prooj. a) For

LT. (3.3)
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The lattice analogue of (3.3) is proven in [1], Corollary 2.9 and follows from the
fact that the periodic partition function can be written as a trace of a power of the
transfer matrix. In the continuum we have to be careful to use the right
normalization for the partition function. Formally

_

where HP L is the Hamiltonian with periodic boundary conditions on the interval

— —, — Hp L the corresponding free Hamiltonian. We give some arguments to

show how a formula like (3.4) can be justified [8,14].
As in the proof of O.S. positivity in [2] we have to introduce a somewhat

complicated lattice approximation: We use two rectangular lattices; for φ the
lattice constants are εs in space and εf in time direction, for A they are εf

s and ε't and
we assume that the ^4-lattice is a refinement of the ^-lattice. Then it is
straightforward to see that the lattice partition function with the appropriate
normalization for the continuum limit can be written as

TrίT ) τ l ε t

yε,ε' V L,ε,ε/ /o ς\

where TLtε, is the lattice transfer matrix for translation by εt with periodic
boundary conditions TL°ε ε, the corresponding operator for the free theory. T and
T° are defined up to a normalization factor which will be chosen in a way that
makes the continuum limit easy.

By Gaussian integration

1/2

0,(ε')τ/eS (3.6)

where j m and gμ are the above mentioned normalization factors to be chosen
below; dε

μ, Δε are the (periodic) finite difference gradient and Laplacean, re-
spectively. Computing the 2 x 2 determinant indexed by v, λ we obtain

•(μ)LΓ/eWym(e)Γ/etflfμ(ε')τ/eί. (3.7)

In view of this, we will choose

^ ' ) = / w

3 / V)(μ)" L / e ; . (3.8)

Limits should be taken in the following sequence: We should modify the
determinant coming from the ^4-integration by introducing an ultraviolet cutoff of
the kind used in the stability expansion; then we send ε|->0, ε^->0, εf->Ό, εs->0 (in
that order); finally the ultraviolet cutoff is removed. This ultraviolet cutoff is
irrelevant here and we ignore it in the sequel to avoid overly clumsy formulas.
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In [2] we had εf

s = £'t;εs = st, but by the methods used there it is straightforward
to establish that the partition functions with the correct continuum normalization
have the same limit if we remove the lattice in the order just described.

So we are reduced to studying

By explicit diagonalization

L/2εs T/2εt

Π Π
-L/2εs+l n=-T/2εt+l

(3.10)

/ L T \
we assumed —— and —- to be integers . We now claim:

V 2εs 2εt )

2 1 2πnp\

4 1-cos —
τ/2ε i 2 1 2πnp\\ί/2

ε Π 4
n=-T/2ε+l

Proof. The last identity is just the canonical product decomposition of 1 — e~ωT

(see [26]). To prove the first identity, note that

n= -Γ/2ε+l

2πnε\
. (3.12)

00 I fωT\2\
The first factor is easily seen to converge to Y\ 1 + - — by taking the

n=i\ \2πn] I
logarithm and using the dominated convergence theorem. The second factor is
equal to T/2ε because of the identity

Π (2-2COS—\=N. (3.13)

(3.13) can be proven in various ways [15]. One way is to note that

which equals — — by the semigroup property of the heat kernel. (3.13) inserted in
UN

(3.12) completes the proof of (3.11). •
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If we now set

ωεβlLψ = m2 + \ (l - cos

[If we were making the U. V. cutoff explicit, it would modify this and ensuing ω's]
and

L/2εs

f(ε)= Π ε - V ^ 7 ^ (3.14)
r = -L/2εs+ 1

it follows from (3.10) and (3.11) that

lim lim/(ε) Γ / ε t det(-zl ε + m 2)~ 1

εs^0 εt^0

00

f )-2

where ω(fcJ.L))2 = rn2+ and ifp L(m) is the Hamiltonian of the complex free
\ L )

field of mass m with periodic b.c. on — —, —-

Remark. It is not hard to see that

L/2ε

X ω ε ( ^ ) ) = C l Lε- 2

f= - L / 2 ε + l

for ε^O; this implies that

ε - 2LT/εtεSe2CίLTεs- 2 + 2c 2 LTlo g ί ; s

has a finite limit as εt-*0 and then εs-^0. The asymmetry of this expression in εs

and εt shows that the order of limits is essential. This asymmetry was also noted in
the context of dual string theory [15] as "noncovariance of divergent parts".

We have not quite established (3.4) since we did not construct Hp L this could
be done, but at this point we only need the following two facts which follow from
what we have proven, namely that after all limits have been taken

is decreasing in T and

is decreasing in L (the second statement follows from the first by Nelson's
symmetry proven in the next section).
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These two facts imply (3.3) (logZp Λ^c+LT+const) for L , T ^ 1 ; for 3δ^L,
T ^ l ) . (3.3) follows directly from the stability expansion which produces bounds
uniform in 3δ^L, T ^ l . This completes the proof of (3.3).

b) ZDΛ^constec~LT. (3.15)

This follows by a similar method. Formally we have, using "Nelson's sym-
metry" [8, 16]

( }

with some "idealized vectors" ηL,η°L etc. (products of δ functions enforcing
boundary conditions, see [12]). This means that e.g. ηL(ε) = e~εHD'LηL (formally) is
a bona fide vector in the physical Hubert space for ε>0, but lim ||f/L(ε)|| = oo. The

ε->0

justification of (3.16) goes along the same lines as before; the crucial facts are:

is convex in T and

is convex in L, where

(η°L,e-TH° Lη°L)= f[ ( l - e - r ^ > ) - ^ l (3.17)

[16, 17]

(

Next we claim that for sufficiently small rectangles A ZDΛ>0 (the stability
expansion for ZD Λ converges uniformly in L, T ^ 1, cf. Appendix): We introduce a
ί-cutoff in the covariance of A then obviously lim Z$\Λ = 1. On the other hand

the stability expansion shows that by choosing t small enough,

\ZD,A-ZD,A\<8 for any ε>0

(uniformly in A for | y l |^ l ) ; therefore ZD Λ>0 for small \A\ and ZΌ A-^\ as |/l|->0.
A simple argument using convexity then shows that Z D Λ > 0 for all rectangles

and

(3.18)



Quantized Gauge Fields. Ill 377

from which (3.15) follows if we use (3.17) and the fact

[13] which can be easily deduced from (3.17).

c) ZD^KZprΛe^τK (3.19)

This is essentially the fact that the trace is bigger than any expectation value. Note
that all the manipulations in the following use only O.S. positivity which follows
from the lattice approximation [2] we use the formal objects like ηL etc. only to
make the argument more transparent.

(3.20)

where we used (3.17). The trace in (3.20) can be expressed in terms of a partition
function ZD P.L τ_2δ which has periodic b.c. in time and (half)-Dirichlet b.c. in
space or its "Nelson transform" (time and space interchanged) ZPD;T_2δ L:

(T-2δ)HD,L_T -{T-2δ)H°Ό,L y
—Lie XZjD,P,L,T-2δ

jP,D;T-2δ,L

•{nl-2δ,e-LH°p τ-™η0

τ-2δΓ
l • (3-21)

If we estimate this in a way analogous to (3.20) we obtain

T 2 δ y Π
^P;L-2δ,T-2δ' p .

Finally, using (3.20) once more for the rectangle with sides L, δ we obtain

^11^)11 Tre D'\n^e D > X^L)> (3.23)

where we also again used Nelson's symmetry. Now by standard properties of the
trace [used already under a)]

L-2δ

'>HD,0J-J~ (324)

and by the explicit formula (3.17) it is seen that

(ηo

L,e-2δH^η°L) = e0^ (3.25)

[13] so that

IM^)II 2 ^ 11^)11 V C 2 L (3.26)
with some constants cvc2. Inserting (3.26) together with (3.22) into (3.20) gives

ZDΛ<ZpΆc
2eC2(L+T)

which is (3.19). D'Λ~ P'Λ 1

This completes the proof of Theorem 3.2 •
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4. Thermodynamic Limit and Osterwalder-Schrader Axioms

In this section we first prove some properties of the finite volume theory, namely
Euclidean covariance (that is independence of what was called the 1 direction in
the cutoff for Λμ) and bounds on expectations of observables that are independent
of the volume.

The correlation inequalities of [1] are then used to construct a unique infinite
volume limit of the Half-Dirichlet expectations of a certain class of observables.
The verification of the Osterwalder-Schrader axioms [18] for the Schwinger
functions of :\φ\2: and F = εμvFμv follows as a corollary.

/. Euclidean Covariance

In the stability expansion we used a sequence of cutoff covariances with Fourier
transforms

(4.1)

We want to show that we obtain the same expectations in the limit £->0 if we use
instead

PβPv \ x

 r-t((Picosθ+p2 ί

This implies in particular Nelson's symmetry as used in the previous section. As in
Sect. 2 we consider unnormalized expectations of an observable P(A, φ). Let us
denote by Zt θ

< (P) ί θ the unnormalized expectation with respect to the measure
using (4.2) for the ^4-covariance. Then

Theorem 4.1. lim(Z, β<P>r β-Zt 0<P> t 0) = 0.

Proof. We introduce an interpolating covariance

° s)Dl : = DJs). (4.3)

and use the fundamental theorem of calculus, the change of covariance formula
(see also [2]) and an integration by parts to obtain, exactly as in Lemma 2.1

() (4.4)
0

where K is given by an expression analogous to (2.3), i.e.,

-β~ Φ + Φ — ^ - ~βr Φ + : Aμ

A; A A A A A A
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The prime now means —- or —— Λ(s) is the Gaussian random field with covariance
as oφ

(4.3). (4.4) is the unnormalized expectation of a new "observable" KP. So if we do a
stability expansion for this expectation we obtain a bound, as in Sect. 2
(Proposition 2.16), of the form

const Isup ||sk(C0

 ε):KP: | |2 Co4-sup \\sk(C0

 ε):t0KP: | |2 c I. (4.5)
\ k k ' °J

We claim that this goes to 0 as ί|0. The reason is that (4.5) gives rise to a number of
Feynman graphs with good power counting, but at least one of of the photon lines

is -—Dμv(s) which is the Fourier transform of
CIS

e~tμ2

p2+μ2)p2+μ2

and it is easy to see that

for l ^ α ^ O , (consider separately the cases ί p 2 ^ l , tp2<l). Choosing α > 0 small
enough, so that the power counting of the Feynman graphs is still good, we see
that (4.5) goes to 0 as f. •

2. Volume Independent Bounds

There is a well known machine for establishing such bounds [19] based on the
chessboard estimate (see [19] and [1]). There are, however, a few extra subtleties
in our case.

We define the norm

Ill/Ill=Σ(ί^/2)1 / 2

on measurable functions on IR2. {zlj is a set of disjoint open unit cubes filling IR2.

Theorem 4.2. Let /eL2(IR2), g, with | | |^ | | |<oo, be real or complex valued and
supported in A. Then for X = P (periodic b.cj or X = D (half-Dirichlet b.cj

ζe \\y <

where a is some (A independent) constant.

Proof. Without loss we may assume fg real valued. By the infrared bound of [1]
(Theorem 4.3 and remarks following it) which carries over to the continuum,

I ^ < ^ / | | / | | | < ^ 1 Φ I ( 0 ) >

so that we may assume / = 0. By the correlation inequalities of [1] [Theorem 6.2,
(1) and (3)]

(e--M2^yDΛ^e^2^}PA (4.7)

l ^ « % ^ < e ' ^ ^ > P ; y l (4.8)
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So if g=g+-g; g+, #_^0

for X = P,D.
We claim that

/e2:\φ\2:(9 + ) \ ^eS(Λp,Λ(2g + (x))-aptΛ(0))dx ^ (4.10)

where ocP Λ(σ)= —— logZ p Λ(σ), Zp Λ(σ) is the periodic partition function with the

action modified by replacing m2 by m2 — 2σ. (4.10) is a standard application of the
chessboard bound (see [14]).

We now claim:

aPJσ)-aP>Λ(0)^aσ2 + b\σ\ (4.11)

with constants a,b that are independent of A (for L, T ^ l ) . This may be seen as
follows:

Firstly for fixed A
2 + cΛ. (4.12)

This follows essentially from Proposition 2.7. It has to be remembered, however,
that σ will also enter the graphs of the stability expansion for ZP Λ(σ)
= Qχp{A(Xp Λ(σ)}. This dependence on σ can be tracked from Proposition 2.16
(where it occurs in at) and bounded by including an extra factor σk on the right
hand side of 2.8 and then 4.12 follows from Propositions 2.3 and 2.7.

Secondly, as already used in Sect. 3

is decreasing in T and

is decreasing in L, hence for L, T ^ 1

oίp Λ(σ) ^ aP Δ + const. (4.13)

(A is a unit square) because 0<; logTτe~TH*>L<Lconst for L, T ^ l (Sect. 3).

Equation (4.13) shows that in (4.12) aΛ,cA may be chosen independent of A.
Finally we use the fact that OLP Λ(σ) is convex in σ (which is well known and easy

to prove). This implies that for |σ| ^ 1

aP>» - αP> Λ(0) ^ |σ|(αPf ^(1) - αP> ̂ (0))

or, using Theorem 3.2

α P f » - α P f i l ( 0 ) ^ c o n s t | σ | (4.14)

for |σ| ^ 1 (const independent of A). Combining this with (4.12) (aΛ, cΛ independent
of A) gives (4.11).
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Now we can insert (4.11) into (4.10) to obtain

Note that the ||| ||| norm dominates || | |2 and
It remains to estimate

We claim

for some (new) constant a.
Because of (4.8) we only have to consider X = D. We decompose R 2 into the

unit squares A{ and write

9-= Σu9- (4.17)

Now let {Pi}f=1 be the sequence of (possibly infinite) numbers |||^
Obviously

Σ - = l ? P ^ l (i = l,2, ...)• (4-18)
ι = l Pi

So we may use Holder's inequality to deduce

By a correlation inequality of ([1], Corollary 6.3, (2)) we may replace A by At on
the right hand side of (4.19):

(4.20)

From the stability expansion we can deduce (see below)

<e-2 ' il#l1:(zA ί-)>VP } (^exp0(p i | |χ/ l iflf_|| |). (4.21)

Now

00

ΣPill;u0-lli=lll0-lll2 (4 2 2 )
i = l

so that (4.20) and (4.21) imply our claim (4.16).
We add a few remarks about the proof of (4.21):
We consider the term Pi'.\φ\2'-(χΔβ-) as part of the interaction V. This

produces changes in Lemma 2.5 (and Proposition 2.7) as well as the graphs of the
stability expansion.



382 D. C. Brydges, J. Frόhlich, and E. Seiler

The appropriate generalization of Proposition 2.7 is

Proposition 2.7. Let

Then $dv0e

Proof. Using Schwarz's inequality this follows from Proposition 2.7 and

^ 2 . (4.23)

(4.23) is true because Gaussian integration gives for the left hand side
[ d e t 2 ( l + 4 C 1 / 2 # C 1 / 2 ) Γ 1 which is bounded by expO(| |C 1 / 2#C 1 / 2 | | 2

< S i)
 bY a w e l 1

known determinant inequality (see for instance [20]) and | | C 1 / 2 g C 1 / 2 | | H S

^ const ||gf || 2.
In the stability expansion there will be some extra graphs involving χAιg_,

namely

where — * — stands for p(iAig{ [the last line of (2.45)]. It is easy to see that these
graphs may be bounded by pf\\χΔιg- \\l times some other graphs with good power
counting, and this dependence is also majorized by the factor QxpO(\\piχA.g_ \\l) in
the bound for ^ ^ M 2

This completes the proof of Theorem 4.2. •

Corollary 4.3. For feL2^2), gk with \\\gk\\\ < GO, supp/ C Λ, s\xppgk C A (i = 1,..., n

) Π '.\Φ\2' (gk)) ύ c n ^ { n \ γ ' 2 { m \ γ i 2 x f l IIΛII Π I IIΛIII

Proof. This is a standard consequence of Theorem 4.2 which follows by a Cauchy
estimate. •

3. Infinite Volume Limit and Osterwalder-Schrader Axioms

In [1] it was shown that for g§:0

is decreasing in A (this follows directly from Corollary 6.3 of [1] by taking the
continuum limit). A simple and standard consequence is

Theorem 4.4. For an arbitrary sequence of rectangles AJΊR2 f

lim (e-° W

exists and is independent of the sequence (An).
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Corollary 4.5. (e~
:lΦl2:{g) + F{f)) is Euclidean invariant.

Corollary 4.6. The infinite volume Schwinger functions

\k=ί i=l

obey all the Osterw alder-Schrader axioms except possibly clustering.

The proof of the theorem follows from the uniform bounds of Theorem 4.2 and
the monotonicity result quoted above together with Vitali's theorem by well
known arguments (see [21]).

Writing g = g+ — #_, g + , #_ ̂ 0 we see that

is a normal family of entire functions that converges as n->oo for I m ^ =0, ξ2^0,
ξ3^0, therefore by Vitali's theorem for ξv ξ2, ξ3e<£ uniformly on compacts to a
limit independent of the sequence {Λn}. Corollary 4.5 follows then from this
independence of the sequence {Λn} and Theorem 4.1. Corollary 4.6 is also a
standard consequence:

Temperedness is Corollary 4.3 (the restriction on the supports of f , gk can be
eliminated by a density argument)

Symmetry is trivial
Euclidean invariance has just been proven;
Osterwalder-Schrader positivity has been proven in [1] (Theorem 5.5) for the

cutoff theory and carries over by taking limits. •
We close by remarking that we can also construct infinite volume expectations

of so-called loop observables
i iAμdχn

e

and string observables
iySAμ(x')dx'»

φ(x)e * φ{y)

The loop observables have in fact already been constructed because

j Aμdxμ = j Fd2x (G a reasonable region). The string observables can be treated
dG G

by methods analogous to the ones above, i.e., chessboard bounds and pressure
estimates coming from the stability expansion. We leave the details to the reader.

5. The Limit μ2->0

Here again the correlation inequalities of [1] come in handy. It was proven there
[Corollary 6.3 (1)] that for fg real,

is increasing and



384 D. C. Brydges, J. Frδhlich, and E. Seiler

is decreasing in the covariance of the measure dm(A) (this requires of course to
choose the counterterm δm2 independent of the covariance). Therefore these
expressions will have limits as μ2—•() (because as μ2 decreases .the transverse part of
the v4-covariance increases the longitudinal part is irrelevant because of Ward
identities), provided there is a uniform upper bound on (5.1). It suffices to prove
such an upper bound for

<e-M2:{9)>D,Λ0 te^O), (5.3)

where Λo is some suitably chosen rectangle, because by the infrared bound of [1]
(Theorem 4.3)

\ c /D,Λ==C \ c /D,Λ

and (e~:\φ\2:{9)yΛ decreases in A (for g^O) by correlation inequalities, as noted in
the previous section.

Not surprisingly, an upper bound on (5.3) independent of μ2 can be proven by
the stability expansion. There is a subtlety, however, because

δ PλPv

1/1.. Λ n

diverges as μ2->0.
In order to get an upper bound on expectations we need an upper bound on

unnormalized expectations and a lower bound on the partition function. The
upper bound is easy, since

is decreasing when the covariance Cμv oϊdmCμv(A) is increasing ([1], Corollary 4.2;
we should regard : \φ\2 :(g) as part of the interaction because Corollary 4.2 is stated
for partition functions).

It only remains to show that for a suitable Λo

ZD,Λo^s>0, (5.4)

where ε is independent of μ2 for, say, μ2 ^ 1.
There are three principles that facilitate the proof of (5.4). Denote by ZDtΛo(Cμv)

the partition function with half-Dirichlet b.c. and ̂ 4-covariance Cμv.
(a) ZDtΛo(Cμv) is decreasing if the covariance Cμv of the Gaussian measure

dmCμv(A) is increasing ([1], Corollary 4.2).
(b) ZDίΛo(Cμv) depends only on the values of Cμv(x) for xeA0.
(c) ZD>Λo(Cμv) does not change if Cμv(x, j;) is replaced by Cμv(x, j;) + aδμv. (a) and

(b) are clear (c) follows from gauge invariance if we note that the change

Aμ-+Aμ+]fidμ(cx)9 (5.5)

where (cl9c2) is a pair of independent centered normalized Gaussian random
variables just produces the desired change of covariance, by (b) the function (c x)
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may be cut off outside Λo. Now let

and let AN be the Laplacean with Neumann b.c. on d(2Λ0); P the projection in
L2(IR2) on the orthogonal complement of the null space of AN. From gauge
invariance and (a), (b), (c) we obtain the following string of (in)equalities:

= ZDrΛo((δμv + (-ΔN+ίΓ%dv)(-ΔNΓίP). (5.6)

The last expression contains a covariance that is already suitable for the stability
expansion. It might be somewhat easier instead to use the bound

o o o o o -2χAo. (5.7)

With this bound we obtain from (5.6) [using (b), (c) and gauge invariance]:

^ ^ ^ J-A + lΓ2). (5.8)

The last expression contains a covariance that is, up to more regular terms,
identical to the one used in Sect. 2. The bound ZDtΛo(Cμv) ^ ε > 0 follows now as in
Sect. 3. The bound (5.7) is not very hard to prove: By explicit diagonalization

N N N (5.9)

with some constant c that is uniform for Λ0QA, A a unit square

(5.10)

where R has a kernel that is C00 in %Λ0 [possible singularities lie on d{2Λ0)~\.
Integration by parts shows that for φeL2, suppφC/l 0

or
χΛoRχΛo^const{-A + lΓ2. (5.11)

Similarly

(-AN + 1)~2 = (-A + IΓ2 + R (5.12)

with a R that has a kernel that is smooth in §ΛL0 therefore again

A + lΓ2. (5.13)

(5.9)—(5.13) obviously imply (5.7). The fact that there are no infrared divergences, as
shown in this subsection, may be taken to be a hint of mass generation by the
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Higgs mechanism; note, however, that we did not use any special "double hump"
form of the potential. To really show the existence of a mass gap will require the use
of expansion methods. But we want to stress that we have here another instance in
which Counstructive Quantum Field Theory shows its aptness at dealing with mass
zero situations that are tricky in perturbation theory earlier examples are the Sine-
Gordon theory [22] (bare mass zero) and the critical P(φ)2 theory [23] (physical
mass zero).

Appendix

Estimation of Feynman Graphs

In this Appendix we prove the estimates on Feynman graphs that are used in
Sect. 2 to prove convergence of the stability expansion see the end of that section
for a list of the graphs in question. The Appendix is organized as follows: First we
sketch how to estimate the graphs corresponding to periodic and mixed (free-half-
Dirichlet) boundary conditions in terms of graphs which can be written in
momentum space with continuous momentum (momentum is discrete for periodic
b.c.'s) and momentum conservation at vertices. The main part of the appendix
proves a power counting lemma for graphs of this type, making use of the
machinery developed by Nakanishi [24] and Speer [25].

At the outset we need to make it clear that our estimates as stated will only be
finite when applied to graphs with the property that every subgraph is convergent
according to "power counting", i.e. the quantity K(G) defined in Lemma A.4 and
(A. 17) below must be strictly negative. In our stability expansion we have three
graphs or subgraphs which violate this condition, namely

and

n.
This pair is always to be added together. The result, denoted Πμv, has been
discussed in Appendices A and B of [2], to which the reader is referred for the
estimate

by which the graphs in (2.46) can be estimated directly. The first graph is finite only
because we work in a gauge wherein the A propagator is approximately
transverse. To see it is finite one can use the principle of "shifting" derivatives
which the reader will find described under (1) (b) below. We leave it to the reader to
verify that all graphs occurring in (2.40)-(2.47) which have
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as a subgraph are convergent according to naive power counting after the
derivatives have been shifted. We require this operation to be performed on all
such subgraphs before applying the estimates described below.

/. Reduction to Standard Feynman Graphs

a) Periodic boundary conditions: Here the momentum space Feynman integrals
([2], Sect. VI) become sums we will, however, still interpret them as integrals
where the momentum space covariances (= propagators) and factors of p coming
from derivative couplings are replaced by piecewise constant functions.

To be more specific, let A be the rectangle
{(xvx2)elR2\\x1\<l/2av\x2\<l/2a2}. Furthermore let χ be the characteristic
function of the interval [— 1/2,1/2]. We then replace the Fourier transform of the
periodic covariance of the matter ("Higgs") field by

2πnΛ2 (2πn0
(A.1)

We also have to consider photon lines with ί-cutoffs for periodic b.c. we may
replace their Fourier transforms by

V y(βlPl n\yhV2

(nun2)eZ2 \ Z 7 Γ / \ Z 7 Γ

2 π n Λ 2 ί l π n λ 2 J " 1 J β +

where

in a similar way we also make factors of p piecewise constant. Obviously the
periodic expressions (A.I), (A.2) differ from their free analogs only by a shift in the

2π . , 2π .
arguments; the shifts are at most — m pλ and — in p9.

a F l a
a2

The graphs we have to estimate also contain photon lines differentiated with
respect to an interpolation parameter sz, therefore we also have to compare
Cλv p — Cλv p with the corresponding "free" expressions.

The relevant bounds are contained in

Lemma A.I. For ^ ^
1

(1) Cp(p)^constC{p) = const-
(2π)

(2) Cp{p)-CpXp)<, const (Cf - C?') (ί>) (ί ̂  0 where we (fudging the difference
between μ and m) put CμViP = PλvCp etc.

Remark. The constants in this lemma depend on α1? α2.
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This lemma is a direct consequence of

Proposition A.2. For O ^ ί ^ l and

(1) C(p + δ)^ const C(p).

(2) e δ 2 2

(3) e

Proof. (1) follows from the fundamental theorem of calculus and the fact that the
logarithmic derivative of the right hand side is uniformly bounded.

(3) follows from the obvious fact that for 0 ̂  t ^ 1

is bounded below by a constant independent of t and pv

(2) can be seen as follows: The left hand side is

\

where we used (3) and the fundamental theorem of calculus. — - — ^ — = is
Pl + μ

bounded uniformly, as can be seen from the fact that

< const.
Lemma A.I shows that any absolutely convergent periodic Feynman graph

may be estimated in terms of a free one with half the value of the ί-cutoff. Vacuum
graphs are automatically proportional to the volume \Λ\ and this property is
preserved by the estimate that replaces periodic by free propagators.

b) Mixed (free-half-Dirichlet) boundary conditions: If there were no derivative
couplings in the model, we could eliminate the Dirichlet b.c. simply by the remark
that

(A.4)

both in the pointwise sense for the kernels and in the sense of quadratic forms (CF

is the covariance with free b.c).
To deal with the derivative couplings we need in addition

μ l (A.5)

and

| | q , C ά l ^ l for l ^ α ^ O . (A.6)
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(A.5) follows from (A.4); (A.6) follows from (A.4) combined with the fact that
operator inequalities such as (A.4) are preserved by the operation of taking
fractional powers of both sides. To see that these three estimates suffice we have to
make use of the "principle of shifting derivatives" through vertices which comes
from the fact that we use a covariance Cμv for Aμ that is "essentially transverse",
i.e., d A has a covariance that is so well behaved that it doesn't give rise to any
divergent graphs. To see how this works, let us look at the following example,
which is actually essential for the functioning of our stability proof: The graph

(A.7)

contains the somewhat dangerous looking expression

Sf(χ)g(y)cμv(χ - y)dμJVtycD(x9 y)dxdy.

However, integration by parts removes the derivatives from CD and moves them
onto the functions /, g, in addition producing some terms involving the harmless
covariance of (3 A).

In short, the "shifting of derivatives" is nothing but the application of the
trivial identity (to be read as an operator identity)

8μAμ + Aμdμ = 2Aμdμ + (d A)=-(d A) + 2dμAμ.

Let us apply this principle to the more complicated graph

Shifting the derivatives onto the horizontal lines produces the harmless graph:

- where stands for the covariance of d A - and the expression

\dxγ ...dx4CD(xvx2)
3(dμCD(x2,x3))

(dvCD(xvx4))CD(x3, x4)Cμv(x3 - x4)

which can be interpreted as the trace of a product of 4 operators with kernels C|,
d

μ

CD> CDC

μv> dvCD- N o w w e c a n u s e (A.5), (A.6) and then (A.4) to bound (A.8) by

( j dx1dx2C(x1-x2)
6γ2( f dx3dx4C

2(x3-x4)C2Jx3-x4))^2

\ΛxA j \ΛxA )

which has good power counting.
As a last example, which requires a slightly different argument we consider
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[which gives rise to two of the graphs of (2.40)]. We claim that this again can be
bounded by the analogous expression with free instead of Dirichlet boundary
conditions:

^ΊrC]l2{d,A}CD{d,A}CF_Λ{d,A}CD{d,A}C\j2

d, A}CD{δ, A}CD{δ, A}CD{δ,

where we used cyclicity of the trace and (A.4) four times in the quadratic form
sense.

These fairly typical examples should suffice to indicate how all our graphs with
Dirichlet lines may be estimated by similar ones containing only free propagators.
We leave it to the reader to check that this can be done for all the graphs occuring
in the list of Sect. 2.

There is another point, however, that has to be discussed: We estimated the
mixed b.c. graphs in terms of graphs with free propagators and a volume cutoff χΛ

at each vertex. Put differently, these graphs do not have momentum conservation
at the vertices because χΛ acts like an external field. They correspond to
expressions of the form

JG(Pι,...,Pv)χΛ(Pί)-UPy)

where G is the standard Feynman amplitude with external momenta P 1 ? . . . , P F

flowing in at the vertices.
In the case of periodic b.c. the estimates involved simply G(0, ...,0)|Λ|. Here we

use instead

V I V

Proposition A.3.
ί = 1 \i= 1

Proof. It suffices to show that

= const | |G| |J/l | .

S%P1)...UPv)δ[ΣiPi]d2VP = <x>™t\Λ\-

This follows from a simple scaling argument. •

The rest of this Appendix is concerned with estimating || G\\ x the main result is
contained in Lemma A.4 below.
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2. Estimation of the Feynman Amplitude G(P1, ...,PV)

For the sake of estimates we may eliminate all internal indices by Schwarz's
inequality, replacing e.g.

δ2..-ίfc2 + u2)"1feafcv Λ 2
- b y l r 2 , ..2k2+μ2

or
by

In the course of the stability expansion we had to introduce lines correspond-
ing to CQ + £, CQ~£ so we consider now more generally Feynman graphs composed
of "Higgs lines" corresponding to Ca

0 [or (p2 + m2)~α in momentum space] with
0 < α ^ 1 and "photon lines" with ί-cutoffs, corresponding to either sums of terms
of the form

or
(A.11)

depending on whether the photon line had a derivative with respect to an
interpolation parameter s or not.

For the sake of estimates we may set T = 0 in (A. 10) and t = 0 in (A. 11). If we
also assume for simplicity μ2 = m2 (obviously no real loss of generality) we are left
with two kinds of lines: Higgs lines and undifferentiated photon lines correspond-
ing to Cα (0<α:gl) and differentiated photon lines corresponding to

(A.12)

We represent now

and

C«by

f*0 b y

A typical graph would be for instance

where Pv . . . , P 4 are the momenta flowing into the graph at the four vertices.
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We need a little bit of graph theory which can be found in the book by
Nakanishi [24] (see also [25]).

A graph G is a collection of vertices {vv ...,%} and lines {lv ..., ZL} such that
for each line lk there is an initial vertex ι?.(fc) and a final vertex vf(k) (we actually
have two subsets of lines: {Zl5 ...,Zp} are the lines corresponding to Cβ

t\°',
{lp+1, ...,ZL} are the lines corresponding to Cα).

We have occasion to use Euler's formula [24]: If C(G) is the number of
connected components of G, V(G), and L(G) the number of vertices and lines,
respectively, and h(G) the number of independent loops (i.e., the first Betti number),
then

h(G) = L(G)-V(G) + C(G). (A. 13)

If G is connected, a tree T in G is a subgraph that is connected, has V(G)
vertices, and has no loops (h(T) = 0). A tree contains V(G)—1 lines.

We also need the concept of the circuit matrix C = (cίk) of a graph. This is a
L(G) x h(G) matrix defined as follows: Pick h independent (oriented) loops1. Then

1 if the ith loop contains line I with positive orientation

cu= <{ — 1 negative orientation

0 otherwise.

Now we can define the momentum space amplitude corresponding to a graph
G as follows: To each independent loop cf we assign a loop momentum ki9 to each
Cβ

t\° line Zf a momentum p. (z=l, ...,p), to each Cα line Zf a momentum pt

(i = p + 1 , . . . , L) and to each vertex vt an external momentum (ingoing) P.(i = 1,..., V)
such that

Pr= Σ C Λ + Σ «™Λ, (A.14)
ί = 1

or in matrix notation
(A. 15)

(We have changed our notation somewhat: We use now lower indices to label the
different momenta and upper indices for the components.)

The matrix A = (αrm) is partially determined by the requirement that the sum of
all line momenta and external momenta going into a vertex is zero (for details see
[24]). The amplitude corresponding to the graph is then given by

h(G)

i = p+1 ΐ = 1

Remark. When we do the stability expansion for the proof of Theorem 4.1 we will
encounter graphs where p[1] is replaced by cosθp^ + sinθp^ (i= 1,... ,P); and p\2)

is also rotated. A glimpse at (A. 16) shows that there is no θ dependence, so we may
safely replace θ by 0.

1 I.e., a basis of the first homology group of the graph
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The naive power counting (usually called the "superficial divergence") K(G) of
the graph G is given by

K(G) = 2h(G)-2 Σ *t-2Σβi. (A.17)
i-p + 1 i= 1

We can now state the main result of this Appendix:

Lemma A.4. Let G be a connected graph. Assume that for each subgraph H of

G,K(H)<0, and let K(G) = supK(H\ Furthermore assume that max(ί 1 ? . . . , ί
HcG

^ m i n ( ί 1 , . . . , ί j p ) x cons t , O^tl9...9tp<% and βt>0 (i = l , . . . , p ) , α f . > 0
(i = p + l , . . . , L ) . Then

where ε<-%K(G).

Proof of Lemma ΛA. First we rewrite (A.12):

and we also write
i oo

Postponing the t\ w, s integrations, we have to consider amplitudes where the
differentiated photon lines are interpreted as

and the remaining lines as

£-s(p2+m2) (i = p-\-15 . . . , L ) . (A.21)

The corresponding amplitude is

H(Pl9...9Pv'9fl9...9fp;u19...9up;sp+l9...9sI)

P P\ L 2 2 £ 2 4- 2\ ^ '{ (1)24- 2\

= Π j7$d2h(G)ke~''ssp + lSrPr μ e~r^UrPr μ e '^^Pr μ . (A.22)

Inserting (A. 14) or (A. 15) and using the Gaussian integration formula

twice, once with x = (fc(

1

1),fc(

2

1),...) and once with x = (kf\kψ,...) we obtain

\i=l Mi

Σ Sr-
(A.23)
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where

S = 2 Γ' = (A.24)

0

i-SC{CτSC)~1CτS)A

Θ \AT[_S + T - (S + V)C(CT(S + T)C) ~1 CT(S + T')]A. (A.25)

In [24] the following remarkable formula is proven:

Proposition A.5. det (CTSC) = ^ [ ] (SjMΓ) where the sum is over all trees T of G ϊ
T IJφT

labels the lines corresponding to &t'°, I the Ca lines.

We need two more propositions:
Proposition A.6. For 0^ί ' 1 ? . . . , ί ^ f , qelR, uί9 ...,up, sp+v . . . , 5 L ^ 0

dk

- (det Cτ(S+V)C)-q

< const-
1

-{άetCτ(S+T)C)-q.

Proposition A.7. For 0 ^ ί i , . . . , ί ^ | , u 1 , . . . , M p 5

δk

Two obvious corollaries

Corollary A.8.

Corollary A.9.

K
are

P

Π
ϊ = l

<

,^ueι

e~(P,MP) <^ POTT\t

i=\ Ut + ί'

1

p 1

-const Π - ^ ( Σ Π
i=i wf + rf \τ ιj'φT

v π Φ,+ίί.Λ"1/2ί
Γ 1,1'φT
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Proof of Proposition Λ.6. By Leibniz' rule

dk

395

{P} k=ί

Π j - det (CT(S + T)C) (det CT(S + T)C) ~q ~ "m,

w h e r e t h e s u m is o v e r p a r t i t i o n s {P} = {PV ...,Pnp} of t h e set {iv ...,ik}. N o w
since b y P r o p o s i t i o n A.5 d e t C Γ ( S + T')C is a p o l y n o m i a l in u1 + t'1, ...,up + t'p w i t h
pos i t ive coefficients

— det CΓ(S+T)C ^const [] K + ί j '

which, inserted into (A.26), yields Proposition A.6. •

Proof of Proposition Λ.7. From the definition (A.25) of M it is clear that M ^ O

(using the polar decomposition of ]/SC it is seen that ]/SC{CTSC)~1 Cτ ]/S is the

projection onto the image of ]/SC). Furthermore

Q(f) = MdQtCτ(S+V)C

is a polynomial of at most first degree in each variable t'iί9 ...,tp; it follows (by
taking expectations) that all its coefficients must be positive semidefinite matrices.

Because of Leibniz's rule it suffices to prove

k 1
^ const [ ] Γ{P,MP).

Again by Leibniz's rule and Proposition A.6 this will follow from

K-K
But this is true because (P9QP) is a polynomial with positive coefficients in

Now note that the relation between the amplitudes G and H is

G = Π
i = p+ί

Π ϊ
.ί= 1 0

1 L

Π

ίkW (A.27)
i = l 0 /

Insertion of Corollary A.9 into this formula produces a bound for G. It is
convenient, however, to break up the region of integration over uv ...,up = u,
s

P+v -->SL = S a s follows: Let π be a permutation of {1, ...,L}.
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Define

p p }. (A.28)

It is clear that (J £ π =lR+ EπnEπ, is a null set for π φ π ' .
π

By Corollary A.9 and (A.27) we now have

\G\£ const YJFπ (A.29)
π

with

F.= n i ή 4

• Π ί-'

Σ π w )"1/2(Σ π ^ + ί ;
Γ l,lrφT j \T IJ'φT

The idea is now to estimate the sum over trees by the contribution of a single
"leading" tree T which leads to integrals that are easy to estimate. The possibility
of finding such a "leading" tree is the content of

Proposition A. 10. To each permutation π of {1,..., L} there is a tree Tπ such that for

Π sfr.^ Π W ( A 3 1 )
l,l'eT 1,1'eT

Proof There is an obvious choice of a tree with the smallest possible values of
sl9 uv it is easy to see that it obeys (A.31). We leave the details to the reader. Π

For (u,s)eEπ we now use the estimate

and similarly

Σ Π Φv + t'r)^ Π Φv + tι) (A.32)
T l,l'φT 1,1'φTπ

Σ Π W ' ^ Π W- (A.33)
T IJ'φT l,l'φTπ
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Inserting this into (A.22) gives

F^ Π 4 A]4) AJ
i = p+ί 1 \ai) i=l I \Pi) Eπ

π Γ'π f π k π ^ (A 34)
= p + l i = l i = 1 0 i=lui^~Li

• Π (¥r)""2 Π
l,ΓφTπ IJ'φT

μ2 Σ s t -μ 2 £ («t

ί = p + 1 i = 1

Next we estimate the result of the ί'-integration using

Proposition A. 11.

t / 1 \l+δ f-\\δ + ε

T i l 7 I I

J L_L*'J
 t = c o n s I d

if ε>09 (5^0, u^O, ί^O.

We omit the easy proof. Insertion of this proposition in (A.34) yields

π^const J dudse-μHΣUι + Σs^
E" ~ ~ (A.35)

•Π^ΓK -1-^1 Π Mr)"1

ί ll'φTl,l'φTπ

for some e f >0 (z=l, ...,p) to be chosen presently.
The right hand side has the form

IΛ \l-qt

const j dΠ H
\ 0 ^ i ; i ^ ! > 2 ^ . . . ^ i > i , i = l \ υ ί

after the variables wπ(1^ ...,sπ ( L ) are relabelled as υί9...,υL. By discarding all
exponentials except e~μ VL and performing the integrals in the order vvv2,..., we
see that (A.36) is convergent provided

inf £ ^ > 0 . (A.37)

We compare (A.36) with (A.35) in order to find the q?s and thereby see that (A.37)
reads

mf (X«. + Σ(ft - %> - L(Hr\TJ) > 0, (A.38)mf (X«.
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where Hr is the subgraph of G that contains the lines associated to the first r
variables in the list Mπ(1)5Mπ(2), -..,sπ(L) and the sums extend over the α's and /Γs
associated to the lines in Hr. We relate this criterion to power counting by noting
that

because by the definition of Tπ (see Proposition A. 10) Tπ intersects each connected
component of Hr in a tree of that component [below (A. 13)]. By the Euler relation
(A. 13), L{Hr\Tπ) = h{Hr) and so (A.38) can be rephrased as

(A.380

So we collect (A.35) to (A.38'), use our hypothesis on tί9...,tp and find that

Fπ<> const t\ if ε < — | K ( G ) .

Summing this over π (A.29) completes the proof of Lemma A.4. •
From the reduction carried out earlier in this Appendix it follows that Lemma

A.4 implies the following theorem (that contains what was used in the proof of
Proposition 2.18):

Theorem A. 13. Let GΛ be a connected vacuum Feynman graph with free, periodic or
mixed b.c. in a rectangle Λ. Assume it is convergent according to power counting

d
{K(G)<0) and contains at least one covariance of T—A Then

dsi

\GΛ\£const\Λ\ή

for some δ>0.

Remark. The reader should refer to the discussion of "shifting derivatives" at the
beginning of this Appendix before applying this theorem to the graphs produced
by our stability expansion.

Proof This is just a compressed formulation of the content of this Appendix; note
that condition

max(i1? ...9tp)^min(tί9...,ίp) xconst

occurring in Lemma A.4 is trivially fulfilled if we choose p = 1 (if there is more than
one differentiated line we may estimate it by Cα). The condition 0 ^ ί l 5 ...,tp^
also occurring there is irrelevant here because GΛ is certainly bounded uniformly
in ί, •
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