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On the Existence of Feigenbaum's Fixed Point

M. Campanino* and H. Epstein

Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France

Abstract. We give a proof of the existence of a ^2, even solution of
Feigenbaum's functional equation

where g is a map of [— 1, 1] into itself. It extends to a real analytic function
over R

1. Introduction

In this paper we give the details of the work described in [1] by the same authors
and Ruelle. While the latter is not responsible for possible mistakes in the present
paper, he is, of course, a coauthor of the rest. Our purpose is to prove the existence
of a ^2 solution of Feigenbaum's functional equation.

0M=-τ

° (1)
0(0) = 1,

where g is a map of the interval [— 1,1] into itself. This equation and its solution
play an important role in the theory, initiated by Feigenbaum [7] concerning
universal properties of one-parameter families of maps of the interval. Excellent
introductions to this theory can be found in [7-9] and particularly in several
works of Collet, Eckmann, Koch, and Lanford [2-5], so that we shall give no
further details. It is important to note that, to each ε > 0, corresponds the problem
of finding a solution of (1) behaving, for small |x|, like 1 —const |x|1 + ε: for
sufficiently small ε the problem has been fully and satisfactorily solved by Collet et
al. [5], who show that there is an ε-dependent solution g£ = f ε ( \ x \ ί + ε ) , fε analytic.
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The problem ε=l, (this is implied by requiring g to be Ή2 and g"(0)<0), is of
particular importance. Lanford has given a solution (see [11]) making essential
use of computers. In view of the interest of the subject, it seems to be worthwhile to
present the alternative solution described in this paper.

2. The Problem to be Solved

We look for a %>2, even solution of (1). From (1) it follows that

λ0=-g(l). (2)

Let us define, for any ̂ 2 real function φ on [— 1, 1], and any real λ with 0 < \λ\ ̂  1,

m(φ,λ) = Ml1

λoφoφoM_λ,

with

M _λx= — λx,

i.e.

(m(φ,λ))(x)=-^φ(φ(-λx)}. (3)

For any real μe [ — 1, 1],

M- Xψ, λ)Mμ = m(M~ iφMμ, λ) . (4)

If φ is even, so is m(φ9 λ). Suppose that φ is an even, concave fixed point of m( , λ)
with a maximum at 0, φ(0) = μ, 0<μ<l. Then M~lφMμ takes the value 1 at 0.
However the condition φ(0) = 1 is not preserved by the map m( - , λ). This can be
remedied by several methods, in particular by using the C.E.L. map [4],

(5)

We shall instead deal with ω(φ, λ) defined by :

(ω(φ9 λ))(x) = - -λφ(φ(-λx))Λ- + 1 , (6)

(where Q<λ< 1). In fact we concentrate on values of λ in a small interval / around
λ = OA, (as suggested by [7]) and find, for every λ in /, a solution χλ of the
equations

ω(;α,iH;α, xΛθ)=ι. (7)
We shall prove that χλ depends continuously on λ, and that χλ(l) + λ takes
opposite signs at the ends of I, hence the existence of λ0el such that χλo = g
satisfies (1). Note that every solution of (1), (even or not) satisfies g ( l ) + λ0=Q and
is thus a solution of (7) with λ = λ0. It will be seen [Eq. (10)] that #"(0)φO implies
gfW=-λ~1.

The fact that g should be sought among even functions is justified in the
previously quoted works. It can also be supported by the following arguments.
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Denote h(x) = g(x) — g(x) and suppose that, for some xl >0, /z(x1)>0. Then

Recall that #'(1) =—λ0

1. For any ε > 0 there is a (5 > 0 such that X j < δ implies that
the last integral is, in modulus, <(l+ε)A^ 1 and therefore

This leads to a contradiction if h is ^3, since /z^xJ^^/loX^/z"'^. In this case
there is δ > 0 such that h(x) = 0 for all xe [ — δ, <5]. Then using repeatedly the above
inequality, it follows that h(x) = 0 everywhere.

3. Method

For every λ in / (a closed interval around 0.4, 0</< \, to be determined later), we
try to find a solution χλ of (7) within the set <f0 of even, ^2, concave functions φ
with φ(0) = 1. In fact this subset will soon be considerably narrowed down so that
functions φ considered will satisfy: <£'(0) = 0, φ"(0)<0, </>(!) <0, </>"(x)^0, φ'(x)^0
for all xe[0, 1]. Equation (7) implies

(8)

x) . (9)

Since we require χ^(0)<0, χλ cannot be identically equal to 1 and, moreover,
setting x = 0 in (9) gives

j&iH-*'1- (10)
The method we use consists in substituting the map φ-*ω(φ,λ) with a new

mapping φ1^τλφί = φ2, obtained by solving, for given φ l 5 the functional equation

φ2(x)= - φ1(φ2(Ax))+ + 1 . (H)

Here φ1 is ^2, concave, even, and φ1(0) = ί . Then any solution ^>2 of (11) also
satisfies φ2(0)=l. However (11) implies

Hence a necessary condition for the Eq. (11) to have a solution with φ"2(ΰ) φO is
that

</»;(!)= -A-1. (12)

On the other hand Eq. (11) is not determined since, for any solution φ2 and
^l, φ2(ρx) is also a solution. Thus we define the map τλ on the set of φί
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satisfying φ'ί(l) = —λ~l by requiring φ2 also to satisfy

φ'2(ί)=-λ-1. (13)

It is convenient to define the following new functions

F(x)=^[01(l-x)-01(l)], (O^c^l), (14)

λ 2 2 ' = =

ψ(x2) = 1 — φ2(x) (16)

Given F, satisfying F(0) = 0, φ^ can be reobtained by

φ ι(x) = λ[_F(l — x) — F(l)] +1 (17)

and, similarly

Equation (11) now translates to

ιp(t) = F(ψ(λ2t))9 O ^ f ^ l (19)

whence

ψ'(t) = λ2F'(\p(λ2t))\p'(λ2t). (20)

Because of (16), ψ must satisfy

φ(0) = 0 (21)

and hence

Noting that (£2(0)= — 2t//(0), we recover the necessary condition (12) in the form

F(0) = ;T2 (22)

and the determining condition (13) takes the form

V / ( I )=TT- (23)

The map τA has now been transformed into a map Tλ, TλF = G, defined as
follows:

1) given F, a real ^2 function on [0,1] satisfying F(0) = 0, F(0)= -ry, find a

solution ψ of the equations:

ί
1

s

2) G(x)=[v(l)-vK(l-x)2)]. (25)
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A fixed point of Tλ, i.e. an F such that G = F defines a fixed point of τλ and,
consequently a fixed point χλ of ω( , λ\ and conversely.

In the following sections, we shall obtain subsets of function space where Tλ is
well defined and which are mapped into themselves by Tλ. It will then be proved
that, restricted to certain such subsets, equipped with a suitable metric, Tλ defines a
contraction.

4. More Precise Statement of the Problem and First Estimates

In this section, λ is fixed, with 0 < λ < 1. F will be a ̂ 2, concave, increasing function
on [0,1], satisfying:

F(0) = 0, F(0)=-i, (26)

O^F(x), O^F'(x), (27)

hence

- £ . (28)

The function t/; must satisfy

V>(0 = fW2ί)), φ(0) = 0, v/(0)ΦO, φ'(l) = (2λ)-1 .

We try to determine tp in the form

ψ(f)=Ψ(at), (29)

where α>0 and ψ satisfies

ίΨ(t)=F(Ψ(λ2t))9

Furthermore there must exist a number α>0, in the interval where Ψ exists,
such that Ψ'(a) = (2(x.λ)~1. In this section we give sufficient conditions for the
existence and uniqueness of (30) :

Lemma 1. Let F be a real %>2 function on [0, α], (α>0), satisfying there

and hence

Then
(i) There exists a unique Ή2 function Ψ on [0, aλ~2~\ such that

= F(Ψ(λ2t)) for all ίe[0,αλ~2],
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and this function satisfies

(ii) If F is N times continuously differ entiable on [0, a], JV>2, then so is Ψ on
[0,αA-2].

(iii) !F depends continuously on F in the Ή2 topology.

Proof. Let Jfv be the convex set consisting of all ^2 functions Φ on [09λ~2ά]
verifying Φ(0) = 0, Φ'(0) = l, O^Φ(ί)^ί for all ί. The mapping

) = F(Φ(λ2i))

is well defined on Λr

1 and maps Λ^ into itself. For Φ1,Φ2eΛ/

1 denote

Then

This demonstrates that τF has at most one fixed point in Jfv. Let

r̂ = {Φe«72([0,αλ-2]):O^Φ/(ί)^l,Φ"(ί)^0 for all ί,Φ(0) = 0

and for Φ1,Φ2eeyί//>

rf1(Φ1,Φ2)= sup r^Φ w-Φ^ί)!.
O ^ ί ^ α A - 2

Then, using (τFΦ)'(t) = λ2F'(Φ(λ2f))Φ'(λ2t\ one finds

Denote

Ψt(t) = t9Ψι(t) = F(λh)9...,ΨnM^ (31)

Then, for n ̂  1

^A2*) , (32)

', !(A2i) . (33)

It follows by induction that ΨneΛ^ for all n. Moreover, for π^2,

Therefore the two sequences {Ψn}, {Ψ'n} uniformly converge to Ψ and Ψ',

respectiv

for all t,

respectively, with ¥"(f)= — Ψ(t). Moreover it follows from (33), by induction, that



Feigenbaum's Fixed Point 267

More generally, suppose that Fe<#N([Q9ά]), N^2. Then, for 2^r^N, n^l,

ψV(t) = λ2rF^(Ψn_,(λ2t)) Ψ'n^(λ2tY + λ2rF'(Ψn_ ,(

+ λ2'δ_ (F^(Ψ_(λ2t)

where Sr_ί is a polynomial in the quantities indicated, with l^q^r— 1,
1 rgs rgr— 1. It follows from this, by induction on r and n, that there is, for each
r= 1, . .., TV, a number Mr (depending only on F) such that, for all n, and all ί,

Suppose now that it has been proved, for all p^r— 1, (l^r^JV), that
converges uniformly to a limit (denoted ψ(p)) as rc— »oo (then this limit is the pth

derivative of !F). Fix ε > 0. By the uniform continuity of F(s), (0 :g s :g r), and the
induction hypothesis, there exists v(ε) such that, for m ̂  n ̂  v(e)

\λ2rF^(Ψn_ ,(λ2ή) Ψ'n_ ,(λ2tγ + λ2^r_ ,(F^(Ψn_ ι(λ2t)), Ψ(«ϊ_ ,(λ2ή)
- λ2^\ψm_ ,(λ2t}) Ψm.,(λ2tγ-λ2^r_ ,(F^\ψm_ ,(λ2t}\ yji ^2t))\<s

and, as a consequence,

II «/(*•)_«/(»•) II <p_L y j 2 > ' | | /Γ" II \\ψ _ψ | | /Lf
II ^n : r

m l l o o = δ ^ Λ II Γ l l o o l l ^ w - 1 ^ m- 1 II oo 1V1 r

i ;2(ι -l) | iψ(r) ψ(r) , ,
^Λ H^π-1" ^ m - l l l o o

For m^π^v1(ε), the second term is rgε and then

2ε

By choosing m^n^v2(ε) this can be made smaller than 3ε(l — λ2(r 1}) x. This
proves parts (i) and (ii) of Lemma 1. We do not give explicitly the proof of (iii)
which uses the same methods.

Corollary 2. With the same hypotheses as in Lemma 1, assume that, for some τc>0,
and all xe[0,α],

Then, for ίe[0,αλ~2],

where the series on the r.h.s. (which has negative terms) is uniformly convergent.

Proof. The hypotheses imply that F'(x)^.λ~2e~κa for all xe[0, a] and
^(ί) ̂  e~nκaψ'(λ2nt) for all ίe [0, aλ~ 2], all n ̂  1 hence, by choosing n large enough,
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Ψ'(t)>κ'>Q for all tε[Q,aλ~2']. In the expression (valid for all N^ί)

,
ψ'(t) - F(Ψ(λ2t)) Ψ'(λ2t)

Ff(Ψ(λ2nt)) Ψ'(λ2Nt)>

the last term tends uniformly to 0 as N -»oo.

5. Definition of the Mapping Tλ and Invariant Subsets

Given F satisfying the condition of Lemma 1, suppose that there exists α such that
0<α<A~ 2 and aΨ'(a) = (2λΓ1. Then TλF = G is given by

(36)
A

and satisfies

(37)

^)2) - (38)

F"(x)
If, furthermore 0 ̂  — < K for 0 ̂  x ̂  α, we have (using Corollary 2)

We shall now determine subsets of ^2([0, 1]) where the above conditions are
satisfied and which are mapped into themselves by Tλ. Denote

ί-x ^ '= F'(x)=l-x

F"(x\ 1
, for all xe[0,l], and

where 0<A<1, 0^^, 0^c7, (/ = 1,3), ^+^^1, c1+c3^l.
Let F belong to this set. From /12F(0) = 1 and

for Q^x^A}, (40)

(41)
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it follows that, for Q^x^
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X*

"~4

(42)

Since the r.h.s. of (41) is ^0, the function H(x) is decreasing. On the other hand we
have

Ψ'(t)= γ[ (λ2F'(Ψ(λ2nt)}}
« = ι

(43)

(Proof.

ψ'(t) = λ2F(Ψ(λ2f)}Ψ'(λ2f) = (λ2F'(Ψ(λ2nt)))Ψ'(λ2Nt).

Since Ψ'(λ2Nt)-+l as N->oo, the result follows: note that \λ2F'(Ψ(λ2nή)-l\
<^2(«- 1">\\F"\\ ̂  so the infinite product is convergent.) Hence, since H is decreasing,

Ψ'(t) ^ Π H(Ψ(λ2nt)} ^ Π #(^2"0 for f e [0, Aλ~ 2] .
n = l «= 1

Note that, for all t, the same holds with c1 =c3 =0, i.e.

GO ΓJV - 1 -I 1

J. ±

(44)

n=l

N-1

In particular,

and therefore

Returning to (44), we find, for 0 ίΞ ί :£,

, r , ,x ίπ « ,2 , ^2ίU/'//Λ^> 1 1 / 1 / t\ PYIΛ
\ / :̂ I I \ — / _r "̂  Λ~5

U = l 1 — A

4
3 f

A 2 t
l-l2'

λ2t

(45)

(46)

(47)

λ2t

2(1+A2)

(48)

Because H is decreasing, Φ(ί, A) is a decreasing function of ί for fixed λ.
From (48) it follows that

A IA
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If the r.h.s. is >yό then, since tΨ'(f) = Q at ί = 0 and is continuous, there is at least

one value of t in ]0,^4^"2[ for which tΨ'(t) = —: we denote α the smallest such

value. (In fact under the conditions we shall use, it will be shown later that this
value is unique.) A sufficient condition for Tλ to be defined on Jtλ(£l9 /3, cί9 c3, A) is
that:

Criterion 1

2A IA
-λ -^"Ί— (49)

We shall concentrate on a small interval / of variation for λ, given by

Making c1 =c3 =0, Criterion 1 becomes

2A
λ2A)...(l-λ2nA)...^l. (51)

A

For this it is sufficient that, e.g.

2A,Λ

λ " " ' \ ί-λ

The l.h.s. of (51) [as well as of (52)] is clearly a decreasing function of λ for fixed A.
The inequality (52) is satisfied for .4^0.32 and λ2 = Q.l66 hence for all λεl: thus
we need only consider values of A ^0.32, hence od2 ̂ 0.32. Under these conditions
it follows from (39) and Lemma 1 that

(53)

For future purposes we need smaller values for A (this will later be essential to
show that DTλ is a contraction) and then it is rather delicate to obtain values for
^1,^3,c1,c3, and (sufficiently small) A such that «^A(^1,/3,c1,c3,^4) is mapped into

Ψ"(t)
itself by Tλ. For this, in view of (39), we need upper and lower bounds on —

Upper Bound. Let cl9c3,A and λ be fixed with 0^c l 5 0^c3, c^+c^
and assume F satisfies the hypotheses of Lemma 1 and (41). The r.h.s. of (41) being
an increasing function of x, using (34) and: Ψ'(t)^i, Ψ(t)^t, we find, for O gf
<Aλ~2.

Ψ"(t\ ^ \ } 1
-~Γ^ Σ λ*\ΓΊ?--cί(l-λ*ί)-c3(l-λ*tr\. (54)

* \f) n = l [ί — Λ I J

Note that for n^l, λ2nt^A£l, and hence (l-/l2"ί)3^l-3/l2"ί so that
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λ2nt λ2nt

\-λ2nt l-λ2"t~
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with

λ2

(In practice we choose N = 3.)
Equation (39) now shows that, for

where

2A 2A
— 2 0 = ^ 2 (1 — Cj — C3),

"$—υ 3V

= 2A

— β
A4 X

(55)

14
c + 3C tf-l χ4n χ4N

l-λ4

 n~0 (l-λ2nA) (l-λ2NA)(l-λ4)

ww

(57)

(58)

(59)

(60)

The functions f( and/3 are both increasing in λ2 for fixed yl, c1;c3. (In practice we
choose: Λf = 3.)

Lower Bound. Assume £^{^c^,cy A). Then, for O^x^A,

(61)

Using Ψ'(t)^Φ(t,λ) and

P(x) is increasing in x,

A2ί
, we have, for t<Aλ 2, since

(62)

where

. = M. 1-
2(1-A2)

2\ / ' " "
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Using (l-j)3^l-3y for O^y^l, we get

~/t J

The coefficient of the term in u^ is positive and this term may be dropped. Thus

Θλ2u

We choose

(63)

(64)

so that the last term in (63) is positive and can be dropped:

P(*n) ̂  (1 - ̂  - 4) + un(ί -:

Note that, according to (64)

ZA-A[2(Γ^)+ί

We now get, for t^Aλ~2,

* W n— 1

and, taking into account the fact that Φ(ί, λ) is decreasing in ί,

ψ"(t\
l-ZA)l2t]

1 — Λ
-ZA)

(65)
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where

Φ(A,λ)+

L/ J _ l / ϊ

λ2

l — λ2

r ;4
\rh(Λ n_i_

5 (66)

fήTί

Integrating (65) yields

V
(68)

Hence α, for which a = (2λΨ'(a))~1, must satisfy:

1 / V
α^ — expα 17 + α—

.Z/l

or, denoting ζ = 2λa, u = (2λΓ1U, υ = (%λ2ΓlV,

+ ι;ζ2). (69)

Since, in the cases we consider, /1 ^c1? /3 ̂ c3, so that Jiλ(f^^,c^c^A) is non-
empty, and Criterion 1 is verified so that α exists with a<Aλ~2, the graphs of the
functions ξ^ξ and ξ^>exp(uξ + vξ2) must intersect at two fixed points of the
second function. The lower one (denoted £_) is stable and is a lower bound for (,
verifying ζ_ >1. For any £ 0 <ζ_ the sequence {ξn} given by

iB = exp«_1+<2_1) (70)

is increasing and tends to ζ_, so that ξN is a lower bound for ζ _ . In practice, for
any ξ0 such that 0<£ 0 <C + , if

then ξ0<ξ1 <C-5

 and ^i is a lower bound for £_. Alternatively, one may choose
ξ0 = 1, and stop the sequence (70) at some arbitrary N. In this way one obtains a
lower bound denoted ζmin for ζ_ and hence for ζ, so that

(f t c c A λ) (?1)

Hence, for Orgx<l ,

-G^^Γ^-^1-^-^1"^3' (72)

where

CΊ —cΊ(^ι^3icι>c3>A,λ) = 2amiϊlU = 2ζmϊnu, (73)
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In practice, to obtain, for some fixed value of λ, a set ^A(/1X3,c1,c3) which is
mapped into itself by Tλ, one proceeds as follows :

Procedure 0. 1) Select cl9 c3 and A such that (for the value of λ under consideration)
Criterion 1 is satisfied.

2) Compute ^ and ̂  and fix ̂  ̂ ', /3^3, with 0</1+/3<1 (if this is
impossible, the trial fails).

3) Compute U, V, αmin, c'1? c3. The trial is successful if

Interval Calculations (Procedure 1). It will be necessary to be able to obtain sets
^A(^1X3,c1,c3,^4) which are mapped into themselves by yλ for all λ in a given
interval J, say p^λ2^b. This can be done using the above calculations as follows :

1) Fix cl9 c3, and A such that Criterion 1 is verified for all /le J: for this it is
sufficient that Criterion 1 be satisfied for λ2 = b.

2) Then for all F satisfying the conditions of Lemma 1 at some λe J and (41) the
upper bound (58) holds. Since £[ and^3 are increasing functions of λ2 we fix

3) Let FeJKλ(Sl9S39cl9c39A)9 F'(Q) = λ~2 with p^λ2<^b. Then the bounds
(65-69) hold. We now note that:

a) for fixed A9 c1? c3, λΦ(A, λ) and λΦ(λ2A, λ) are increasing functions of λ: to
see this note first that the exponential appearing in Φ(A9 λ) [formula (48)] has been
obtained as

exp Σ [^[l-(l-^2^)2] + χ[l-(l-^2n

n = l L ^ ^

and is therefore an increasing function of λ2. Consider now

f[(i-λ2nA).

Its logarithmic derivative in λ2 is :

= ̂ -(1-^X1-^ ̂ -(I^>0 fc^° «*

The same argument works for λΦ(λ2A, λ).
b) λ(l — ZA) is an increasing function of λ: The derivative of Z with respect to

/I2 is (for fixed /15 *f3) equal to 0 if Z = 0, or to ——-y- 1 + -—-̂  , hence always
2(1 — A ) \ 1 — A /

inferior or equal to this last quantity.
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Hence

*λ(l ~ ZΛ} - l ~ ~ A ~
This has the sign of

(l-A)(l-λ2)-lλ2A--^-Σ^(l-A)(l-λ2)-^Aλ2>Q for λ2 < 0.25, A< 0.3.
1 — A

c) From this it follows that

2 l ί-λ2

1 — A

(75)

(76)

are (for fixed c1,c3,/1,/3,^l) increasing functions of λ, hence so is the lowest
solution ζ_ of C_ = exp(w£ + i;C2) [the graph of ξ-*exp(uξ + vξ2) rises as u and v
increase]. The result of this is that if λe J, u9 v and Cmin can be computed with λ2

replaced by p, and therefore also c\ and c'3. However note that αmin must be
estimated as

Improvement of Constants at Fixed Points (Procedure 3). Let λχ ιy3,c l5c3,>4 be
fixed such that Criterion 1 is satisfied and ΓA maps Jί^/^c^c^A) into itself.
Assume FfeJίλ(t^ /3, c l 9 c3, ^4), af is the corresponding value of α, and TλFf = Ff.
Then the bounds on Ff can be made more precise as follows. Pick λ2amϊn<AQ<A.
Ifttf>A0λ~2, then αmin in the expressions for c\ and c3 can be replaced by A~2^0,
leading respectively to ό^ and c(

3

υ and the bound

since Fy = T.Ff. Then a new A1<A can be found such that c^\ c(

3

1} and ^41 satisfy
Criterion 1, so that λ2αf^A1. This, in turn can be used for a new evaluation of/{2),
/3

(2), and (again using A0λ~ 2 instead of αmin), c(2\ c(2} etc ..... One thus constructs a
sequence /{w), /^ c ,̂ c3"

}, ^4Π. If for a certain ?ι one reaches an An<A0, there is a
contradiction so that we must have αf^A0λ~2. lΐ An>A0 then either ocf>A0λ~2

and then α Γ <^4 M yl~ 2 and the boundsj — "

ί-x

hold, or αf^A0λ~2 so in any case: αf^Anλ~2. This procedure can be used to
obtain a better upper bound for uf. Note also that this better bound can be used to
improve the bounds on Ff: from (55), (58) and the fact that ̂  ̂  4/3 = 4 ^ follows
that

"
^X1-*)-^!-*)3. (78)
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where 2

4,/ = ̂ L^u ^3,/ = ̂ i~4> Af = An. (79)

This remark will be used later.
In the sequel we shall say that ^λ(fl9^cl9c3,A) is stable if c'^c^ c'2^c3,

^ι^4' ^3=4' tnese new numbers being calculated according to the procedures
described above (the Criterion 1 being always assumed to be satisfied). Clearly
under these conditions, Jt^t^ ^ c l 5 c3, -4) is mapped into itself by Tλ.

6. Further inequalities

In this section F is supposed to belong to some stable Jiλ(f^ /3, c1? c3, A) with
^4 ̂ 0.3, and to be three times continuously differentiable: then so is G and we have
the formulae

Ψ"'(t) = λ6F'"(Ψ(λ2t))Ψ'(λ2t)* + 3λ6F"(Ψ(λ2t))Ψ"(λ2t)Ψ'(λ2t)

+ λ6Ff(Ψ(λ2t))Ψ'"(λ2t), (80)

x)2). (81)
A A

Hence

Ψ'(t) F(Ψ(λ2ή) ^ "

Ψ» (Vt) (82)

From these, it is useful to form the following combinations (this is the Schwarzian
derivative):

ί\I/"(ι-\\ 2

), (84)
Ψ'(t) 2\Ψ'(t)

F'"(x) lF"(x)\2

where (SF)(x) = —-— — f . Defining similarly SG, we have:
F'(x) 2\F'(x)]

(SG)(x) = - -j + 4α2(l - x)2(SlF)(α(l - x)2). (85)

Similarly

ϊ-(ί) _ lψ"(f}\2

 = \F'"(Ψ(λ2f)) _ ίF"(Ψ(λ2t))\2]

Ψ'(i) \Ψ'(t)j V ' [F'(Ψ(λ2t)) \F'(Ψ(λ2t))] \

F'(Ψ(λ2t)) - "

(86)[Ψ'(λ2t) \ψ'(λ2t)
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G"(x)

G'(x) \G'(x)
zα

f"(t)

W

(87)

We note that formulae (80), (82), (84), (86) continue to hold if Ψ is replaced by Ψn in
the l.h.s. and by Ψn-1 in the r.h.s. (n^l). Therefore if we assume that SF^O on
[0, 1], it follows by induction on n that SΨn^O and, letting 77— »oo, SΨ^O so, by
(85), SG^O. Thus: the subset of Jlλ(^, /3, cί9 c3, /I) formed by functions F with
S^7 ̂  0, (SF = Schwarzian derivative of F), is mapped into itself by Tλ. If F belongs
to this subset, then

Ψ"(t)

and

λ4t A
< __ i

λ2A

for t = α(l-x)2. But, for ί^α^

0£ t «"(')< ^ ,
«f'(t) - 1 - A 2 t (1 - A4ί)(l - λ2) ~ 1 - A ' (1 - λ2A)(ί - A2)

[see (54)]. For A^0.3, A2^0.166, this is <§ so that G'"(x)^0 and:

(88)

(90)

Hence (for such values of the constants) the subset of functions in Jt,_ with
negative Schwarzian derivative is mapped into the smaller subset of those with
negative third derivative. Assume now that F" ^ 0. Then we have

"'t\ ί " 2 so (92)

Indeed, from (86) and F":gO, it follows that

(93)(93)

We claim the last term in (93) is ^0:

F"(Ψ(λ2t)) Ψ"(λ2t)
( >+

F'(Ψ(λ2t))

F"(Ψ(λ2t))

Ψ'(λ2t)
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F"(x)
since — is an increasing function, this is bounded below by

Γ (X)

F(«P(λ2f))[ v ; 1-λ2

and

λ2

 Λ λ2 ,„„ _ Λ 2λ2

Thus, for all ίe[(U-2]

σ(ί)^A4σ(A2ί)
hence

sup σ(ί)^4supσ(ί), (l-/l4)supσ(ί)^0. Q.E.D.
t ί ί

F" /F'\2

We also need, in the sequel, bounds on σ(ί), on — — —7 and on Ψ'"(t) : these are
F F

obtained as follows. Suppose that F":gO, F^J(λ(^ /3, c1? c3, A), stable, and that,
furthermore,

(94)
O ^ X ^ A I r \x) \r\x)j

Then, by (86), for all

-σ(t)^λ4L~λ4σ(λ2t)

so

) sup (
0<t<Aλ~2

sup |σ(ί)|^-—^L. (95)
0 2

Hence, by (87)

x-,,/ N H ^,,/ X = ^Ί

and, for 0^x^^4, the r.h.s. of (96) is bounded by

where we have used (55). Since oί^Aλ 2, this is bounded by

4^2L
-, (97)
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where (1 — A)2 ^y = (ί — x)2 ^ 1. This is a convex function of y whose maximum is
therefore reached at one of the ends of the interval [(1 — A)2,1]. Let yί be the value
where the maximum is reached. Then the r.h.s. of (96) is bounded by (97) with
y = y1 and, therefore, a sufficient condition for G to verify the same bound (94) as F
is

or

4A2

(98)

and, in particular, [denoting (1— A)2=y0~],

Γi 4A

L = max 1 — -—
y=lory0[ L-*

2 - 1

(99)

In all the cases which we need in the sequel the maximum is obtained for y = y0.
This means that the subset of the functions FeJ^^^f^c^c^A) obeying F'"^0
and (94), with L given by (98) or (99), is mapped into itself by Tλ note also that (95)
holds for such F.

In the same spirit, denote f + (f) = sup{0, + ψ'"(t)}. Then, for t^

and, denoting

we find :

4oc2λ4

^--^KF. (100)

Hence

4 A 2

KG^3(^+^)+T-^KF. (101)

By the same calculation, (94) implies :

(l-/l4)-1. (102)
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The inequality KG ^ KF will be satisfied if

4A2 \~1

~Γ^

As a consequence the subset in Mλ(f ^ /3, c l 5 c3, ^4) such that

is preserved by Tλ. Moreover, at a fixed point, since KG = KF and a.^λ~2Af, (see
Sect. 5), with f ^ j and ^3>/ as in (79), we find

(103)

Finally, we have

(1-λ4) sup sup - —

1

sup ιr'(t)l

(104)

where we have used (55) and ^'(t)!^!. Since β0 + Aλ 2βι = ττ7 (Λ'
(/! +/3), (104) also yields

1
-cί(l-A)-c3(l~AY

The same bound holds for Ψ+(t\ since ^'(0^1.
We now adopt the following notation : £fλ(£^ ^3, c l 5 c3, A) denotes the set of ̂ 3

functions on [0, 1] verifying the conditions :
1) O^F(x)^l"2, O^F'(x)^λ~2 for all xe[0, 1], F(0) = 0, F(0) = A~ 2 .
2) For all xe [0,1]

— C1(l — X) — C3(l — X)3

The constants /1? ...,c3 are always supposed to satisfy 0^c1 ̂ /1?

+/3<l.
3) For all xe[0, 1], Fr/(x)^0. Moreover for Q^x^A

F(x) \F'(x),
with L given by (99).

We say, for short, that &*λ(fl9 /3, c l 9 c3, ^4) is stable if
1) c1? c3, ^4 satisfy Criterion 1.

2) Λ^Λ(q^3^^2)X3^^1^3^^2)3) c;^^ /3, c l 5 c3, A, /I)^c l5 c3(/1? /3, c1? c3, Λ A)^c3
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The content of Sects. 4-7 can be summarized by: if ̂ A(/1? /3, c1? c3, A) is stable,
then it is mapped into itself by Tλ.

We note, furthermore, that formulae (99), (102) are, for fixed {^ /3, and A,
increasing functions of λ. Let J = {λ:p^λ2^b}. We define ^( 1̂? /3, c l 5 c3) by the
conditions

2) same as for yA,
3) same as for £fλ, but with λ2 replaced, in formulae (99), (102), by b.
ys(f ^ /3, c l5 c3) is then said to be stable if
1) c1? c3, ^4 satisfy Criterion 1,
2) t^.f\(c^ c3, A, b), ̂ 3^/3^^ c3, v4, b),
1\ r' (S / r r AJ) Li \υ ^, £ 3, C^, C 3, /I,

In this case, for each λeJ, the set ^jΓ\{F\F'(ϋ) = λ~2} is mapped into itself by Tλ

for every AG J.

7. Analyticity

For fixed /I, let F belong to a stable ^(/1? /3, c l 5 c3, A). We note that, by formula
(38) the corresponding G verifies

0 ̂  - G"(x) ̂  y ^ ̂  for all xe [0, 1] . (106)

We now make the assumption that, for all xe[0, 1] and all n^l,

^B"-1, (107)

where B is some positive constant, and CB = λ 2.
Then, for all n, ̂  (defined in the proof of Lemma 1) is ̂  and we propose to

find an estimate of the form Vm, Vr ̂  1,

-, (108)
r! \dί

where M > 0 is independent of m, ΛM = 1. We use the method of majorizing power
series. Note that (108) holds for Ψ0(t) = t and suppose it holds for all Ψm with
m^N—1. Then, given ί0e[0, λ~2~\



282

Hence

M. Campanino and H. Epstein

n = l

».= Σ a, Σ v v
p = l ι ι,...,rp_ l

rι + . . .+r p =n

Taking into account the preceding bounds shows that :

<109)

where

U(s)= Σ ΛM"s"=w

A

1-Ms
Λ= ,

1-Ms

so that,

Hence ̂  also satisfies (108) if, for all n^l,

i.e. taking into account λ2CB = l,

.e.

(110)

Thus, if this condition is satisfied, for all r^l, and all m, (108) holds. By Vitali's
theorem, it follows that {Ψn} converges to Ψ in the sense of analytic functions so
that Ψ is #°° on [0, λ~2~\ and also satisfies

— DrΨ(t) ^ΛMr = Mr~1 for all ίeΓO, λ~2~\ and all r^ l . (Ill)
r!

We now ask under which conditions the function G also satisfies the bounds
(107). First note that |G(x)|^;Γ2, \G'(x)\^λ~2, |G"(x)|^2AΓ3, λ2\G"f

of (102)]. Hence if we suppose

B^Aλ-\B2^^r.h.s. of (102)],

there remains to determine whether, for all xe[0, 1]

(112)

^CB"=B"'ί for «^4? (113)
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We apply once more the principle of majorizing power series: given x0e[0, 1],

The power series expressing w in terms of z is majorized by 2z + z2. Hence if

ζn = —-DnG(xr)), w
nl

1

1
-1 .l-Mα(2z + z2)

We denote

1 - 2Mαz - Mαz2 = (1 + σz) (1 - ρz), where σ > 0 and :

ρ - σ = 2Mα, ρσ = Mα, (ρ + σ)2 = 4M2α2 + 4Mα.

Then
00

Σ ^
n=l

A

._ ^ Γ

ρ σ A

i — ρz l+σz λ'

Since 0<σ<ρ, ρ"(ρ + σ) — ρ n + 1+( — σ)n +1 = σ(ρ" — (— σ)")^0, so Zn^

with

i \1/21
? = Mα|l + (H-—— L M = Bλ2(l-λ2Γ1=Λ~

Mot
(114)

A sufficient condition for (113) to be satisfied is therefore — I —1 ^1 for all
M \B

This will be satisfied if and only if (ρ/B)^ί and BλM-\ρ/B)4^l. With
= λ2(l — λ2)~1B, the conditions to be satisfied [apart from (112)], are

od2

l-l2

κ<

1/2

1/4

(115)

(116)
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For λ<0.5, the r.h.s. of (116) is inferior to 1, so (116) implies (115). A necessary
condition for (116) to be possible is clearly

2od2 λ 1/4

which holds if

(This is always verified if e.g. A<0.32, 0.152^λ2 ^0.25.) Then (110) is equivalent
to

Mα

U1/4(1-A2)3/4

SI5 1

or

(117)

It is easy to verify that this is, for fixed α/l2, a decreasing function of λ and, for fixed
A, an increasing function of αλ2 (in the range of values we consider). Thus a list of
sufficient conditions for (113) are

B>
1-λ2 )3/4 12

^ 1 -1
-i

(119)

(120)

(121)

[For these conditions to hold for all λ in the interval p^λ2^b, λ must be replaced

by ]/p in (119) and (120) and by j/b in (121).] If £0 is the smallest number
verifying these consitions, we see that, for all B ̂  B0, the subset of functions F in
ίfλ(f^ /3, c l 5 c3, ^4), which obey (107) is mapped into itself by Tλ. In fact it is easy to
verify, by the same calculations, that if B satisfies

τ252^[r.h.s. of (121)],

with 0<τ<l and (l-A2)3τ3l-(2y4)4>0, then

for all n^

The numerical results, to be described in Sect. 10, give #0<1.8 and a

corresponding > 1.79 for all cases of interest. For a given B, let j/β denote the
M0α

set of ̂ °° functions on (0,1], which satisfy the bounds (107). This is a convex set in
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^2([0, 1]) and any Fes/B is analytic in

1}. (122)

In particular, if ̂ (^,4, c l 5 c3, A) is stable, and B^B0 (as determined above) the set

)9 (123)

is mapped into itself by Tλ. This set is non-empty by Sect. 8, and compact in the Ή2

topology : indeed it is relatively compact by Ascoli's theorem, and closed because,
by Vitali's theorem any Cauchy sequence in this set in the Ή2 topology converges
to an analytic function satisfying the bounds (107). Similarly stfBr\£fj(f ^ ̂  3, c1? c3, A)
is stable.

8. Non Triviality of ^λr\stfB

To verify that, for a suitable choice of the constants, ^λ(^l9^cl9c3,A) is non
empty, we consider the function F defined by

F(0) = 0,

p»( \ 1 (124)

f (X ) _ __L __ Q ϊ Π-XΪ 3

F(x)~l-x l( j 3( j '
and consequently,

'(x) = (l-x) exp^ [1 - (1 - x)2] + ̂  [1 - (1 - χf]| , (125)

1
- - - ^ - ^ d - x ) 2 . (126)

This last expression, (the derivative of F'/F,) is negative and for Q^x^A,
bounded in modulus by

j;0^(l-^)2. (127)

For all cases of interest here (see Tables 1 and 2), this expression is inferior to L as
given by (99). From (124) and (126) we get:

The last term is positive but bounded in modulus by 1 and therefore by
c1+c3(l-x)2 so that the total expression is negative. (In particular
|F//(x)|<(3c1 + 5c3)A~2). Hence — F takes its maximum at x = l, with the value

(128)

In order to estimate the successive derivatives of F, we denote z = 1 — x and

(129)



Table 1

λ2

0.152
0.154
0.156
0.158
0.16
0.162
0.164
0.165

A

0.243
0.2453
0.248
0.2505
0.253
0.2555
0.2585
0.2595

Ci

0.22
0.215
0.208
0.204
0.2
0.194
0.187
0.185

c'ι>

0.22004
0.2157
0.2099
0.205
0.2003
0.1946
0.18703
0.18505

c3

0.224
0.228
0.232
0.237
0.242
0.246
0.25
0.2532

C'3>

0.2241
0.2288
0.2331
0.2377
0.2422
0.2466
0.2509
0.25324

Λ

0.3187
0.3231
0.3291
0.3327
0.3362
0.3415
0.3482
0.3492

Λ <

0.318651
0.323008
0.3290996
0.332612
0.336129
0.34148
0.348172
0.349191

^
0.2668
0.2734
0.2808
0.2886
0.2966
0.304
0.3128
0.3166

A <

0.266741
0.273314
0.280737
0.288562
0.296538
0.303996
0.312776
0.316592

Norm^

0.814
0.834
0.858
0.88
0.903
0.928
0.958
0.969

Cm i n^
1.1806
1.1795
1.1773
1.1759
1.1743
1.1723
1.1691
1.1686

Table 2

J

0.152<12<0.161
0.161 <λ2 <0.164
QΛ64^λ2 ^0.165

A

0.26
0.261
0.261

Cl

0.16
0.172
0.176

c'ι > C3

0.1624 0.224
0.1727 0.243
0.1769 0.248

c'3>

0.22454
0.2438
0.25

Λ

0.3818
0.3653
0.3601

Λ <

0.381788
0.365276
0.360087

^3

0.302
0.3145
0.3172

A<

0.301934
0.314438
0.317192

Norm5Ξ

0.981
0.987
0.987

Cππn^

1.1472
1.1587
1.1631

δ
o
1

•8S3
5"
o

.E
w
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We wish to verify that, for some B, for all n^l and

(130)

The Cauchy inequalities give, for all ze[0,1], R>1, rc^O,

\D"h(z)\£n\\\h\\R(R-irn, W\R= sup |h(w)|.

It suffices to verify that:

and, for all w3:3, some R>1,

(n+ί)B"^ \\h\\R(R-ίΓ".

This last condition is equivalent to

Noting that

\r. r

(132)

we find that, choosing e.g. c1 ̂ 0.25, c3 ̂  0.3, R = 2, all these conditions are satisfied
for B> 1.5. This covers all the cases we need.

We have now verified that, for all the values of the constants relevant to our
purposes, the function F satisfies the conditions for being in

9. Map Derivative

We now introduce a new set of functions

(133)

This subset of ̂ 1 ([0,̂ 1]) is in one-to-one correspondence with 5 (̂̂
[0, A] through the map k:

(134)
x y v 7

(fc ~ 1 s)(x) =\άyλ~2 exp J s(z) Jz .
0 0
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λ consists just of those functions s satisfying

1-x -x C l(i_x)-c3(l-x)3,

We consider $f"λ as a subset of the space (̂[0, A]) of continuous functions on
[0, A] equipped with the norm

|= sup Kl-
0<x<A

(135)

We define a map Tλ:2#"λ^3t"λ as

( 17" Γ<" \
— Γ \J \

in other words, Tλ maps — onto — with the preceding notations I. Since the map

F^Ψ is continuous in the <$2 topology, and since α, defined by 2od¥/'(α)=l,
continuously depends on Ψ9 the map Tλ is continuous in the Ή2 topology in a
neighborhood of ̂ (̂  /3, c1? c3, A), so that Tλ is continuous in some neighborhood
U of J^ in ^([0,^4]). W e propose to estimate the Frechet derivative of this map at
points of 2tf'λ.

Recall that the Frechet derivative DE(s) of a map s^E(s) is (when it
exists) a linear operator [on <^1([0, ̂ 4]) in our case] such that, for any u

lim || M |Γ1 [E(s + u)- E(s) - DE(s)u] = 0.

To make the formulae more transparent, we denote the vector u occurring in this

(F"\formula by δl — . Similarly
\F /

We also denote

Note that

δF(x) = F(x) δ dy = F(x) J u

δF(x)=$δF'(y)dy.

> = | |M| |= sup (1 —
0<x<A

(136)

(137)

(138)

(139)
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Defining

we have ^δF^ ^ \\δF\\2 and

!= sup Q(χ)
0<x^A

-1 δF'(x)

F'(x)

289

(140)

(141)

Setting \\δF\\0= sup λ2P(xΓl\δF(x)\ yields:
0^x^,4

\\δF\\0^\\δF\\^\\δF\\2.

We shall start by defining the linear operator A0 by (A0δF)(t) = δΨ(t) as the
solution of the equation

δ Ψ(t) = δF(Ψ(λ2t)) + F'(Ψ(λ2t}}δ Ψ(λ2t).

Note that the map ι;-»w defined by

(142)

is a contraction in the distance defined by the norm |||ι>|||0 = sup ί 2\v(t)\ since

so that the solution of (142) is unique and given by

δΨ(t)= F'(Ψ(λ2jt))δF(Ψ(λ2nt)). (143)

We now look for a better estimate of δΨ(t): from (142) it follows that

[where we have used Ψ(λ2i)^λ2t and the fact that P(x) is increasing when O^x
^ 1]. Iterating this yields [as would also (143)].

Thus, for all te[0,A/Γ2],

(144)

(145)
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Similarly let denote the solution of

t] , ίl46)j ' ( jψ'(t)
This equation is obtained by differentiating (142) and using Ψ'(t)
= λ2F'(Ψ(λ2f)} Ψ'(λ2f). It is clear that the series obtained by formally interating this
equation and suitably substituting (143) coincides with the series obtained by
differentiating term by term (143). Hence the uniform convergence of the iteration
of (146) will prove [together with the absolute convergence of (143)] that its
solution is the derivative of δΨ(t) divided by Ψ'(t). The proof of this fact will follow
the same line as above: denote t;1(ί) = [ί5//(ί)]~1l^*ί/(ί)l then (146) implies

F"
where we have used (139), (144), and the bound (40) on — . Hence

(147)

(148)

with

We have

Thus / is increasing so f(λ2nf)^f(f) and the iteration of (148) gives

»i(t)^ Σ JA2"- —+ λ2^"l
n=l [ 2 2(1 — A )

I 2 I4t ;6fΛ A t A I

[1_^2 2(1-/I4) 2(1-A4)2

Hence [majorizing f(t) by f(Aλ~2)'],

dΨ'(t) ^

2(1 - A4) 3(1 + A2)
(149)
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with

From this and the equation

it follows that

291

(150)

= — α 1+α-

(151)

We now investigate in the same manner

+ λ2Ψ'(λ2t)δ

+ λ2Ψ'(λ2t)

F"(x)

F'(x)

'F"(x)

F'(x)
δΨ(λh)

Denoting v2(t) = no' gives, for all

+ λ2Ψ'(λ2t)(l~Ψ(λ2t))\\δF\\2

+ λ2LS0(λ2t)\\δF\\Q

+ λ2υ2(λ2t).

In the first and third terms we have used the preceding estimates, Ψ'(λ2i}^ 1, and
IF"\

the bound
F

^L [see (99)]. In the second term we have used the definition of

||<5F||2; note moreover that, by the concavity of Ψ, Ψ!(λ2t)^(λ2i)~l Ψ(λ2t) so the
second term is majorized by

λ2(λ2tΓ^Ψ(λ2t)(l-Ψ(λ2t}}\\δF\\2.
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Since y^y(l — y) is increasing for 0^y<|, Ψ(λ2t)^λ2t^A<0.5, this is majorized
by λ2(l-λ2t)\\δF\\2.Ύhus

\-λ2[ 2(l-λ4) 3(1 +A2)

+ λ2v2(λ2t).

Iterating this again yields a convergent series, and, finally,

ι ,, Nλ6

1-λ2 l-l4 2(ί-λ4)(ί-λ6)

λ8Lt2 ί+λ2 λ4t

Thus:

with

λ2A(l-λ6)

3(1-I8)

(152)

(153)

(154)

To summarize: we have defined a linear operator δF^δΨ which is continuous
in the ^2 topology. We now intend to verify that this operator is the Frechet
derivative of the map F^Ψ considered as a map of (a subset of) ̂ 3 ([0, A]) to
^2([0,v4A~2]). Let

and define H : W3 x W2 by
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Then the map is defined by the equation

Ψ = H(F,Ψ).

Since the implicit function theorem applies to maps of Banach spaces (see e.g.
[6]), it is sufficient to examine the Frechet differentiability of H. We shall only
indicate the principle of this verification and replace the map (F, Ψ)->H by the

IF" Ψ"\ H"
map

F" Ψ' H
—: namely

H'(t) F(Ψ(λ2t})
Ψ'(λ2 Ψ"(λ2t)

Ψ'(λ2t)'

δΨ'(t)=Ψ'(t)]δ
Ψ"(s)

o \Ψ'(s)

We now have to prove that

ds, δΨ(t)=$δΨ'(s)ds.

Here Ψ'(λ2t) is interpreted as exp J -.^dy, Ψ(λ2ή= j Ψ'(y)dy. Calling δ\ —
o * (y) o \F

(ψ»\ F" ψ"
and δ — the increments of— and — respectively, one sets

lim

»0sup

F"

Y{

ψ"

-ψ

δΨ'

ι-ι

Ψ' -0.

This is straightforward the last term is the only one which requires some attention
IF"\

since one has to use the Ή1 nature of δ —- , i.e. this term is bounded by
\F /

%
From the Frechet differentiability of the map F-> Ψ it follows that also the ma_p

T^ J^1^^0 is Frechet differentiate. The superscripts mean that we think of fλ

as a map from ffl'λ embedded in the Banach space ^?1([0, A]) into ffl'λ embedded in
the Banach space #([0, A~\\

We are now in a position to estimate the derivative of the map F—»G or,
equivalently, DTλ. We use the formulae

1

(1-x)

G"(x)

= \δx
Ψ"(t\

-2^-2α(l-x)2

σ(0

-2aδ (155)
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d ίΨ"(t}\
where O^t^Aλ"2 and σ(t) = —l-—\. Using the estimates (55) and (95) found

for \Ψ"(t)/Ψ'(t)\ and |σ(ί)|, and the preceding estimates for <Sα and δ(Ψ"(t)/Ψ'(t)) we
obtain

1 c/G"W, <
G'(x) =, ΌF + 2AF + -

aλ2, 2od2 , ., , , Λ | 1 1 . „
+ -rh4 + τ—ί(l + λ2-λ2t)\\\δF\l2.

Denoting ί = -jΘ, so that <9 = — —(1— x)2, we thus obtain (taking into account
A A.

that a ̂ Aλ~2) the upper bound:

2 2A }
^(i + λ2-AΘ)\\\δF\\2. (156)

— Λ J

This is a linear function of Θ which is increasing if

(157)

In this case (the only one we shall actually encounter) the maximum of this linear
a2λ

function is its value at Θ = - < 1 so that the norm of DT, is bounded byA ~ λ j

2A2Iλ 2A
^+^ + 4+h4 + 4(i+^2-A). (158)

In case the expression (157) is negative, an upper bound for H-DTJJI is obtained by

inserting in (156) the value Θ = ̂ ^(\-A)2 or (worse) ^-(l-A)2.
A 2A

Interval Calculations. Let J be an interval {λ:p^λ2^b}. We denote
^f;(/1,/3,c1,c3,v4) the subset of ^([O,^]) defined by

se ̂ ([0, A]) :s'(x) + s(x)2 ^ 0, - s'(x) ̂  L J9

(159)

Here Lj is obtained by substituting b for λ2 in (99). The set (159) is identical to
k~ 1

t9
?

J(/1, /3, c1? c3, A). An examination of the bounds just obtained for the norm of
DTλ(s) at se ffl'λ shows that these estimates are increasing functions of ΛA Hence for
λeJ, for se Jfj(ίf1,/3,c1,c35^4), a bound of ||DTλ(5)|| is obtained by replacing /I2 with
fo in these estimates.

10. Numerical Results.

This section contains the numerical results obtained by applying the various
estimates of the preceding sections. Table 1 provides, for certain values of /I2,
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values of c l 5 c3, ̂ , /3 and A such that ^(^^c^Cg,/!) is stable [i.e. Criterion 1 is
satisfied and /J(c1,c3,/l, /12)<^ , j=l, 3, ^.(/1,/3,c1,c3,^l,A)>cJ., 7=1,3]. Only the
first and last rows in this table are indispensable for our proof, the others being
supplied for completeness. The eleventh column contains an upper bound for the
norm of DTλ evaluated with the formulae of the preceding section.

Furthermore by applying procedure 3 (with 4 iterations), to the last case
(λ2 = 0.165) one finds that at any fixed point corresponding to those values,

α<α/ = 1.5334, yl/ = A2α/ = 0.253011

and consequently such a fixed point verifies (for 0^x^Af) [see (103)]

Mf= sup
0^t^Afλ~z r \L)

^0.07398. (160)

Table 2 presents the same data for a selection of intervals.

Existence of Fixed Points. Table 2 shows that, restricted to the corresponding 2tf'j,
the map fλ has a derivative DTλ such that its Ή0-^^0 norm in the sense of (135) is
:gτc<l (i.e. | |(5G||2^7c||&F|l2) Let s l5 s2e<?ff"j(£l9 /3, c1? c3, A) for one of the sets of
constants appearing in Table 2. Then, for /leJ,

Tλ(s2)-fλ(s1)=]dy—fλ(ys2 + (l-y)sί).
o ay

Since Jfj is a convex set, fλ(ys2 + ( l — y ) s ί ) is a continuously differentiable vector
valued function of y and

d =.

so that

\\fλ(sι)-fλ(s2)\\ ^κ\\s2-s1\\ (161)

[The norm being as defined by (135)]. Since it has already been seen that Tλ is
continuous in the ̂ ° topology (because Tλ is continuous in the ̂ 2 topology) the
inequality (161) immediately extends to the closure Jf)(^1?/3, cί,c3,A)oϊ ffl'3 in the
norm || || (this space consists of Lipschitzian continuous functions). Thus, for every

Tλ has an unique fixed point in Jfj. Moreover since the intersection of tff'3

(F"
with < — :FEjtfB> is non empty, closed, and stable under Tλ, the fixed point is

contained in this set. Finally Tλ depends continuously on λ in the ̂ ° topology, so
that the fixed point is a continious function of λ in this topology. Note that if
λeJlr\J2 (as is the case e.g. for λ2 = 0.161, λ2 = 0.164) and if (this is the case for the
values of the above table, as demonstrated by the example in Sect. 8)
Jf^nJf^φθ, this set, being stable under Tλ, contains the unique fixed point
corresponding to both Jί and J2, i.e. the fixed point is a continuous function of λ
in J1uJ2.
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Conclusion

Theorem3. For all λ in the interval 0.152^ λ2 rgθ.165, Tλ has a unique fixed point sλ

such that sλe$"j. when λeJ'J9 J19 J2, J3 being the intervals described by Table2 and
J^j being defined with the constants given there. This fixed point continuously
depends on λ and k~lsλ££$Bfor all 5^1.8.

Let Fλ denote k~lsλ, i.e.

Then Gλ = TλFλ coincides with Fλ for 0 ̂  x ̂  A9 and we define Fλ(x) = Gλ(x) for
O^x^l. Note that Gλe^/B since Fλ\[09A]ej/B9 according to the estimates of
Sect. 7.

We also denote χλ the function defined on [—1,1] by

fV\τ 0 "^ v "^ 1 v (\~} — v ( \*ι (~\ f\^\ιor υ^x^i, A A W ~ A A V χ) lioz;

It also satisfies

with obvious notations.

11. Existence of Feigenbaum's Fixed Point

We shall now complete the proof of this fact by proving that the continuous
function of λ defined by χλ(l)+1 takes values of opposite signs at λ2 = 0.152 and
λ2 -0.165.

We have

We know that Ψ'λ(t) decreases from 1 to Ψ'λ(a) = (2λa)~1 as ί increases from 0 to α.
Thus

where /Λ(0) = /(α) = 0, //(t) = ψ-(t\ and:
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Moreover t

o
where K is determined by /Λ(α) = 0, i.e.

= ί (* - y)/r(j^ - - ί (« - y)fϊ(y)dy ,
o α o

(164)

y y
Here O^y^ί^α so that --- ^ 0, α — y §: 0. As a consequence,

In particular we know that f^-(y)= Ψ'ϊ-(y)^ * =Mf where Mf is evaluated

in (160). Hence

Mffλ(t) ^ —L ί(α — ί)

and

For A2 = 0.1 65 we find

On the other hand, taking λ2 = 0.1 52 and using again (164), we have

o

mα3

This has been estimated in formula (126). Using the figures in Table 1, we find, for
λ = QΛ52,

m^ 0.01374

, . α 1 mα3

= 2 Γ 6 / 4λ

<- 0.0444.



298 M. Campanino and H. Epstein

This proves :

Theorem 4. There is (at least one) value A0 of λ in the interval 0.1 52 rg λ2 ^0.1 65
such that χAo(l) + A0 = 0, and hence

This function is denoted g in the sequel It has the following properties :

1) g is even, °̂° on [- 1, 1] and satisfies, for all xe[0, 1] : 0"'(x)^0, g"(x)^Q,
g'(x)£09 g(l)= -A0, $'(!)= -λo1, 0"(0) = -2α (since 0(x) = l- <F(αx2)λ

2) g zs holomorphic in a complex neighborhood of [—1,1]. For all n^l,

d \"

) - 1 - !P(a;c2), «P(0) - 0, ¥"(0) = l,

(165)

TTzβ numbers λ0 and a verify

0.152^yl2<0.165, 1.429 <a< 1.615.

Moreover (M0a)~1>1.79 50 ί/iaί gf w, m particular, holomorphic in the disk
|x2|<1.79.

Additional Remarks

1. Further Elementary Properties of g. It has been seen that 0 is analytic in a
certain neighborhood of [ — 1, 1] in C. If any subset Ω = — Ω of this neighborhood

has the property that g(Ω)cΩ then g can be extended to — -Ω by using (1), and is
λ0

analytic in a neighborhood of this new set moreover g[ — Ω I C — — g(Ω) C — Ω so\A0 / AO AO
that the process can be iterated indefinitely. In particular taking Ω = \_— 1,1]
shows that g is defined and analytic on the whole real axis. Since Ψ(t) is analytic
and positive for O r g — ί^/c2, taking Ω = IRu ί [ — fc, fc] shows 0 is analytic and
real on the whole imaginary axis.

Note that (%)(x)^^///(x)^/(x)-1-f(/(x)/^(x))2^0 on [-1,1]. Since for any
two functions / and Λ, S(f°h)(x) = h'(x)2 Sf(h(x)) + Sh(x)9 S(f) = S(-f), we see that

)^Q for all xeJR.

2. The Case ε Φ 1. The method of this paper can at least be formulated for ε φ 1 (see
Introduction). One then wishes to find a fixed point of the mapping φ1^φ2
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defined by Eq. (11) in the case when

φ2(x)=l-ιp(\x\1+£), <//(0)Φθ, (166)

ψ(t) being Ή2 in [0, 1]. Defining F and G by (14) and (15) we see that the following
equations must be fulfilled :

F(0) = 0,

F(ψ(λ^t))9 v>(0) = 0, (167)

x \ ι + £ ) - ] . (168)

We require F to be ^2 for 0:gx< 1. Differentiating (167) gives

V/(0) = λ1+V(0)F(0) (169)

and the condition φ'(0)Φθ imposes F(0) = Λ,~ ( 1 + ε ). For this to be verified also by
G, ψ must satisfy

We may again look for ψ in the form φ(ί) = Ψ(aή, Ψ'(0) = 1, α being determined by :
α¥ ί/(α) = [(H-εμε]-1. The functional equation !P(ί) = F(3/μ1 + εί)), Ψ(Q) = Q,
ϋf//(0) = l is solved as in Lemma 1.

There seems to be no reason for the rest of the method not to work, at least for
ε close to 1, and possibly also for 0<ε^l.
3. We note also that the method can be reformulated to attack directly the
mapping J [see Eq. (5)]. However estimates are more difficult and have not, so far,
been carried out to the end. This method would have the advantage of leading to
uniqueness (at least locally) of λ0 and g. Note that this has not been demonstrated
here but that, for every solution λ0 of the equation χλ(l) + λ = Q, the corresponding
g = χλo is locally unique, since it is given by a contraction.
4. Martin has studied conditions under which a solution (ε = 1) could exist with a
very different shape from the concave one obtained here: it turns out that this
would require some rather violent oscillations (private communication).

12. Some Properties of the Linearized Map at the Fixed Point

Feigenbaum's theory relies on the spectral properties of the derivative of the map
J at the fixed point (see [2, 3]). For this purpose it is equivalent to consider the
derivative of the map m( - , λ) with the λ corresponding to the fixed point, since the
two operators are very simply related. We state without proof some results which
follow straightforwardly from the proven properties of the fixed point g.

We consider the derivative of m( , λ) :

Au(x) = - \_u(g(λx)) + g'(g(W)u( - Ax)] .
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Given a real .R>0, we denote by ΔR the domain:

, with xe[- 1,1] an

We consider the Banach space H(AR) of the analytic functions u in ΔR, such that
u(x) is real for real x and u'(0) = 0, with the norm of the sup. We define also the
Banach space of the even functions in H(AR):

and the closed cones :

KR = {ueH(AR)\Vxe[-l,l']9 w(x) ̂  0 ̂  XM'(X)

for all integer n^O,

min [u(λn +1\u(-λn+1)']^ max [_u(λng(λ}\ u( - λn

We have KR =KRπH+(AR}. We denote K°R (respectively KR°) the interior of KR

(respectively KR) in H(AR) [respectively H+(ΔR)~\. lϊR2>R1 >0, there is a natural
compact embedding of H(AR2) into H(ARί). The following propositions hold:

Proposition 1. There exist Rί>0 and R2>0such that A is a bounded linear operator
from H(ARί) into H(AR2). As an operator from H(ARι) into itself, A is compact.

Proposition 2. The following inclusions are verified

(i) A(KRί\{Q})cK°Rί,

(ii) A(KRl\{0})cK+? .

Using Propositions 1 and 2 and Theorem 6.3 of Krein and Rutman [10], we
obtain

Theorem, (i) A has one and only one eigenvector v in KRί. This vector belongs to KR°.
(ii) The corresponding eigenvalue ρ verifies ρ^λ~2 — λ~ί.
(iii) The adjoint operator A* has, in KR*, one and only one eigenvector ιp:this is

a strictly positive functional verifying A*ιp = ρψ.
We note that the inequality for ρ follows from the fact that, for ueKRί, we have

Sketch of Proof of Proposition 2 (i) . Denote b = g(λ) = 1 - Ψ(λ2oc) ^ 1 - A > λ, and
h(x)= —g'(g(λx)): this is a positive, even function on [—1,1] and decreasing on
[0,1]. Since h(x) = λFf(Ψ(aλ2x2)) = H(t) for ί-αx2,

--
at

Hence, for π^O

a= -
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Moreover h(x}^2abΨ'(ab2)>bλ-1 ^(l-A}λ~ί >1. Now let uεKR. Then

λAu(x) = h(x)u( - λx) - u(g(λx))

The last expression cannot vanish unless u vanishes on an interval and hence
everywhere. It is easy to check that xAu'(x)^Q and (by analyticity) x~1Au'(x)<0.
Moreover, for πΞ^O, εί 2= + 1,

+ u(g(λ"+1b))-u(g(λ" + 2))

^ [h(λn + 1 ) - h(λnb}] mm (u(λ2\ u( - λ2}}

^aλ2nmm(u(λ2),u(-λ2}}.

This cannot vanish unless u — 0. Assume now that veH(AR} belongs to a
neighborhood U of Au such that

sup \(Au)"(x)-v"(x)\<η.
-1 ̂ x^l

Then using ι/(0) = (Att)'(O) = 0,

ε2λ«b d

+ j dx~-[v(x)-Au(x)}
£lλ» + 1 ax

^ λ2n \- min (u(λ2\ u( - λ2)) - 2b2η
[λ

This is > 0 for sufficiently small η, and it is easy to verify that, for sufficiently small

η, φc)^0 and xυ'(x)^Q for all xe[-l,l].

Acknowledgements. The authors are much indebted to J.-P. Eckmann and P. Collet without whose
ecouragement and friendly advice this work could not have been carried out. One of us (M.C.)
acknowledges very kind hospitality at I.H.E.S.

References

1. Campanino, M., Epstein, H., Ruelle, D.: On Feigenbaum's functional equation (to appear)
2. Collet, P., Eckmann, J.-P. : Properties of continuous maps of the interval to itself. In : Mathematical

problems in theoretical physics, Proceedings, Lausanne 1979. Berlin, Heidelberg, New York:
Springer 1980

3. Collet, P., Eckmann, J.-P.: Iterated maps on the interval as dynamical systems. Boston:
Birkhaeuser 1980

4. Collet, P., Eckmann, J.-P., Koch, H. : Period doubling bifurcations for families of maps on R".
Preprint, University of Geneva (1979) (to appear)

5. Collet, P., Eckmann, J.-P., Lanford, O.E., III: Commun. Math. Phys. 76, 211-254 (3980)



302 M. Campanino and H. Epstein

6. Dieudonne, J.: Foundations of modern analysis. New York: Academic Press 1969
7. Feigenbaum, M.J.: J. Stat. Phys. 19, 25-52 (1978)
8. Feigenbaum, M.J.: J. Stat. Phys. 21, 669-706 (1979)
9. Feigenbaum, M.J.: The transition to aperiodic behavior in turbulent systems. Commun. Math.

Phys. (to appear)
10. Krein, M.G.. Rutman, M.A.: Usp. Mat. Nauk 3, 1 (23), 3-95 (1948); Engl. Transl: Functional

analysis and measure theory. Am. Math. Soc., Providence 1962
11. Lanford, O.E., III: Remarks on the accumulation of period-doubling bifurcations. In:

Mathematical problems in theoretical physics, Proceedings, Lausanne 1979. Berlin, Heidelberg,
New York: Springer 1980.

Please note that this list contains only those references directly connected to the present paper and that
they contain a more complete guide to the literature.

Communicated by D. Ruelle

Received October 13, 1980




