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Abstract. In this article a series of results concerning Yang-Mills fields over the
euclidean sphere and other locally homogeneous spaces are proved using
differential geometric methods. One of our main results is to prove that any
weakly stable Yang-Mills field over S4 with group G = SU2, SU3 or U2 is either
self-dual or anti-self-dual. The analogous statement for SO4-bundles is also
proved. The other main series of results concerns gap-phenomena for Yang-
Mills fields. As a consequence of the non-linearity of the Yang-Mills equations,
we can give explicit C°-neighbourhoods of the minimal Yang-Mills fields
which contain no other Yang-Mills fields. In this part of the study the nature of
the group G does not matter, neither is the dimension of the base manifold
constrained to be four.

1. Introduction and Statement of Results

The purpose of this article is to prove a series of results concerning Yang-Mills
fields over the euclidean sphere and other locally homogeneous spaces by using
differential geometric methods. Many of these results were announced in [7].

Our basic set-up is the following. We consider a compact riemannian manifold
M and a principal G-bundle P over M where G is a compact Lie group. On the
space Ήp of connections on G we consider the Yang-Mills functional

M

where Rv is the curvature of the connection V in <$p and where the norm is defined
in terms of the riemannian metric on M and a fixed AdG-in variant scalar product
on the Lie algebra g of G.

Critical points of the smooth function ^^:^P->IR are precisely those
connections whose curvature tensors are "harmonic". These critical points are
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called Yang-Mills connections and their associated curvature tensors are called
Yang-Mills fields. Of particular interest are those Yang-Mills connections which
minimize the functional locally, i.e., among nearby connections. At such a
connection V, the second variation of the functional is non-negative, i.e.,

(1.1) *
at

for any smooth family of connections P7*, |ί| < ε, with P° = V. Connections with this
latter property (1.1) are called stable. This study was motivated by the following
result of J. Simons, announced in Tokyo in September of 1977.

Theorem A (J. Simons). There are no weakly stable Yang-Mills fields over the
euclidean n-sphere Sn for n^5.

Recently much effort has been put into studying Yang-Mills fields over S4.
(This corresponds to studying fields over IR4 with certain asymptotic behavior.) In
this dimension there are lower bounds for the Yang-Mills functional which depend
only on the topology of the bundle. This global lower bound is achieved, for
example, if the field R is self-dual, that is if *R = R where * is the Hodge star
operator on exterior 2-forms. (This is also true if *R= — R, i.e., if the field is anti-
self-dual.) Self-dual fields are known to exist. In fact there are now explicit
constructions of the moduli space of such fields when G is a simple group [2, 9].
One of our main results is the following (see Sect. 7).

Theorem B. Any weakly stable Yang-Mills field over S4 with group G = SU2, SU3 or
U2 is either self-dual or anti-self-dual.

The corresponding theorem for SO4-bundles is proved in Sect. 8. Here the
conclusion of self-duality is replaced by one of two-fold self-duality which occurs
when the topologically determined lower bound for ®/Jί is achieved. In Sect. 10
we prove similar results over general homogeneous spaces of dimension 4.

It is unknown at this moment whether there exist unstable Yang-Mills fields
over S4.

The instability argument of Simons uses a space i/" of conformal vector fields
on Sn in an essential way. This argument cannot be applied directly in dimension 4
because the functional ®JJl is conformally invariant. In this case we must use the
splitting of the field under the *-operator. However, here it suffices to use Killing
vector fields. This allows us to extend the results to general homogeneous
(orientable) 4-manifolds.

Theorem B'. Any weakly stable Yang-Mills field with group SU2 on any compact
orientable homogeneous riemannian 4-manifold is either self-dual, or anti-self-dual,
or reduces to an abelian field.

The instability argument also breaks down on manifolds Sn/Γ which are non-
trivial quotients of the sphere (real projective space, for example). On each such
manifold Sn/Γ, π^4, we show that stable Yang-Mills fields exist (see Sect. 9). In
fact, these fields are strictly stable in the sense that the second variation is strictly
positive on a transversal to the orbit of the gauge group (the group of
automorphisms of P acting on ^p).
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Our other main series of results concerns "gap-phenomena" for Yang-Mills
fields. This is one of the interesting consequences of the non-linearity of the Yang-
Mills equations. To state the results we introduce a scalar product < , > on 9 by
setting (A, By = —\ trace [ρ(A)°ρ(B)~] where ρ :g— >SON is any faithful representation.

Theorem C. Let R be any Yang-Mills field over Sn, ft ̂  3, which satisfies the pointwise
condition

(t)

Then either R = Q or \\R\\2 =± I" j and R is parallel

Ifn = 3 or 4, then either R = Q or R is the curvature of the tangent frame bundle of
Sn with its Levi-Civita connection.

Theorem D. Let R be any Yang -Mills field on S4. If R+ satisfies the pointwise
condition \\R+ ||2<3, then R+ =0. The same statement is true for R~ .

Note that in Theorems C and D there is no hypothesis concerning the bundle
or the group.

Theorem D gives an explicit C°-neighborhood of the self-dual (or anti-self-
dual) fields on S4 in which no other critical points occur. (See [8] for a related
result.)

These theorems can be restated in terms of vector bundles with connection.

Theorem E. Let E be any riemannian vector bundle with connection over Sn, n = 3 or
4, whose curvature R is harmonic and satisfies (|). Then either E is flat, or E = S@E0

where E0 is flat and where S is one of the 4-dimensional bundles of tangent spinors
with the canonical riemannian connection.

IfE is 3-dimensional over S3 and ifR is harmonic and satisfies the condition \\R\\2

rg3, then either E is flat or E=TS3 with its canonical riemannian connection.

The paper is organized as follows. In Sect. 2 we develop a setting for the Yang-
Mills functional using vector bundle theory. In Sect. 3 we establish the Bochner-
Weitzenbock formulas for harmonic forms with values in a bundle of Lie algebras.
In Sect. 4 we examine in detail some algebraic facts specific to dimension 4,
especially in relation to the curvature. In Sect. 5 we establish the Gap Theorems C,
D, and E above. In Sect. 6 we derive several versions of the second variational
formula.

The main arguments concerning stability occur in Sect. 7 where Theorems A
and B are proved. Experts interested in these results could begin reading here and
refer backwards if and when it becomes necessary. In Sect. 8 we give the examples
of stable fields over Sn/Γ9 n^4. We also prove that the index of T(S3/Γ) is exactly
one for any Γ. In Sect. 9 we treat the case of Yang-Mills fields with group SO4 over
an oriented 4-manifold. We examine the topological restrictions coming from the
Pontryagin and Euler numbers, and we develop the condition of double self-
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duality. The analogue of Theorem B for SO4-bundles is proved. In Sect. 10 we
generalize Theorem B to compact riemannian homogeneous spaces (Theorem B').

We point out that Sect. 5 is completely independent of Sects. 6-10 and may be
skipped if the reader wishes.

2. A Differential Geometric Setting for the Yang-Mills Functional

For the entire discussion of this paper we fix a compact Lie group G and a
principal G-bundle P over a compact riemannian n-manifold M. We also fix a

G- vector bundle E = P x IR^, associated to P by a faithful orthogonal repre-
Q

sentation ρ:G-+0N. (Recall that if P is given by transition functions
gΛβ:UΛr\Uβ-+G where {UΆ}aeA is an open cover of M, then E is given by the
transition functions ρ°gaβ : C/αn Uβ-+0N.) We shall develop most of our ideas using
E rather than P since it is most often the vector bundle that is of central interest. Of
course this is also a matter of taste.

Recall that an inner automorphism ofP is a G-equivariant diffeomorphism of P
which projects down to the identity on M. The group of all inner automorphisms
is called the gauge group of P and will be denoted ^P. It can be easily identified with
the group of smooth cross-sections of the bundle of groups GP = P x G. Related to

Ad

&P is the infinitesimal gauge group or gauge algebra, which will be denoted ©P. It is
the Lie algebra of smooth cross-sections of the bundle of Lie algebras gp = P x g,

Ad

where g is the Lie algebra of G. The exponential map exp :g— »(δ induces a natural
map expP:gp->Gp and, therefore, a mapping

The gauge group can be easily re-expressed in terms of E. Let 0E be the bundle
over M whose fibre at x is the group of orthogonal transformations of Ex. Let so£

be the bundle over M whose fibre at x is the Lie algebra of skew-symmetric
transformations of Ex. Then the representation ρ:G^ON (used to define E) gives
embeddings GP ̂ 0E and gp ̂ so£ which are homomorphisms on the fibres. We
denote the images by GE and g£ respectively.

Of course, GE = GP and g£ ̂  gp. We may express the gauge group as the space
&E of smooth cross-sections of GE. Similarly the gauge algebra is just the space (5£

= Ώ°(g£) of smooth cross-sections of g£.
Note that the fibre of GE at x is just the group of orthogonal transformations of

Ex which fix the tensors defining the G-structure. For example, if G = SUΠ and
ρ:SUn^02n is the standard homomorphism, then there is a global complex
structure J:E^E(J2= — 1), and a global nowhere vanishing section ω of A%E. In
this case, the sections of GE are those sections of OE which commute with J and
fix ω.

There is a similar definition of g£. Its fibre at x is just the set of skew-symmetric
endomorphisms of Ex which, when extended as derivations to the tensor algebra of
Eχ9 annihilate the tensors defining the G-structure. This vector bundle g^ plays a
central role in the theory.
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We now set some notation. Given a smooth vector bundle F over M, let
QP(F} = Γ(ΛPT*M®F) denote the space of exterior differential p-forms on M with
values in F. Note that Ω°(F) is just the space of smooth cross-sections of F.

We want to study the space of connections ^P on P, or equivalently on the
G-vector bundle E. Recall that a connection on P is conventionally defined as a
G-equivariant field of projections πP:TpP^i^p, peP, where i^p is tangent space to
the fibre through p, i.e., the G-orbit of p. (The kernel of πp is the horizontal subspace at
p.) On the other hand, a connection on E is a linear differential operator
P:Ω°(£)^Ω1(£) such that

(2.1) V(fσ) = df®σ + fVσ

for all /eC°°(M), σeΩ°(E), and such that the natural extension of V to tensor
bundles of E annihilates the tensors which define the G-structure. These definitions
are related as follows. Given σεΩ°(E\ let Vxσ denote the evaluation of Vσ on a
tangent vector X at a point x. Then

where π is the field of vertical projections on E induced by the trivial extension of π
to P x RN. Note that Tσ maps TXM to Tσ(x}E and the vertical subspace at σ(x) is
identified with Ex by translation. In this paper we shall work exclusively with
connections on E.

One can easily see that the difference of two connections A = V—V is an
element of Ω1^). Indeed, for any tangent vector field X, AX=VX — V'x is a zero
order operator, i.e., a bundle homomorphism AX:E-^E which lies in QE because
both V and V annihilate the tensors defining the G-structure. Consequently, the
space (£E of connections on E is an affine space with Ω1(g£) as the vector group of
translations. In particular if we fix V in <$E then there is a natural identification

(2.2) T^E)^Ωl(βE).

To each connection P on E there is associated a curvature 2-form R^ in Ω2(gE)
given by the formula

(2.3) Rv

x,^{yx,vΎ-]~v[XtΎ}

for tangent vectors X and Ύ.
We note that there is a natural action of the gauge group ^E on the space <6E

given g in &E and V in ̂  we define

(2.4) P» = 0 o F o 0 - ι .

Here g is considered as an automorphism of E. Hence,

One can easily verify that Vβ is again a connection on E. It is clear from (2.2) that

(2.5) R" = g°R°g-1.
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We now observe that the connection V on E induces a natural connection on
g£. Indeed for φeΩ°(^E) we define

(2.6) V(φ) = \V,φ\9

i.e., V(φ}(σ)= V(φ(σ}} — φ(Vσ] for any section σ of E. Similarly, the curvature of this
connection on g£ is given by the formula

(2.7) *Wφ) = [*£,r,?>L

where Rv on the right denotes the curvature of E. The spaces ΩP(QE) for p = 0, 1,
and 2 are clearly of central importance here. For each connection V, there are
important operators dF:Ωp(g£)->Ωp+1(g£), p^O, which we now describe.

Let F be any vector bundle over M. Then for each linear connection V on F we
define an exterior differential dv\Ωp(F)^Ωp+l(F\ p^O, as follows. For each real-
valued differential p-form α and each section σ of F, we set

(2.8) Jp(α(x)σ)-(Jα)(x)σ + (-l)pα®Pσ,

and extend the definition to general ψ e ΩP(F) by linearity. Note that dv=V on
Ω°(JF). It is an easy excercise to prove that

(2.9) (dW)X}Y = R^γ(σ)

for any σeΩ°(F). More generally, for any ιpeΩp(F\

(2.10) (dF(d»)Y v = Y #v v (φγ y ).V ' V V τ r / / A ι , . . . , A p + ι Z-ί A σ ( i ) , A < y ( 2 ) ^ Λ t τ ( 3 ) , . . . , A σ ( p + 2)'
σeSp+2

Consequently d^odF=0 if and only if the bundle F is flat.
Suppose now that F is furnished with an inner product preserved by V. We

define an inner product in ΛPT*M®FX by setting

(2 n) <Ψ,φ>= Σ <^ ί ι , . . . ,e l ><P e i l , . . ,β l >>
ίι<...<ίp

where (el5 . . ., en) is any orthonormal basis of TXM. Integrating this pointwise inner
product over M gives an inner product in ΩP(F). (Integration on M shall always be
with respect to the riemannian volume measure.) We then define the operator
δ7:Ωp+1(F)-+Ωp(F), p^O, to be the formal adjoint of the operator άv.

The connection V on F together with the Levi-Civita connection D in ΛPT*M
induces a natural tensor product connection in ylpT*M(x)F which we again call V.
Using this connection we have the following simple formulas. For φεΩp(F\

(2.12) (dV)*o,...*,= Σ (-l}k(?Xkφ)Xo,...,Xk,...,Xp,

J = l

where (el9 ...,en) is an orthonormal basis of TXM at the point x in question.
We now introduce an inner product on the bundle QE as follows. Recall that we

have g££$oE, the bundle of skew-symmetric endomorphisms of E. Given two
endomorphisms A and B of Ex, we define

(2. 14) <A, J5>
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For the purposes of the theory, any metric on g£ defined by an AdG-invariant inner
product on g would do. Our choice is adapted to the bundle E, in accord with our
general emphasis. We shall discuss this inner product in detail at the end of this
section.

Given a connection Ve(βE we now have defined a sequence of operators (and
their adjoints)

(2.15) Ω (QE)<—=-* Ω (QE)<—=-* Ω (QE) ——>• .. . .

Given an element σeΏ°(g£) = (S£, consider the corresponding curve gt = Exp(tσ) in

&E, and note that (d/dί)Pc|ί = 0 = [Γ σ] = F(σ) = dF(σ) Tnis means that the tangent
space to the orbit of the Gauge group at F, considered as a subspace ofΩ1^)^ ΊffiE,
is exactly the image, dF(Ω°(QE)). Hence, the infinitesimal variations of connection in
these directions are infinitesimal variations through gauge equivalent connections.
A transversal subspace to image(rfF) in β1(g£) is given naturally by ker(^F). These
infinitesimal variations slice across the orbits.

(2.16) Definition. The subspace ker(δF)cΩ1(g£) = Tp^£ is called the space of in-
finitesimal deformations of the connection V (Fig. 1)

Fig.l

Note that ker^ can be thought of as the tangent space at [P].
Recall that the curvature 2-form R is an element of Ω2(§E). This tensor satisfies

the Bianchi Identity

(2.17) <fRp=0,

since dv^v=dv-Rv-Rv-dv=(dv]?)-«)3. By (2.12) this means that for all tangent
vectors X, Y, Z

We now present the concepts central to our paper.

(2.19) Definition. The function ^^ ^^IR defined by

M
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is called the Yang-Mills functional A critical point Ve($E of the Yang-Mills
functional is called a Yang-Mills connection. The curvature R7 of a Yang-Mills
connection is called a Yang-Mills field.

Note that by (2.5) the functional ®JJt is clearly invariant under the gauge
group ^E acting on %>E. It is, in fact, invariant under an "enlarged gauge group"
which we shall discuss presently.

Fix Fe ^>E and consider a smooth family of connections F*5 — ε < t < ε, such that
statement that V is a critical point of ®fJt means simply that
)|t=0 = 0 for all such families. We write

where ^4ίeί21(g£) for |ί|<ε and A° = Q. The corresponding curvature is given by

(2.20) R^= R?+ dΓAί + RA* Λ A*],

where we define the bracket of g£-valued 1-forms φ and ψ by the formula
[φΛtp] X ( y = [φx,t/)y] —[φy,t/jχ]. The following basic fact is an immediate con-
sequence of (2.20) and the definition of the adjoint of an operator.

(2.21) Theorem. The first variation of the Yang-Mills functional is given by the
formula

at

where

ί=0 M

" a t
Consequently, V is a Yang-Mills connection if and only if

(2.22) δ*R'=0.

This equation is non-linear in V. Using the Bianchi Identity (2.18) and the
compactness of M we see that (2.22) is equivalent to the condition that

(2.23) A7R7=0,

where

(2.24) Δv=dvδv+δvdv

is the generalized Hodge-deRham Laplacian for vector bundle valued exterior
p-forms. Any form φeΩp(^E) satisfying the equation Δ^φ = Q will be called
harmonic. Thus, Yang-Mills connections are connections with harmonic
curvature.

There is another second order operator P*P, called the rough Laplacian,
defined on g£-valued differential forms. It is given by the formula

(2.25) F*F<p=- £ (Ϋ* φ),
7=1



Stability and Isolation Phenomena for Yang-Mills Fields 197

where

(2.26) 72 = U V _ U
X,Ύ — YXVΎ y(DxY)

is the invariantly defined Hessian operator. The operator F7* V is symmetric and
non-negative. Its kernel is the space of parallel forms. The operators Δv and V*V
have the same principal symbol, and their difference is of zero order. The
relationship between these operators will be crucial in this paper.

In the case that M is an oriented manifold, we may introduce the Hodge star-
operator *:ί2p(g£)->£2"~p(g£) into our formulas. In particular we have that on

(2.27)

Moreover, the Yang-Mills functional can be rewritten as

(2.28)

where the notation <<pΛi/;> for φ, φe/l*T*M(x)g£ means exterior product on
A'T*M tensored with the interior product on g£.

We now return briefly to the inner product defined on the bundle $QE (and
thereby on g£) by formula (2.14). Recall that there is a natural bundle isomorphism
A2E—^->50£ determined by the requirement that

(2.29) (u Λ v) (w) = (u, w>z; —

for u, v, weEx. In the metric (2.11), the elements {β. Λε^j^y form an orthonormal
basis of ($QE)X whenever (ε1? ...,εN) is an orthonormal basis of Ex. This scalar
product is related to the standard Killing form K on the bundle of Lie algebras $OE

by the formula K(A,B)= -2(N-2)(A,By.

(2.30) Lemma. The norm
that

induced by the inner product (2.14) has the property

||[A,B]||^|/2M||||B||

for all A, B with equality if and only if the pair A, B is orthogonally equivalent to the
pair of Pauli matrices (Fig. 2)

/o,f
-t 0

0

0

0 t
-t 0

\ °

\
0

0 v

s 0

0 -s

Fig. 2
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Proof. Maximize the function (A, B) H> || \_A, B~\ \\ 2 under the constraints
= | |#H 2 = 1. At any critical point, we find that

(adB)2A = λA

for multipliers λ and μ. An easy calculation shows that λ = μ = — \\ [A, B] || 2. Put B
in (skew) diagonal form and examine the first equation above. The remainder of
the argument is straightforward and we omit the details. Π

(2.31) Note. Recall that in 503^IR3 the Lie algebra product is equivalent to the
classical cross-product in IR3. Thus when dim(E) = 3, the inequality (2.30) can be
improved to: ||[Λ^]|| ̂  \\A\\\\B\\, with equality iff A±B.

We finish this section with a word concerning the enlarged gauge group. We
define an outer automorphism of P to be any G-equivariant diffeomorphism of P,
and we denote the group of all outer automorphisms by DiffG(P). Every outer
automorphism /:P->P projects to a diffeomorphism π(/):M->M. This yields an
exact sequence of groups :

(2.32) 1 — >&p — >DiffG(P) ~^Diff(M) .

Given a connection on P and a vector field X on M, we have a unique lifting ofX
to a horizontal vector field X on P. Let φt, φt be the 1 -parameter groups of
diffeomorphisms generated by X and X respectively. Since X is G-in variant, we
have that φt°g = g°φt for geG and for all t. Hence, φtε DiffG(P) and clearly π(φt)
= φt for all t. From the work of Thurston [15] we know that the diffeomorphisms
belonging to flows generate the identity component Diff°(M). Hence, the image of π
contains this group and we have the short exact sequence.

(2.33) 1— ̂ jr— >DiffS(P)— *Difl°(M)— > 1 .

Any connection on P determines a splitting of the sequence of vector spaces
(2.33)'e obtained by differentiating (2.33) at the identity. It is given by the cor-
respondence X^>X constructed above. Conversely, each splitting of (2.33)'e
determines a connection on P. Hence, a connection could be defined as such a
splitting.

The entire group DiffG(P) obviously acts on the space <$p of connections. A
subgroup which always preserves the Yang-Mills functional is the group
&P = π~1(IM) where IM denotes the group of isometries of M when nφ4 and the
group of all conformal transformations of M when n = 4. We call &P the enlarged
gauge group of P.

It is interesting to consider the variations of connection that come from
DiffG(P). Fix FE <£ and consider a vector field X on M . Then the infinitesimal

a
variation of connection B = — V1

at
X as above, is given by the formula

(2.34)

, where V = φ*tV and where φt is associated to
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where ix denotes contraction with X. For a quick proof of this, let π: TP-»^ be the
G-equivariant field of projections along the horizontal subspaces jj? onto the field of

d
vertical subspaces V. The tensor B is nothing but — φ*π viewed as a linear map

at
from 3? lo 1^ where each i^p is canonically identified with g (and with the

d
corresponding fibre in gp). Of course — φ*π = — &χ(π) where £^ denotes the Lie

dC
derivative. Furthermore for any tangent vector field Y on M let Ϋ denote the
horizontal lift to P and note that

= [_X,πΫ]-π([_X,T\)

= -π([X,Y])

= ~ RX, Y= ~ (iχR)γ

These last remarks add insight to the discussion of Sect. 7.

3. The Bochner-Weitzenbock Formulas for Lie Algebra-Bundle-Valued Forms

The purpose of this section is to establish formulas relating the Hodge-de Rham
Laplacian and the rough Laplacian of g£-valued 1- and 2-forms. They involve
both the curvature of the riemannian base manifold and of the bundle with
connection. We deduce from them an algebraic expression of the rough Laplacian
of a harmonic g£-valued p-form (p=ί or 2). These formulas are of fundamental
importance in the theory.

To begin we define a basic (zero-order) operator R7:Ωί(QE)-*Ωί(QE) by setting

(3.1)
7=1

where R7 denotes the curvature of the connection Fon E and where (e1? . . ., en) is an
orthonormal basis of the tangent space TXM at the point x in question. Recall
that the Ricci transformation Ric:TxM->TxM is defined by

Ric(ϊ) = Σ Rχ..ej,
7=1

where R here denotes the riemannian curvature tensor. Given φ in ΩI(QE) we
define

We recall that on the standard sphere Ric(X) = (n — 1)X.

(3.2) Theorem. For any φ in β1(g£), we have

Proof. Fix a point x in M and choose X, eί, ...,en in TXM so that (e1? ...,βn) is an
orthonormal basis. Extend X to a local vector field and (el9 ..., en) to a local
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orthonormal frame field so that (DX)(x) = (De1)(x) = ... =(Der)(x) = 0. Then, at
the point x,

(3.3) (dψφ)x = V^fφ) = - Vx Σ (F φ)e,

7=1

and

(3-4) W>)*=-Σ
7=1

7=1

=-Σ
Adding (3.3) and (3.4) we find that

(3.5) (Δvφ)x = (V*Vφ
7=1

(here we keep the notation Rv for the curvature of the connection on the bundle
Γ*M(χ) g£ induced by the Levi-Civita connection D on the base and the connection
V on the bundle E).

The operator RF acts as a derivation. Hence (JR£ γφ)z = [RF

X y, <pz] — φRχ γZ.
Applying this formula to the second term in (3.5) gives the result. Π

(3.6) Corollary. If φ is a QE-valued ^-harmonic 1-form on the standard sphere Sn,
then

Similar calculations can be carried out for any p-form. Of particular interest
here is the case p = 2. In analogy with (3.1) we define 5^F:ί22(g£)^Ω2(g£) by

(3.7) W(φ)x,r= Σ
7=1

For a linear map ω on 2-vectors we define

)

7=1

(this is indeed the composition of ω and φ viewed as maps from Λ2TM to g£).
Notice that with our convention φx γ = φ(X Λ Y).

Notice then that the extension of the Ricci transformation to 2-forms as Ric Λ /
is given by

(3.9) (Ric Λ I)x γ = Ric (X) A Y +X A Ric (7) .

(3.10) Theorem. For any φ in Ω2($E)
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Proof. Fix x in M. Choose X, Y, e^ ..., en in TXM and extend them as in the proof of
Theorem (3.2). Then at the point x

I n \ I n

\j=ι βj 6j' / \j=ι

7=1

and
n

j=ι βj

7=1

n

7=1 6j'ej X'Y 6J'Y 6J'X 6J'X 6'

Combining (3.11) and (3.12) we find that
n

7=1

By using the identity

\Rχ, γψ)z, w = \-Rχ, y? Ψz, WΛ ~ ΨκXίYz, w ~ Ψz,RX!YW •>

Equation (3.13) can be expressed as

(Δvφ)x Ύ=:(V*Vφ}χ>γ + Rv(φ)x y + ^RiC(χ) y
n n

~ L (PeJ,Rej,xY~(PRic(Y),X+ Σ 9ej,Re YX'
7=1 7=1

By using the/irsί Bianchi identity

together with the Definitions (3.8) and (3.9), we get the expected relation. Π

Remarks, i) The sign in the formula of Theorem (3.10) in front of Λ may change
with conventions.

ii) This way of expressing the formula has the advantage of incorporating the
influence of the curvature of the base manifold into one term. This is especially
interesting in dimension 4, where one can check (cf. [5]), by decomposing the
riemannian curvature into irreducible components under the action of 04 or SO4,
that Ric Λ / + 2R does not involve the Ricci traceless part of the riemannian
curvature. For an application see Sect. 5.

(3.14) Corollary. If φ is a QE-valued harmonic 2-form on the standard sphere Sn, then
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Proof. On the standard spheres Sn, we have

R
Therefore,

We conclude this section with an elementary fact that will be of use in Sect. 10.

(3.15) Proposition. Suppose φeΩ2(QE) takes values in a I-dimensional subbundle of
cj£, i.e., suppose φ = f®σ wheref is a scalar-valued 2-form and where σ is a section of
cj£ with \\σ\\2 = 1. Suppose further that 5^p(φ) = 0. Then φ is harmonic if and only iff is
harmonic and σ is parallel.

Proof. A direct computation shows that
(3.16) r*rφ

The term R\φ) in Theorem (3. 10) vanishes. Thus, since φ is harmonic, we have
that

(3.17) V*Vφ = - φo(Ric Λ I + 2R) .

Taking the derivative of the condition | |σ | | 2 Ξl, we find that <Fσ, σ> = 0.
Consequently,

J J

From (3.16) and (3.17) we then conclude that

(3.18) <r*rφ,<P> = <

The Bochner-Weitzenbόck formula (3.10) applied to scalar-valued 2-forms (letg£

be trivial), states that ADf = D*Df + f°(RicΛl + 2R). Therefore, (3.18) can be
rewritten as :

Since AD^Q on M we conclude that ADf = Q and that Pσ = 0 away from the zeros
of/ D

4. Some Algebraic Facts Specific to Dimension 4

When dimM = 4, the Hodge Star operator * is an involution of Λ2T*M, giving
rise to the decomposition

into eigenspaces for the eigenvalues + 1. Hence, for any vector bundle F over M,
every φ in Ω2(F) can be written uniquely as φ = φ+ +φ~ where

(4.1) φ±
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and

(4.2) *φ± = ±φ±.

If φ = φ + , then φ is called self-dual
If φ = φ~, it is called anti-self-duaL
From (2.27) and (4.2), we have the following.

(4.3) Lemma. On a compact oriented 4-manifold M, a vector-valued differential
2-form φ is harmonic if and only if both φ+ and φ~ are harmonic.

Any vector bundle E over a compact oriented 4-manifold M has associated
with it a number p±(E) called the Pontryagin number of E. This number is a
topological invariant of E and can be computed by the formula

(4.4) p1(£)=-ίτf <^ΛΛ >,
^π M

where R*7 is the curvature of any connection V on E. Writing RF=RF+ + RF~, we
have

<#ΓΛ R*y = <KFΛ **ΛF> - <£FΛ (*#Γ + - *#F-)> - U/ί174-1|2 - ||JRF~ ||2 .

Of course \\R7\\2=\\R*7+\\2+\\R*7~\\2. Consequently, we have the fundamental
inequality

(4.5) 4π2|p1(£)|^^^(P)

with equality attained if and only if R7 is either self-dual or anti-self-dual. In
particular, the self-dual (or anti-self-dual) curvatures realize an absolute minimum
of the Yang-Mills functional. Such curvatures are, of course, Yang-Mills fields.

All these facts are by now quite standard.
Further topological restrictions of this type for SO4-bundles will be presented

in Sect. 8.
There is another algebraic fact which seems less well known, but will be at the

heart of our proof of the stability Theorem B: the SO4-bundles A + TM and A ~ TM
are both irreducible and their tensor product is isomorphic to the $O4-bundle S^TM
oftraceless symmetric 2-tensors. We will use it in the following form (which after a
moment's thought is equivalent to the preceeding statement).

(4.6) Lemma. Let φ+ and φ~ be respectively a self-dual and an anti-self-dual
(vector-valued) 2-form on R4. Then for vectors X, 7eIR4, the quantity

4

Σ Φe x®9e Y is symmetric inX and Y. For ordinary forms, the resulting map from

!l+IR4®yl-IR4^Honι(yl+lR4,yl"lR4) to S2R4 = {/zeHom(IR4,R4): h is traceless
and symmetric} is an SO4-isomorphism of SO4-modules. Its inverse is given by
h\->^h Λ / where, after restriction, the homomorphism h A! gives a linear map from
/ι+iR4 to A-JR*.
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Proof. We can suppose that X and Yare unit vectors orthogonal to each other. We
then pick the orthonormal basis (et) such that e1 =X, e2 = Y. Then

7=1

From the equalities analogous to φe

+

3jeι=φe

+

2sί?4, 9e3,e2

==(Pei,e4 we get the an-
nounced symmetry. The map considered is obviously an SO4-maρ. Since its image is
non-trivial and S^IR4 irreducible, the map is surjective. Since both spaces have
dimension 9, it must be an isomorphism. One then checks that the inverse is indeed
given by the extension to 2-forms of a symmetric transformation. Π

This fact has the following consequences for the riemannian curvature. Viewed
as an operator on 2-forms, the curvature splits into three irreducible components
under the action of On(n^4): the Weyl conformal curvature tensor W, the Ricci

1
traceless part which is Ric0 Λ / if Ric0 is the traceless part of Ric and the

constant curvature part. In dimension 4, the Ricci traceless part anticommutes
with the Hodge Star-operator * the other parts commute with *. This fact allows
us to identify again the traceless symmetric 2-tensors with linear maps from
Λ+TM into Λ~TM, giving another viewpoint on Lemma (4.6).

In fact, more is taking place: there is a further decomposition under the group
SO4. The Weyl part W splits into W+ + W~ (where W± operates trivially on
A + TM). This gives rise to a special family of Riemannian 4-manifolds the half-
conformallyflat spaces. Among them we find some complex manifolds such as (DP2

with its canonical metric for which W~ = 0, or the K3-surfaces with their Ricci-flat
metrics for which W+ = 0. (For more on these spaces, see [3, 5].) As a consequence
in the Weitzenbock formula for anti-self-dual 2-forms on (CP2, the contribution of
the curvature of the base is diagonal as on the standard sphere. This contribution
even drops out on self-dual 2-forms on a Ricci-flat K3 surface.

5. Isolation Theorems

In this section we prove a series of isolation results for Yang-Mills fields. The basic
idea is to exploit the non-linearity of the Bochner-Weitzenbock formula (3.14). For
φ = Rv, this formula implies that

(5.1)

where

(5.2)

When n = 4, the analogous formulas hold with R*7 everywhere replaced by
which we abbreviate R + . Recall that R+ is harmonic and so formula (3.14) applies
[see Lemma (4.3)]. We then examine the last term Λ(#+) of this formula. Writing
R?=R+ +R~ gives a splitting of this into two terms, the second of which is of the
form

*-(R+)x.γ= Σ
7 = 1
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By Lemma (4.6), this expression vanishes. We conclude that <ft(.R+), jR + > = ρ(R+)
and so formula (5.1) holds for R+ as claimed. Of course, by the same argument (or
by a reversal of orientation) we see that this formula also holds for R~.

In Sect. 8 we show that when n = 4 and G = SO4, there is a further decom-
position of the curvature, RF=R + + R±+R++RI, into harmonic components.
Since [#'+, £'_] = 0 and since R+=R++R_, we see easily that <#(#+)> #ί>
= ρ(Rΐ). It follows immediately that £+ (also £ΐ, etc.) satisfies (5.1).

Now we examine the term ρ given by (5.2). For any Lie algebra g with a fixed
invariant inner product <•,•>, we have the associated fundamental 3-form ΦQ

given by

for U, V, We§. Now there is a canonical isometry Λ2TM^5$M given by (2.29) and
so we may consider R as a linear map

In δθM we have the identities :

(5.3) [et Λ ej9 ek Λ ez] - δnek Λ ej + δ^ Λ ek + δikej Λ et + δjfcez Λ e£

for all i, j, /c, /. Hence, we may rewrite (5.2) as

(5.4) ρ(Rr)= Σ Φ (^.^^.^Λ .J
ί,j,k=l 9

= Σ

where, for notational convenience, we define the inner product in y!3δo|f by

(Φ,!P)= Σ Φ(α,

where α, β, and y each run over an orthonormal basis of SOM.
Combining (5.1) and (5.4) and integrating by parts gives the following basic

result.

(5.5) Theorem. Let Rv be a Yang -Mills field and let λ be the minimal eigenvalue of
the operator Ric ΛI + 2R on 2-forms over a compact riemannian manifold M. Then

J \\VRf\\2^- J {λ\\R*\\2 + (R**ΦβE,ΦίθM)}.
M M

When n = 4, this formula holds with R^ replaced by Rv+ and with λ replaced by λ+ ,
the minimal eigenvalue ofR.ic/\I + 2R on Λ + TM. (The corresponding statement
holds with +'5 replaced by ~'s.) //, in addition, G = SO4, the formula also holds with
R replaced by R + , J R ΐ , etc.

We now observe that the term ρ(RF)=^(R|7ίίίΦg£;, Φ50M) is a homogeneous cubic
function of RF, whereas ||^F||2 is homogeneous quadratic. For R^ sufficiently small
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and /l>0, this quadratic term will dominate the right hand side of formula (5.5)
causing it to become negative. (This, of course, is not possible.) The point at which
\\R^\\2 dominates the expression can be estimated concretely, and in some cases,
quite accurately. To do this we want to estimate (L*Φg, ΦSOn) in terms of ||L||2

where L:$on->g is a linear map and where 9 is any Lie sub-algebra of $QN. Recall
that the inner product on g is induced from the canonical one on s$N [defined by
(2.14)]. Consequently L*Φg = L*Φ5θN and for the moment we can ignore g.

(5.6) Proposition. Let L:soπ ^ be any linear map. If \\L\\2 ^^ I I, then

^.5, this inequality is strict.
When n = 4 (respectively n = 3), equality holds if and only if there is an

orthogonal splitting 1RN = S0@Sί (άimS1=4) with respect to which L = 00σ where
σ is one of the two irreducible spin representations of so4 (respectively where σ is the
irreducible spin representation of so3y).

When n = N = 3, the inequality holds for ||L||2^ \ =3. In this case equality is

attained if and only if L :$o3—»so3 is a Lie algebra isomorphism.

Proof. Note that it suffices to prove the inequality for | |L| |2=^I L since for

0 ̂  t ̂  1 we then have that

|̂ ^

To compute we let {eί Λ ̂ }i
w^Λ2W. Then

denote the standard orthonormal basis of

and

(L*ΦS0^, Φ50n) = . Λ βj), Kβj Λ ek)l L(ek Λ e.)> .

We now introduce the (n x ^-symmetric matrix σ = ((ŝ .)) with non-negative entries

stj= \/2\\L(et Λ βj)\\. By assumption

trace(σ2)=

We claim that it suffices to prove that

n

trace(σ3) = Σ VjΛi ^ n(n ~ lϊ(n ~ 2)
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with equality if and only if stj =1— dtj. Indeed if this is so, then by Lemma (2.30) we
have that

(5.7)

ί t ]/2\\L(e^ej)\\\\L(e^ek)\\\\L(e^ei)
i,j,k=l

= 1 Σ siΛA^2(n

Suppose now that we have equality in each line of (5.7). From the last line we get

that stj= 1 — δtp and so \\L(et Λ βj)\\ = l/J/2 for z'Φj. From the first and second lines
we conclude that, when zj, k are distinct,

[Lfo Λ βj), L(ej Λ ekj] = tijkL(ek Λ e.)

where tίjk > 0. Taking the inner product with L(ek Λ et) and using the (term by term)
equality in (5.7) we see that tijk = sίjsjksik = l. Hence, we have

(5.8) \L(ei Λ βj), L(ej Λ ej] = L(ek Λ et) for all ij, fc distinct.

This equation has a number of consequences. For example,

(5.9) <L(et. Λ βj), L(ej Λ efc)> = 0 for all ij, k

since, setting Ltj = L(ei Λ .̂), we have that

<L0,L,,> = <[L^LW],L,,> = - <LH, [L,,,L,J> = 0.

More generally,

(5. 10) <L(β . Λ e .), L(ek Λ ez)> - - (L(ek Λ 6 .), L(e . Λ ^)> for all i J, /c, /

since

Another consequence is that setting α^ = [1,̂ ,1̂ ], we have

(5.11) αijkz + αizjk + αfkz./= =0 f°r a11 U>^' distinct.

To see this, note that

[Ly, Lw] = [L0, [LH> Lf J] = [LH, [L0, LJ] + [Lίfc, [L

We now see that aijkl has the first two symmetries of a Riemann curvature tensor.
A standard argument proves that it therefore has the third symmetry, i.e.,
aijkl = (%kl „. However, from the definition we see that ct,ijkl = — uklip and so we
conclude that

(5.12) [L(e. Λ βj),L(ek Λ βz)] =0 for ij, /c, / distinct.
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Comparing (5.8) and (5.12) with (5.3) we conclude that L : so^-^o^ is a Lie algebra
homomorphism.

Finally, we observe that by Lemma (2.30) each pair(L(ef Λ <?.), L(ej /\e^\ for
zj, k distinct, is conjugate to a pair of Pauli matrices. In particular, each of the
endomorphisms L(et Λ βj) is supported in the same 4-dimensional subspace, and
by (5.8) each triple (L(et A ej), L(ej Λ ek), L(ek Λβ^for i,j,k distinct is orthogonally
equivalent to the standard orthonormal basis of Pauli matrices. The conclusion for
n = 3 ana 4 now follows easily.

For n ̂  5 the situation described above is impossible since there exist no non-
trivial homornorphisms soΛ->so4 for n^5soπ being simple. To see this directly
we note that if n ̂  5 and if ί j , fc, I are distinct, then

(5.13) {L(eiΛej)ίL(ekAel)y = Q.

This is proved by choosing m distinct from ij,k,l and using (5.11) and (5.10) as
follows :

0 =

= <Ly, [Lmi, Lm J > + <Ltt> [LJm, Lm J > + <Ly, \Lmk, L(J >

= <L» Llk) + <LU, Lkj) + <Z0, Lik)

= - <Lik, V + <Ltt, Lkjy + <Ly, Lίk)

~ (Lφ Lkjy — — \L.j, Lkl) .

It follows that if n^5, the matrices { j/2L/7.} t<j are orthonormal In particular, L is
injective and L :sort->$o4 is impossible.

In the case where n = N = 3, we can improve (5.7) by using the refinement of
Lemma (2.30) given in (2.31). The conclusion in this case is easily obtained.

To complete our proof it remains only to establish the following.

(5.14) Lemma. Let σ = ((sί7.)) be a symmetric nxn matrix with s^Q and s f ί = 0. //
trace (σ2) = n(n— 1), then

trace(σ3) ̂  n(n - l)(n - 2)

with equality if and only if stj = 1 — dtj.

Proof. To find the maximum of the function F(σ) = trace (σ3) on the space of
symmetric matrices subject to the constraints : trace (σ2) = n(n — 1), sit = 0 and stj ^ 0
we look for all critical points. By the usual Lagrange multiplier technique the
matrix σ is critical for F if there exist real numbers, λ, λ1 (Irgΐ^n), and λtj

(l^i<j^n) such that

(5.15) σ2

i ί<j

where λίy Φθ only if siy. = 0. (This is the boundary effect.) We conclude that F(σ)

Our objective is therefore to show that λ is bounded by n — 2.
We first note that the multipliers λtj are unnecessary when one is interested in a

maximum. Indeed suppose σ is critical and lies on the boundary {5.^ = 0} of our



Stability and Isolation Phenomena for Yang-Mills Fields 209

space of matrices. Then the matrices σ, defined for f ̂ 0 by

2ί2

are non-negative and satisfy the constraints. Moreover, we have
2 3/2 "

Note that by (5.15), we have λij = (σ2)ij= Σsίksίj- Assuming λij>0, we see that F(σt)
k

> F(σ) for all t sufficiently small. Consequently, if F(σ) is a maximum, all λ{. must
vanish.

By a permutation of indices we can reduce σ to a block matrix σ = σ1® ...®σk

where each block σ of size n cannot be further reduced in this fashion (see [11,
Chap. Ill], for example). It is clear that each block satisfies the equation

(5.16) σ2 = λσj + Ajί

where A. is a diagonal HJ x n matrix. Notice then that A is in fact a scalar matrix
μ l since A and σ commute and σ is irreducible. Taking the trace of (5.16) we get
that μj = (l/nj) trace σ2 (since trace σ7 = 0). On the other hand, since σ7 is a solution
of a polynomial equation of degree 2 with scalar coefficients, σj has at most two
eigenvalues, say α^ and βj9 which necessarily have opposite signs. We suppose
α7.<0.

By the Perron-Frobenius theorem (cf. [11, p. 53]) the positive eigenvalue of σ,
must be simple. Therefore, β. = (n — l)ay, and λ = Oy + βj = — (n — 2)θy, and trace σj

Consequently, ^ >2 (since λ>ϋ) and traceσ? = [«ι/(nj.-l)/(n</-2)2]λ2. It fol-
lows that

(5.17) φ-l) = traceσ2= ^ traceσ2- X '̂~ ̂ λ2^kλ2.
j = ι j = ι (nj~2>

From (5.17) it is clear that λ is maximal when fe=l. In this case λ = (n — 2) as
expected.

We have now deduced that if F(σ) is maximal, then the minimal polynomial of
σ is p(σ) = (σ — τt+l)(σ+l), and the eigenvalue (n— 1) appears with multiplicity
one. The matrix σ + i has only ones on the main diagonal. Moreover, its rank is
one, so that for each ί j (i φ j) there must exist non-zero real numbers j8f, βj so that

Consequently, we have that

Since stj = sβ ̂  0 we conclude that stj = 1 for all i Φj. This completes the proof of
Lemma (5.14) and of Proposition (5.6). Π
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(5.18) Remark. The proof of Proposition (5.6) also shows that if 0<||L||2<i
\2

5 0 ^ , 5 .
Combining Theorem (5.5) and Proposition (5.6) gives the following immediate

results.

(5.19) Theorem. Any Yang-Mills field R on Sn, n^5, which satisfies the pointwίse

estimate \\R\\2 ̂ iu must vanish identically.

Proof. By Proposition (5.6) the integrand on the right in (5.5) is ^0 since
λ = 2(n — 2) on Sn. Hence, this integrand vanishes identically (as does VR). By
Proposition (5.6), this implies R = 0.

(5.20) Theorem. Let R be a Yang-Mills field on S4. If R+ satisfies the pointwise
condition ||^+||2<3, then R+ =0. The corresponding statement holds for R~.

Moreover, if the group of the field is SO4 and if R + satisfies the condition
| | JR+|| 2<3, then R + =0. The corresponding statements hold for R+, R~, R~ (see
Sect. 8).

Proof. One argues as in (5.19) with R replaced by R+, R~9 R+, etc.
Theorem (5.20) gives an explicit C° neighborhood of the self-dual fields on S4

in which no other Yang-Mills fields appear. The self-dual fields are "isolated".
We next examine what happens when equality is allowed in the condition

| |R||2<3 on S4. To state the result it is nice (although not necessary) to mention
the associated bundle E.

(5.21) Theorem. Let (E, G, V,R) be a Yang-Mills set-up on S4 such that R satisfies
the pointwise condition | | jR||2^3. Then either E is flat or E = E0@S where E0 is flat
and where S is one of the (two) 4-dimensional bundles of tangent spinors with the
canonical riemannian connection.

Proof. Arguing as above we see that either R = Q or ||.R||2 = 3 and 7R = 0. In the
latter case, Proposition (5.6) implies that there is an orthogonal splitting E = E0 ®S
where £0 is flat, where S is 4-dimensional, and where — R : SOM-»SOS is one of the 2
fundamental spin representations σ+ or σ" at each point. Let us assume that it is
the positive one at each point. (The other case is similar.) Then R~ =0 and
— R :so^-»$os is an isometric bundle injection which, since V(R) = [y,R] =0, is
connection preserving. Hence,

(5.22) sos = so^0so3,

where $o3 denotes the flat bundle. (Note that sρ3 corresponds to a parallel
quaternion structure on S.) Equation (5.22) implies that S, pulled back over the
principal Spin4-bundle of S4, is canonically trivialized and transforms according to
the representation σ+. This completes the proof. Π

The same argument can be applied to R~. We conclude that if \\R~ \\2 ^3, then
either R~ =0 or the following is true. There is an orthogonal splitting E = E0®V
where V is 4-dimensional, and

- R - : s o s o - C g
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is a connection preserving bundle isometry. (Recall that since dimF = 4, there is a
canonical splitting <$oF = <50^0sof .) This means that E0 is self-dual and that

where so^ is also self-dual. It follows that the principal Spin4-bundle of V can be
written as a Whitney sum

(5.23) P^(V) = P&V2®PSV2(S-},

where S~ is the canonical spin bundle above and where the connection on PSU2 is
self-dual. This is one of the connections satisfying the minimum conditions (8.7).
From (8.12) we see that ^pί(V) — χ(V) = 2. (The reader should consult Sect. 8 for
fuller details.) Summarizing the above gives the following.

(5.24) Theorem. Let (E, G, F, R) be a Yang-Mills set-up on S4 and assume that R
satisfies the pointwise condition \\R~\\2 ^3. Then either E is self -dual or E = E0@V
where E0 is self -dual and where V is a 4-dimensional bundle satisfying (5.23) and the
connection on the first factor is also self -dual

A corresponding theorem for R+ is obtained by reversing orientations.
We now consider the 3-sphere. Here the results are simple to state.

(5.25) Theorem. Let (E, G, F, R) be a Yang-Mills set-up on S3. If \\R\\2 <f , then E is
flat. If \\R\\2 ̂ f, then either E is flat or E = E0®S where E0 is flat and S is the
4-dimensional tangent spin bundle with the riemannian connection.

If dim(E) = 3 and | |Λ||2<3, then either E is flat or E=TS3 with the riemannian
connection.

Proof. The argument for the first part is entirely similar to the argument for
Theorem (5.21). For the second part, we use the last statement in (5.6) to conclude
that if #ΦO, then — £:SOM->SO£ is a connection preserving bundle isometry.
Hence, taking the composition

TM -*-> Λ2TM = $oM -̂  $oE = Λ2E -*-> E

gives an equivalence TM = E, and the proof is complete. Q
In order to be able to apply Theorem (5.5) for general dimensions n we need

Ric Λ / + 2R to be a positive operator. This is insured for example if the curvature
operator of M is positive (see [6, p. 74]). In this case it is known that M must be a
homology sphere by a nice theorem of Gallot and Meyer [10]. The results we just
proved still hold with the uniform bound on \\R7\\2 reduced to

(n-2)2

The 4-dimensional case is more interesting since one can consider separately
the positive and the negative 2-forms. In particular we have the following.

(5.26) Theorem. Let M be a compact riemannian 4-manifold which is half confor-
mally flat (say, W~ =0) and has positive scalar curvature K. Then any Yang-Mills
field R on M which satisfies the pointwise condition

M p\\K — n 2
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is self-dual. (A similar statement with — 's replaced by + '5 is obtained by reversal of
orientation.)

This theorem covers the case of CP2 with the Fubini-study metric where
κ = 24.

It is a theorem of N. Hitchin that half conformally flat Einstein manifolds with
positive scalar curvature are isometric to either S4 or CP2. It is conjectured that
this conclusion remains if one supposes the manifold to have non vanishing
signature and the scalar curvature to be constant.

6. The Second Variation

In this section we establish the second variational formula for the Yang-Mills
functional at a critical point, i.e., at a Yang-Mills connection. In fact we shall
derive three distinct formulas. The first is completely general. The other two are
valid only for infinitesimal deformations of the connection, i.e., for elements
BEΩί(QE)^T^E which satisfy the transversality hypothesis δ?B = Q [see (2.15) and
(2.16)]. However, in these latter cases the formula involves an elliptic second order
operator.

We shall work in the general setting developed in Sect. 2. We suppose that V,
|ί| <ε, is a smooth family of connections on E where V= P70 is Yang-Mills, and we
write

(6.1) Vt

where ^4ίeΩ1(g£) for each t. Letting R* denote the curvature of V1, we then have

(6.2) Rl = R7+ άv£ + \\_tf Λ A*]

[see (2.20)]. The infinitesimal variation of connection associated to V1 at ί = 0 is just

(6.3, β." .
at ί=0

Note that BeΩl(§E\ and thereby we have the natural identification :
We have defined an endomorphism ftp of this space by setting

(6-4) SV(φ)x= £ C ,̂*.̂ ]
J = l

for φeΩ1^), where (eί9 ...9en) is any orthonormal basis of tangent vectors to M at
the point in question. Our first version of the formula is as follows.

(6.5) Theorem. Suppose V = P° is a Yang-Mills connection. Then the second
variation of the Yang-Mills functional is given by

where B=-ΐt\t=0.
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Proof. It follows immediately from (6.2) that: ±(d2/dt2)\\Rt\\2\t=:Q = (dFB,d7By
+ <JFC + [£ΛE],#F> where C = (d2/dt2)Vt\t=Q. Integrating (by parts) and using
the condition

(6.6) δ7R*=Q9

we see that the term involving C vanishes. (This was expected since at a critical
point the Hessian of a functional is intrinsic and hence depends only on the first
order part.)

(6.7) <[*ΛB],/O= Σ <2lBeι,B l9

and the formula is now obvious. Π
We now restrict our variations to those whose first order part is transversal to

the orbit of the gauge group. The next result follows immediately from
Theorem (6.5) and the Bochner-Weitzenbock formula (3.2).

(6.8) Theorem. Suppose V=V® is a Yang-Mills connection and B= — Pl^o

Suppose also that δFB = 0. Then

M

where

(6.9) Corollary. Let V ana B be as in (6.8) and suppose M is an Einstein manifold
with Ric = fc Id.. Then

Observe that the operator 5̂  is elliptic and self-adjoint, and that the operator
F*Pis ^0. It follows that the restriction of ̂ Fto the subspace T^ΞkerO^cΩ1^)
has eigenvalues λ1 <λ2< ...->oo, with associated finite dimensional eigenspaces
Eλ ,Eλ , . . . . We can therefore introduce the following concepts from Morse theory
(cf. [132, 14]).

(6.10) Definitions. The index of a Yang-Mills connection V is the dimension

i(P) = dim/0 Eλ\ The nullity V is the dimension n(P) = dim(JE0).
U<o
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Certainly one of the major problems in the field is to understand the
relationship of these numbers to the topology of the gauge group £̂. The Yang-
Mills functional descends to a function

(6.11) ^^°:^£/^£->IR

and, roughly speaking, the space <$E/(£E can be identified with the classifying space
B&E. [In some cases, for example that of a non-trivial SU2-bundle over S4, we
actually have ^E/^E = B^E. However, in general one must worry that the action of
&E on ^E is not free, i.e., that there may exist Fe#£ and ge^£, #φl, such that
V9 = V. In this case we note that V°g = g°V, i.e., F(g) = 0, which implies a reduction
of the structure group of £.] Nevertheless, a naive application of standard Morse
theory to the function (6.11) gives direct relationships between the topology of B^E

and the number of critical points of ®IJί with a fixed index. Just recently
Uhlenbeck [16] has succeeded in establishing the analytic tools required for an
appropriate Morse theory when dim(M) = 2 or 3. If the Morse theory can be
successfully completed, Atiyah and Bott have shown that one obtains new proofs
of a number of profound results in algebraic geometry.

The fields of interest in this paper are those which are local minima of the
functional. Thus we introduce the following notion.

(6.12) Definition. A Yang-Mills connection V is said to be stable if i(V) = n(V) = Q,
that is, if

for all non-zero

(6.13) Note that if ^F>0 on Ω1^), then ^F>0 on the subspace T°, and V is
stable. We caution the reader to note, however, that the second variation is given
by !~fv only on the subspace T°.

(6.14) Note that weak stability (second variation ^0) is equivalent to the
condition z(p) = 0. Thus, in particular, stability implies weak stability.

1. The Stability Theorems

In this section we shall explore the structure of weakly stable Yang-Mills fields on
the euclidean ^-sphere ^"^{xelR""1"1 : ||x|| =1}. It turns out that on Sn there is a
finite dimensional family of vector fields which tend to decrease the energy of any
Yang-Mills field. Using this family we find strong restrictions on any weakly stable
field on S4. In particular, when G = SU2, SU3 or t/2, we show that any such field is
either self-dual or anti-self-dual.

We begin with a general observation. Fix a Yang-Mills connection on a
riemannian manifold M and consider a 2-form φeΩ2(^E). Then for each tangent
vector field V on M, the contraction ivφeΩ1(g£) defined by setting
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is an infinitesimal variation of the connection. Suppose now that V is of gradient
type, i.e., that

(7.2) (DXV, Yy = (DγV,Xy for all X,Y,

where D is the Levi-Civita connection on M. [Condition (7.2) is equivalent to the
fact that the dual 1-form ω( ) = <F, •> is closed.]

(7.3) Lemma. Let B = ίvφ where φeΩ2(QE) satisfies δ^φ = Q and where V is a vector
field of gradient type. Then δ^B = ΰ.

Proof. Fix xeM and let (e1? . . ., en) be a local orthonormal tangent frame field such

that (Dej)(x) = Q for each/ Write DeV= Σatjeρ and note tnat aij — aβ f°r a^ Z'J by
(7.2). Consequently, at x we have

since δ7φ = Q and φe^e is skew-symmetric in ί and 7. Π
We now consider on Sn the special, finite-dimensional space of vector fields

i^={gradf:f = F\sn and F:IRn+1^IR is linear} .

There is a natural isomorphism R"+1^^ which associates to each FeIR"+1 the

vector field V given by

(7.4) F(x) = ι;-<ι;,x>x

for xeS". Note that F-grad/ where /(x) = <u,x>.

(7.5) Lemma. Each Vei^ satisfies
(i) DxV=-fX,
(ii) D*DV=V,

where D denotes the Levi-Civita connection of the standard metric on Sn and where f
is as above.

Proof. Let D denote the riemannian connection on R"+1, and let
( )Γ: TXW

+1^TXS
H denote orthogonal projection. Then it is standard that

DY = (DY)T for any tangent vector field Y on Sn. It then follows from (7.5) that

since v is parallel in R"+ 1 and since x is normal to Sn at x. This proves (i). For (ii)
we fix xeSn and choose a local frame field (eί,...,en) near x. Then, D*DF

- - Σ(DeJ

DeJ

V-DDejeJ

V)= Σ <>> βj> βj = ̂  = V> aild the PΓOθf ίδ Complete. Π
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(7.6) Remark. The vector fields belonging to i^ are exactly the gradients of the
eigenfunctions of the Laplacian corresponding to the first non-zero eigenvalue on
Sn. It follows immediately from 7.5 (i) that these fields are conformal. In fact i^ is
the orthogonal complement to the Killing vector fields in the space of all
conformal vector fields on Sn.

Note that the isomorphism IR"+ 1 ̂ i^ transfers an inner product to i^ which is

invariant under the natural action of On+1.
We are now in a position to state one of our key results.

(7.7) Theorem. Let (E, P, G, V] be any Yang-Mills set-up over the euclidean sphere
Sn, and suppose φeί22(g£) is harmonic, i.e., δFφ = d7φ = Q. Associate to φ a quadratic
form Qφ on f by setting

where Vl=V + t(ivφ). Then

sn

Proof. By Lemma (7.3) we know that (5F(zvφ) = 0 for all Vei^ and so we may use
formula (6.8) for the second variation. Consequently

trace(βφ)= Jtrace(^),
Sn

where qφ(V) = ̂ 7(ivφ\ivφy. To compute the trace of qφ at a point xe^n we
choose an orthonormal basis (ε0,εl5 ...,εw) of if adapted to this point. We let
ε0, ...,εn correspond, under the isomorphism i^^W+l, to the vectors x,eί9 ...9en

where (eί9 ...9en) form an orthonormal basis of TSn. We see from (7.4) that

(7.8) ε0(x) = 0,ε1(x) = e1, ...,εn(x) = en.

To apply the formula (6.9) we need to compute V*V(iyφ) for Fe^. Choose
local orthonormal tangent fields ε l 5 . . . ,ε n on Sn such that (DSj)(x) = 0, and let
X = Σ ajεj be any linear combination of these fields. Then at the point x,

(7.9) [P* V(ivφ)\x = -

= - Σ

ιX - 2 Σ (rSj<p)Dcjv,x + <PD*DV,X

Consequently, using (7.5) and the fact that δt'φ = 0, we conclude that

(7.9)
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Since Ric = (w-l)Id. on Sn, we have from (6.9) and (7.10) that

Since φ is harmonic, we have the following Bochner-Weitzenbock formula [see
(3.14)]

Combining these two equations we see that

(7.10) ^(ίvφ) = (4-n)ίvφ-
ΐ =

Therefore, we have at x that

Note that the contribution from the second term of (7.11) drops out because we
have taken the inner product of a symmetric and a skew-symmetric form.

Using (7.8) we finally obtain at x that

trace(^) = 2(4-n) £ \\φ J2 = 2(4-n)\\φ\\2 .
j<k

This completes the proof of Theorem (7.7). Π
Note that in the proof of Theorem (7.7), the introduction of the integrated

quadratic form Qφ was used only to get an interpretation in terms of the second
variation of ®/Jί. In particular, we insist that in dimension 4 we get the vanishing
of the density qφ.

Since V is a Yang-Mills connection, we can always choose φ = Rv in
Theorem (7.7). Thus we have the following immediate consequence.

(7.11) Theorem (J. Simons). There are no weakly stable Yang-Mills fields on Sn for

Note that when w = 4, Theorem (7.7) asserts that trace(βφ) = 0. Using this fact
we now prove the following.

(7.12) Theorem. Any weakly stable Yang-Mills fields on S4 with structure group
SU2, SU3 or U 2 is either self-dual or anti-self-dual.

Proof. Consider a weakly stable Yang-Mills field with group G on S4. Let ^(B, B)
be the quadratic form on ί21(g£) given by the second variation of the functional at
this connection. Since <#(B, B) ̂  0, we see that J(B, B) = 0 if and only if B is in the
null space of this quadratic form. In particular, if <f(B,B) = Q and δFB = Q, then

) = ΰ. Consequently, Theorem (7.7) implies that if φeΩ2(g£) is harmonic and
, then

(7.13)
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It follows immediately from Lemma (2.31) that since R7 is harmonic, so are
R+ =(R^+ and R~ =(R7}~~. Consequently, by (7.13) we know that

(7.14) ^(ίvR
+) = 0

for all FGΊ^. (The corresponding statement is true for R~ .) Using (7.9) and writing
R?=R+ + R~9 we conclude from (7.14) that

(7.15) (F*FΛ+)*.r + 4*ir + 2 Σ [Λ+ f j r ,Λ+ f y ] = -2 [Λ+. ,,*.>]
7=1 7=1

for all tangent fields X, Y on S4. The left hand side of (7.15) is clearly skew-
symmetric inX and Y. By Lemma (4.6) the right hand side is symmetric in X and Y.
Consequently, the g£-valued tensor

*x.r = Σ C^,x,«-.y]
7=1

vanishes for all X and Y, i.e., τ = 0.

(7.16) Proposition. At each point

/or α// X, Y, Z, FFe T^S4. Consequently, at each point

K+,α;]=o,

* C (g^ is the Lie subalgebra generated by the curvature transformations

Proof. This proposition can be deduced from the second part of Lemma (4.6) as
follows. Since τ = 0, τ Λ / = 0. However, one can easily see that

For the convenience of the reader who is uncomfortable with abstract linear
algebra, we offer a second, more elementary proof.

Let (el9 ...,e4) be an orthonormal basis of TXS
4 and for convenience set

Rϊ =R^e To begin we consider the quantities

for 7, /c^l, ...,4. Since τ = 0 we know that ΣCjk = Q for each fc, i.e., we have that

(7.17)

Using the fundamental identities

(7.18) Λf 2
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we see that

(7.19) C 1 2 = — C34, C 1 3 = — C24, ^14=~^23'

Combining (7.17) and (7.19) shows that Cjk = 0 for all j9k. Thus, using (7.18) we
have proved that

(7.20) , all j,k
ϊ , ̂  ] = 0 when i, j, k, I are distinct .

It remains only to show that

(7.21) [JR it,^~]=0 when iJ9k are distinct.

It clearly suffices to establish (7.21) for the case (ij, fc) = (3, 1, 2) since we are free to
permute our indices. Note that

Consequently, [^^1?^^2]=0 and the proposition is proved. Π
The next step in our proof is the following observation.

(7.22) Lemma. Let a+ and cΓ be subalgebras of a Lie algebra g such that
[α + ,α~]=0. // g = su2,£U3 or u2, then either α+ or α~ is abelian.

Proof. In each case it is straightforward to check that the centralizer of any non-
abelian subalgebra is abelian. Π

Note that if g is the Lie algebra of G2 or if rank (g)^ 3 then Lemma (7.22) is
false since g contains an so4 subalgebra (see Sect. 8).

We now consider the QE- valued 4-tensors C+=[jR + ,# + ] and C~ = [R~,R~]
on S4. (That is, C±YZW = [R±Y,R±W^ forZ, 7,Z, WeTxS

4.) It follows from (7.16)
and (7.22) that either C+ or C~ must vanish on some open subset (9<±S4. For the
sake of argument, suppose C+ vanishes on &. Now C+ is an algebraic function
of a solution of the elliptic equation ΔR+ =0, and the Aronszajn theorem on
unique continuation of solutions to elliptic systems [1] applies to prove that
C + = O o n S 4 .

We now observe that, since [K + ,jR"] and [# + ,# + ] both vanish on S4,
formula (7.15) [and also the Bochner-Weitzenbock formula (3.9)] for R+ becomes

Since V*V^Q on S4, this implies R+ =0. (The argument in the case that C~
vanishes on Θ is completely analogous, and shows that R~ =0.) This completes the
proof of Theorem 7.12. Q
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8. Principal SO4-Bιmdles

We now focus our attention on the interesting special case of SO4-bundles over a
4-manifold. Here there is an additional topological constraint on the Yang-Mills
functional. There is also a generalization of the condition of self-duality which
occurs if and only if the minimum values permitted by the topology are attained.
We then extend Theorem (7. 12) to this case; that is, we prove that any weakly
stable Yang-Mills field with group SO4 on the 4-sphere satisfies this condition.
Each SO4-bundle over S4 carries a large family of these minimizing connections.

Let M be a compact, oriented 4-dimensional riemannian manifold, and
consider over M an oriented 4-dimensional riemannian vector bundle E (i.e., a
bundle with structure group SO4). Then there are Hodge operators

*:Λ2TM-+Λ2TM and # :Λ2E-*Λ2E

with corresponding decompositions

(8.1) A2TM = A+TMφA~TM and A2E =

where TM denotes the tangent bundle of M and Λ± denotes the + 1 eigenspace of
the star-operator. For any SO4-connection V on E, the curvature Rv can be
considered as a bundle map

RΫ:Λ2TM-*Λ2E.

[Recall the isomorphism A2E^s$E given by (2.34).]
It can therefore be decomposed as

(8.2) Rr=R++R++R~+Rl

with respect to the splittings (8.1). Since these splittings are orthogonal, we can
write the Yang-Mills integrand as

(8.3) ||̂ ||2 = ||^:ιι2 + ||^ί||2 + ||Λ;||2 + ||^:||2.
Since E is oriented and of dimension 4 over a 4-manifold, it has two

independent characteristic invariants, its Pontrjagίn number p^(E) (cf. Sect. 2), and
its Euler number χ(E). By Chern-Weil theory these numbers can be computed by
integrating certain universal polynomials in the components of the curvature
tensor R. From these standard formulas it is a straightforward calculation to show
that:

(8.4) P1(£)=Λί
4π M

and

(8.5)
oπ

Both of these numbers are integers, and both may be either positive or negative.
From (8.3), (8.4), and (8.5) we immediately conclude the following.

(8.6) Theorem. Let E be an oriented 4-dimensional riemannian vector bundle over a
compact oriented ^-dimensional riemannian manifold M. Let p — 4π2

Jp1(E) and
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χ = 8π2χ(E) denote the (renormalίzed) Pontrjagίn and Euler numbers of E re-
spectively. Then

for any SO 4- connection V on E. Furthermore this minimum value is attained if and
only if :

(8.7)

R-_=R-=Q if

R+_=R-=0 if

R+=R+=0 if -p^\

R + = R I = 0 if -χ^\p\.

For the sake of exposition we briefly present some examples.

(8.8) Example. Suppose the structure group of E can be reduced to SU2. In this
case — ^pί(E) = χ(E) = c2(E), the second Chern class of E. Here Theorem (8.6)
asserts that $/Jΐ(V) = 4π2\pί(E)l the minimum allowed value, if and only if

R = R+ if

and

R = RI if

(8.9) Example. Let M = S4 and let E=TM, the tangent bundle. Then p1(TM) =
and χ(TM) = 2. For the canonical riemannian connection, the curvature

R:Λ2TM^Λ2TM

is the identity map. Hence,

and #ί :Λ±TM->Λ±TM is the identity map. (Thus \\R+\\2= \\RI\\2 = 3.) In
particular, by Theorem (8.6) the Levi-Civita connection on TS4 achieves an absolute
minimum of the Yang-Mills functional.

Recall that on a 4-manifold, a curvature tensor RFis harmonic if and only if the
components R+ and R~ are harmonic. We have the following analogue.

(8.10) Proposition. Let E and M be as in Theorem (8.6), and let R7 be the curvature
of an SO ̂ -connection V on E. Then Rv is harmonic (i.e., Yang-Mills) if and only if
each of the components R + , R*, R~, and RI is harmonic.

Proof. If each component of R7 is harmonic, then clearly Rv is harmonic. On the
other hand suppose R7 is harmonic. Then R+ and #~ are harmonic by (2.31).
Furthermore, R+ =R++R+ and #+ =^(1 ± &}R + . The corresponding statement
is true for R~ . Now the operator ft : Λ2E-+Λ2E is parallel, i.e., V(ft) = [y,ft]=Q,
since ft is defined in terms of the metric on E. It follows directly from definitions
that dv and δv (and therefore A *) commute with ft . Thus A ?(R + = |(1 ± ft )A FjR + - 0
and Av(R-±) = ±(l ± ft)A7R- =0. This completes the proof. Π
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We are now ready to prove the main result of this section.

(8.11) Theorem. Any weakly stable Yang-Mills field on S4 with structure group SO4

satisfies the condition (8.7) of two-fold self-duality.

Proof. From the arguments of Sect. 7 [see Proposition (7.16)] we know that the
endomorphisms R*, and RΓ. commute at each point of S4. We now observe that
under the natural identification Λ2E^$oE, given by (2.34), the decomposition
Λ+E@Λ~E corresponds to a decomposition

where so| are bundles of sub-Lie algebras pointwise isomorphic to s>u2, and where

(This corresponds to the decomposition so4 = su20$u2.) Consequently, at each
point of S4 the endomorphisms (R+). ., . . . , ( R I ) . . mutually commute.

We now focus attention on the harmonic so^ -valued tensor R+=R++R+.
Since 50^ is a bundle of su2-algebras, the arguments of Sect. 7 can be applied
directly to prove that either R+ or R+ vanishes on S4. The same arguments
applied to R_=R++RI prove that either R* or R~ vanishes on S4. Therefore we
are in one of the four cases of condition (8.7). Which case or cases occur is now
completely determined by the topology and the formulas (8.4) and (8.5). This
completes the proof. Π

We now show that each SO4-bundle over S4 carries a large family of
connections satisfying condition (8.7). To begin we look at the topological
classification of these bundles. Note that since S4 is 2-connected, any SO4-bundle
carries a unique spin structure, i.e., we may replace the principal SO4-bundle PS04

with a principal Spin4-bundle PSpίn4 and an equivalence Pspin4/%2 = Pso4 Since
Spin4^SU2 x SU2, there is a splitting of PSpin4 into a Whitney sum

p ~ p/ v p"
ΓSpin4 — ΓSU2

 Λ ^SU2

of principal SU2-bundles. (Otherwise said, we lift the classifying map S4-»BSO4

for PS04 to a map S4^B Spin4 ̂  B SU2 x B SU2.) Each of the bundles Pg>2 over S4

is classified by its first Pontryagin number p(/c)eZ. There is exactly one such bundle,
up to equivalence, for each integer. Consequently, the principal SO4-bundles over
S4, up to equivalence, are in one-to-one correspondence with pairs of integers (//, p")
according to the prescription above.

Suppose Psθ4 corresponds to the pair (//, p") and let E be the associated 4-plane
bundle over S4. Then it is not difficult to show that

(8,2)

We now recall that the principal SU2 bundle with Pontryagin number p =t= 0
carries an (8|p| — 3)-dimensional family Mv of non-gauge-equivalent connections
which are self-dual or anti-self-dual depending on whether p is positive or negative
[2,3,9]. (By convention, we let Jίΰ denote the class of the flat connection of the
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trivial bundle.) Suppose then that PSpίn4 = P'SIJ2 x Pg'u2 corresponds to the pair of
integers (p',p") Choose connections V(ί)eJίp(j) and introduce the direct sum
connection V'@V" on P'SIJ2 xPsu2 ^his descends to a connection on PSU4 and on
its associated 4-plane bundle E. The components R+ and R_ of the curvature of
this connection correspond exactly to the curvature tensors of P'sυ2 and PgU2

respectively. Consequently, this connection satisfies (8.7). We have proved the
following.

(8.13) Theorem. Let E be an oriented rίemannίan 4-plane bundle over S4, and set
p = 2Pι(E) and χ = χ(E). Then there is a family Ji of gauge-inequiυalent connections
satisfying (8.7) on E where

o

-χ|)-6 if p*±χ

-χ\)-3 if p=±χ*0

if p = χ = V.

Given a riemannian 4-plane bundle E over S4, we now consider the bundle SE

of unit spheres in the fibres of E. The total space of SE is homeomorphic to SΊ if
and only if χ(E)=l. However, SE is diffeomorphic to SΊ only if, in addition, we
have a condition on p^(E) ((/?1(E))2=4mod2T7, see Milnor [12]). In any case, a
riemannian connection on E induces a field of "horizontal" planes on the manifold
SE, i.e., a field of 4-planes τ everywhere transverse to the fibres. We lift the metric of
S4 to τ via the bundle projection π:SE^>S4; we introduce the obvious euclidean
metric (induced from the inner product in E) on the fibres and we declare τ to be
orthogonal to the tangent spaces to the fibres. This gives a metric on SE defined
canonically in terms of the connection on E. This metric always has positive Ricci
curvature. However, one can show, by building on arguments of Weinstein [17],
that these metrics are never of positive sectional curvature.

9. The Stability of T(Sn/Γ)

We have shown in Sect. 7 that any Yang-Mills field on S", n^5, is unstable. This
applies in particular to the Levi-Civita connection on the tangent bundle TSn

which is clearly Yang-Mills since DR = Q. In contrast to this we now prove the
following result.

(9.1) Theorem. Let Γ be a non-trivial, finite group of isometries acting freely on Sn,
n^4, and consider the quotient manifold Sn/Γ with its "quotient" metric of constant
sectional curvature. Then the Levi-Civita connection on T(Sn/Γ\ considered as a
Yang-Mills field, is strictly stable.

We know that the standard connection on TS4 is weakly stable. This follows
directly from the fact that on TS4 this connection actually minimizes the Yang-
Mills functional [see (8.9)]. One wonders whether the Levi-Civita connection is
minimizing in all the cases T(Sn/Γ] of Theorem (9.1).

We shall also prove the following.

(9.2) Theorem. The Levi-Civita connection on TS3, or on T(S3/Γ) for any Γ as
above, is unstable as a Yang-Mills field. In fact its index is 1 and its nullity is 0.
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Note that since T(S3/Γ) is topologically trivial, (note that 53/Γ is orientable
since Γ acts without fixed points) the minimum of the Yang-Mills functional in this
case is zero and is achieved by the flat connections.

We point out that recently Uhlenbeck has proved the weak compactness
theorem necessary to do Morse theory for &^f:^τ/^τ^>JR. in the case of
3-manifolds.

Both Theorems (9.1) and (9.2) will be proved by explicitly computing the
operator

(9.3) ^ = D*D-f(rc-l)/ + 2ft

on Ω1(sor) (see Sect. 6). Note that Ω^soj.) is just the space of smooth sections of
the bundle T*(χ)sor, where T=T(Sn/Γ) and where soτ^Λ2T.

(9.4) Proposition. There is a natural orthogonal decomposition

where F^T* and F2^Λ3T*, such that ^(Γ(Fj))QΓ(Fj)for each j. Furthermore,

-(n-3) on Γ(FX),

(n-5) on Γ(F2),

on Γ(F3).

Proof. We shall work at a point xεS". For Be T*®soTχ andXe T9 we let BX:T->T
denote the corresponding skew-symmetric linear map. For convenience we set
F= T*(g><50Γ. Then the decomposition of F at x is given as follows:

F1 = {BeF'.We T such that BX=X A V]
F2 = {BeF:Bx(Y)=- BY(X) for all X, Ye T}

F3ΞΞThe orthogonal complement of F1®F2 in F .

The map X A V is defined by setting (X A V) ( Y) = <X, Y> V - < V, Ύ >Z. Observe that
Fil.F29 since for B(k)eFk we have

<F,B"> = Σ Σ <B'ei(ej),

=Ί Σ {<«.. e:)<V,B"eι(e)
ij

Similar calculations show that

B.e = 0 and <J5^Z> + <βZ,X> + <J5Z, Y> = 0 for

(Note that we have dropped the parentheses for B.)
We now have an orthogonal decomposition F = F1@F2®F3. The map

(9.5) T^F1

defined by Fκ>J5F, where (Bv)x =X Λ V, is a bundle isomorphism. Furthermore,
one easily sees that D(BV) = B(DV\ i.e., this isomorphism is connection preserving.
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Similarly we have that the map

(9.6) Λ3T*-+F2

defined by φ\-+Bφ, where (B%Y,Zy = φ(X, Y9Z), is a connection-preserving bundle
isomorphism. This proves the following fact.

(9.7) Lemma. Each of the subbundles F^ j= 1, 2,3, is preserved by the connection. In
particular,

D*D:Γ(Fj)->Γ(F.)

for eachj. Moreover,forj= 1 and 2, the bundle isomorphisms (9.5) and (9.6) take this
operator to the corresponding operator D*D defined in terms of the Levi-Civita
connection on T^T* and /t3T* respectively.

We must now examine the operator ft. Recall that on Sn/Γ the curvature tensor
of T, considered as an element in /L2Γ*(x)<5θτ, is given by

(9.8) RXfY

Consequently, for X, Ye T and BeF we have

7=1

-ΣL
j=ι

- I {(ej ΛX) (BejT>- Bej((ejΛX)(Y))}

Σ {<X,Bejr>ej-<ej,Bejr>X

Case 1. Suppose BεF^ that is, BX=X Λ Ffor some VeT. Then

and so ^jBe.ej/\X = (n-i)V /\X= -(n-ί)Bx. On the other hand,

Σ (e} Λ B e X ) ( Y ) = Σ {<ef TΓ>BtX - <BeX, 7>e,.}

= BXY.

Consequently, &(B)= -(n-2)B.
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Case 2. Suppose BeF2, that is, BXY= -BYX for allX, Y. Then clearly
and so

γyβeχ - (Bex, Yyβj}

= -2BxY.

Case 3. Suppose BeF3, that is, suppose £# .̂ = 0 and
j

γz,xy + (BZX, y> =o
for all X, Y, Z. Then as in Case 2,

= BYX+

Summarizing, we have that r / ^ .... ^
— ̂  — Δ) Oil Γ 1

(9.11) ft=j-2 on F2

[ 1 on F3.

Combining (9.11) with (9.3) completes the proof of Proposition (9.4). Π

Proof of Theorem (9.1). From Proposition (9.4) and Lemma (9.7) we conclude that
the Levi-Civita connection on T=T(Sn/Γ) is strictly stable if

(9.12) D*D>(n-3) on T*

and

(9.13) D*D>-(n-5) on Λ3T*,

where D*D is defined using the natural extension of the Levi-Civita connection.
Note that condition (9.13) is satisfied whenever n ̂  5. (When n = 5, we observe that
D*D>0 since its kernel consists of parallel 3-forms.) On T* we have that A =D*D
+ Ric = D*D + (n — 1) where A = dδ + δd is the Hodge Laplacian. Consequently, for
n ̂  5 we have stability if

(9.14) A>2(n-2) on T*.

Let λk(Sn/Γ) denote the /cth eigenvalue of A on T*. Then λ^/Γ) ^ λ2(Sn) if Γ is non-
trivial, since the first eigenspace of A on T(S") ̂  T*(S") is exactly the space i^
defined in Sect. 7 and no element of i^ is Γ- in variant. One computes easily from
[4] that λ2(Sn) = 2(n-l). This proves Theorem (9.1) for rc^5.

When n = 4 we have a connection preserving bundle isometry *:T*->/L3T*,
and conditions (9.12) and (9.13) coincide. The argument in the paragraph above
shows that D*D ̂  3, and the proof is complete. Π



Stability and Isolation Phenomena for Yang-Mills Fields 227

Proof of Theorem (9.2). Since n = 3 and D*Dg:l on T we know from
Proposition (9.4) that 5^>0 on F1 and F3. The bundle F2^Λ3T* is trivial and
D*D is equivalent to the standard Laplace Beltrami operator on functions. Its first
non-zero eigenvalue is ^3. However, it has a 1 -dimensional null space generated
by the volume form *1. This corresponds to the element £eT*(x)!3or defined by
setting

where *:Λ2T-+Tis the Hodge star operator. Clearly DB = Q, so, in particular,
δB = Q. From (9.4) we know that

Since the next eigenvalue of D*D on F2 is ^3, we know that 5^>0 on the
orthogonal complement of B. This completes the proof. Π

10. Results on General Homogeneous Spaces

Many of the ideas developed in Sects. 6 and 7 for Sn can be carried over to any
homogeneous riemannian manifold. This contradicts the long-standing belief of
the authors that the noncompactness of the conformal group of the sphere was
crucial in the proof of the Stability theorems. We begin by proving the following
generalization of our fundamental result, Theorem (7. 12).

(10.1) Theorem. Let M = K/H be a compact orient able homogeneous riemannian
manifold of dimension 4. Then any weakly stable Yang -Mills field over M with group
SU2, is either self-dual, or anti-self-dual, or reduces to an abelian field.

Proof. Let K be the group of isometries of M and let K be its associated Lie algebra
of Killing vector fields. There exists on K a K-m variant inner product such that for
each point xeM, the natural map

defined by sx(V)= Vx, is an isometry on ker (εj1. We fix this inner product on K.
Consider now a weakly stable Yang-Mills field (E, P, G, V) over M, and let

φeΩ2(g£) be a g£-valued 2-form. Then we defined a quadratic form βφ^0 on K as
in Theorem (7.7). By formula (6.5) we know that

(10.2) Qφ(V) =

for Fe/c, where

(10.3) &v

The key fact is the following lemma whose proof we shall postpone.

(10.4) Lemma. If φ is harmonic and if Vis a Killing vector field, then
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This lemma is valid in general dimensions. In dimension 4, we can choose our
harmonic form to be φ = R+. Then, writing R7=R+ +R~, we see that

(10.5) ^(ιvR
+)χ= -2Σ[Λ-.κ>*ί. J.

j

We now take the trace of Qφ. We move the trace under the integral sign and use the
fact that for each point xeM, we can choose an orthonormal basis (Vί9 . . ., VN) of K
such that

Vl(x) = el9...9V4(x) = e49 V5(x)= ...=7w(x) = 0,

where (eί9 ...9e4) is an orthonormal basis of TXM. This gives

trace(βφ)=-2ί £ <[«.:,.,*.*. «*!>*£.«*>•
M i , j , k

We know from Sect. 4 that the right side of (10.5) is symmetric in X and V.
Consequently, trace (Qφ) = 0, and since Q^O on K (because the field is weakly
stable), this means Qφ = 0 on K. Finally, since the field is weakly stable, this means
&r(ivR

+) = Q for all Fe?c, i.e.,

(10.6) Σ[*;,.r>Ki.J=<>
j=ι

for all tangent vector fields X, Y on M. This was precisely the hypothesis of
Proposition (7.16). We conclude that [α + , cΓ] =0, where at each point xeM, α* is
the sub-Lie algebra of (g£)x generated by the transformations R% γ for X, Ye TXM.
Consequently, by arguing as in Sect. 7 we conclude that either [a + ,a+]^0 or
[a~, a~] = 0 on M. In fact, from the elementary properties of the Lie algebras we
know the following.

Suppose G = SU2, and suppose that both α+ and α" are not zero. Then as we
saw in Sect. 7, neither can vanish on an open subset of M. Consequently, both α+

and α~ are abelian at each point. Since [α+,α~]=0, we conclude that α = α+ +α~
is also abelian everywhere on M. In particular, dim α ̂  1 everywhere on M. If RF is
not identically zero, then an open dense subset of M we can write

where φ is a scalar 2-form and σ is a section of g£ of unit length at each point.
Proposition (3.15) now implies that σ is parallel and φ is harmonic. On a compact
4-dimensional homogeneous space, every harmonic 2-form is parallel. (Check
case-by-case.) Hence σ is a globally defined, parallel section of ge. At each point
peM, σp is an endomorphism of the fibre Ep = (C2 with eigenvalues λ and —λ.
(These eigenvalues are non-zero and constant on M.) The corresponding eigen-
bundle decomposition E = EλφE_λ is parallel, i.e., is preserved by the con-
nection. This gives the desired reduction to a U ί -structure group, i.e., to an abelian
field. Π

Proof of Lemma (10.4). Fix a point xeM, choose X, eί9 ...9e4eTxM so that
(el9 ...9e4) is an orthonormal basis. Extend X to a local vector field and extend
el9 ...,e4 to a local orthonormal frame field so that
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Since φ is harmonic we have

for all X, Y, Z. Set φ = ivφ. Then at the point x,

(10.7)

ejX - ?χ(Φe) + ΦDχej}

Σ ?ej{

. X

Since δvφ = 0 and Rx γ = V^ γ — V^ x, we have

j

Furthermore since V is a Killing field it satisfies the following equations :

j

Substituting these last three equations back into (10.7) gives :

(10.8) (δWφ)χ = - Σ LR^V, Ψej,X\ -
j J

A Killing vector field Fhas the fundamental property that <DXK ^> = -

for aΆX, Y. Writing De.V=^ajkek we have that ajk= -akj. Substituting this into
k
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the second summation in (10.8) gives :

Σ {«jk(^)βJ.x+M^φ)βfc,χ} =o.
j,k

Consequently, we have that

By definition we know that

W(Φ)X = Σ [̂ . * Φe,J = - Σ Wj. X' Ψe, v]
j j

Adding these last two equations proves the lemma. Π

(10.9) Remark. Theorem (10.1) can be easily generalized to fields with group U2,
SU3 or SO4. A detailed statement will appear in a forthcoming note by the authors
(to appear in Annals of Math. Studies volume edited by S. T. Yau).
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with positive scalar curvature has been obtained independently by T. Friedrich and H. Kurke from
Berlin (GDR).




