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Abstract. The spherically symmetric gauge fields with a compact gauge group
over 4-dimensional Minkowski space are determined completely. Expressions
for the gauge potentials of these fields are obtained.

Part I. Construction of Spherically Symmetric Gauge Fields

1. Introduction

Spherical symmetry is one of the most important symmetry in nature. In a field
theory the spherically symmetric fields are very useful for understanding the
theory itself. For example, the important role of Schwarzschild solution in
Einstein's gravitation theory is well-known. For the gauge theories, the fields with
spherical symmetry are also very interesting. It is known that two gauge fields are
equivalent if they are related by a gauge transformation. Consequently, in the
construction of spherically symmetric gauge fields we have to consider the effect of
gauge transformations. Spherically symmetric potentials of SU2 gauge fields were
firstly considered by Wu and Yang [1]. Now the complete classification of
spherically symmetric SU2 gauge fields is known [2]. Some spherically symmetric
SU3 gauge potentials were studied by several authors [3-5]. For the general gauge
groups the problem of determining spherically symmetric field may be reduced to
solve some system of partial differential equations by using Lie derivatives [6].
But, the results in [6] are local in character and no formulas for the gauge
potential were obtained. The same problem was treated in a different way in a
previous paper [7], an algebraic method for determining all spherically symmetric
gauge fields was proposed. However, in this paper the expressions of the gauge
potentials were given only for some special cases and the proof of the general
theorem was not complete yet. It should be noted that some special form of
spherically symmetric gauge fields were pointed in [8].

In the present paper we develop this method and give a complete de-
termination of general spherically symmetric gauge fields for any compact gauge
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group. In Part I we state the method of construction and identify a special but
important class of such fields. In Part II we prove that all possible spherically
symmetric gauge fields can be obtained in this way. The proof is rather long, since
we have to prove the completeness.

2. Definitions

Let G be a compact Lie group and 3F a gauge field with gauge group G over
4-dimensional Minkowski space-time R3 + ί. We assume that the field !F is regular
except for r = 0. Here r = (x\ + x2

2 + xl)112.
If the field 3F corresponds to a trivial bundle, then the gauge potential b(x, dx)

= bλ(x)dxλ (λ — 1,2,3,4) is a g-valued 1-form defined o n R 3 + 1 except for r = 0. Here
g is the Lie algebra of G. For simplipifying the description we assume that G and g
consist of N x N matrices.

Definition 1. If for each ^ e S O 3 there exists a G-valued function uA such that

b(Ax, Adx) = (aduΛ(x))b(x9dx)-(duA(x))u~\x) , (1)

then the field ^ is called spherically symmetric and the function uA is defined as
the complementary function associated with A

If the field $F corresponds a nontrivial bundle we have to cover R3 + 1 by two
regions [9] i.e. R3 + 1=M+UM'

, — oo<ί<oo).

Here (0,0, r, ί) and (0,0, — r, t) are the north pole and south pole of the sphere
x2

1+x2

2 + x\ = r2, x 4 = ί. The field #" should be expressed as the combination of
two gauge fields ^ + and J^~ which are defined by two gauge potentials b+ and
b~ over M + and M~ respectively. Moreover, b+ and b~ are related by a gauge
transformation

b + (x, dx) = (ad ζ{x))b-(x, dx) - (dζ(x))ζ- \x) (3)

in M+ nM~, where ζ(x) is a G-valued function.

Definition 2. <F+ (or <F~) is called almost spherically symmetric if the definition 1
holds true for all x and A, satisfying xeM+ (or M~) and AxeM+ (or M").

Definition 3. If $F consists of J^ + and # " " , and # " + , J^~ are almost spherically
symmetric, then #" is called a spherically symmetric field.

Remark. If $F corresponds to a trivial bundle it can also be represented as a
combination of J^ + and $F~. In this case it is ready seen that definition 3 agrees
with Definition 1.

3. Construction of Spherically Symmetric Gauge Fields

We give here a description of the method of constructing spherically symmetric
gauge fields. The main procedure is to construct $F + and # " " , then connect them by
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a gauge transformation. In order to obtain ^ + (and #""), we construct the
complementary function uA corresponding to each rotation A satisfying Ax0 Φ x'o
where x0 = (0,0, r, t), x'o = (0,0, — r, t). Then, we determine the possible gauge
potential of xo,and further we obtain the gauge potential b+ at any arbitrary
points of #"*", the gauge potential b~ is constructed similarly. Moreover, we need a
quantization condition to combine the b+ and b~.

Let (ψ, θ, φ) be the Eulerian angles for the rotation A, i.e. A = C 3(\p)C ̂ (9)0 3(φ),
where Ca(oc) is the rotation around xα-axis through an angle α.

(a) The first step is to take an element Y of g such that the quantization
condition

exp(4πY) = e (4)

be satisfied, where e is the unit element of G. Let the value of a complementary
function uc^φ) at x0 be

The condition (4) is a crucial one for combining J ^ + and $F~ in a global gauge
field J^.

(b) In order to obtain uA(x0) for general A we set

Mc3(v)C!(β)(χo) = uc3(Ψ)(
xo), 0 ^ θ < π . (6)

In Part II we shall prove that any other possible choices of uC3iip)Ci{θ)(x0) will be
equivalent to (6) via a gauge transformation. Then, the value of the complementary
function uA(x) at x = x0 is

^ ( ^ o ) = UC3(ψ)C1(θ)C3(φ)(Xθ) = UC3(ψ)(Xθ)UC3(φ)\Xθ) = UC3(ψ + φ)\Xθ) •>

(0<π). (7)

(c) Let x = Bx0, BeSO3, x + (0,0, - r , ί ) It is seen in Part II that the formula

uA(x) = uC3iψί)Cι{θl)C3iφl){Bx0)

= UC3(ψί)Cι(θ1)C3(φ1)B\Xθ)UB \Xθ) — UAB\Xθ)UB \Xθ)

defines the value of a complementary function wC 3 ( V l ) C l ( θ l ) C 3 (φ l ) at the point x. It is
easy to verify that this value is independent upon the choice of B. Thus, we obtain
the complementary function uA(x).

(d) To obtain the possible gauge potential at the point x0, we put x = x0 and
A = C3(φ) in Eq. (1) and obtain

b(x09 C3(φ)dx) = (ad exp((/> Y))b(xθ9 dx). (8)

For simplicity one can choose a gauge such that xίbί(x) = 0, then

b3(xo) = 0. (9)

By differentiating Eq. (8) with respect to φ, we obtain a system of linear
equations

^ o ) ] = O , (10)

(11)
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For given G and Y, it is quite easy to solve these equations. Thus, (9)—(11) give
bλ{x0) or

fo(x0, dx) = bλ(x0)dxλ = fcA(0,0, r, t)dxλ (r > 0). (12)

For abbreviation, we write

6 ^ , ί) = bλ(0,0, r, t) = foA(x0), fe(x0, dx) = fe(r, ί, dx). (12')

(e) Using (1) and (6), after some calculation we obtain the expression of b+ at
any point of M + :

o, dx) = (ad expfo Y))fe(r, ί, C,( - 0)C3( - ψ)dx)

rZ^ (13)

where C3(tp)C1(θ)x0 ( π > θ ^ 0 ) is a general point of M+.
This is the formula for gauge potentials of the field # " + . In Part II, we shall

verify that it is almost spherically symmetric.
(f) Similarly, the field 3F~ is defined by the potential

γ{θ - π)x'o, dx) = (ad exp( - ψ 7))fo(r, ί, C,(π - Θ)C3( - V)ώc)

(14)
r

where x'o = (0,0, — r, t) and έ>(x'o, dx) = b(x0, dx) = b(r, ί, dx).
(g) It is readily verified that

b+(x, dx) = ad (exp (2ψ Y))b ~~ (x, dx) — (d exp (2ψ Y)) exp ( — 2ψY). (15)

Hence, #"*" and # " " can be combined together as a spherically symmetric gauge
field 9? if (4) holds.

Thus the construction of spherically symmetric gauge fields is accomplished. In
short, we have the theorem

Main Theorem. All the spherically symmetric gauge fields of a compact gauge group
are the combination of two fields J^ + and 3F~ which are defined over M+ and M~
with gauge potentials (13) and (14) respectively. In (13) and (14) Y is an arbitrary
element of g satisfying exp(4πY) = e and b(r,t,dx) is determined by (9)—(11).

4. Simple Examples

We shall give some examples to illustrate the general construction in Sect. 3.
(a) Uί gauge fields. When G is Uv the Lie algebra g is generated by ί, thus we

have to take Y= — ί, where m is an integer. From Eq. (9)—(11), the general solution

for bλ(x0) is



Spherically Symmetric Gauge Fields 79

Consequently, from (13), (14) we have

γ -v- 1 COS f)

b+(x, dx) = Ydψ + iσ(r, t)dt = mίdψ

+ σ(r, ήidt,
(16)

b ~ (x, dx) = Ydψ + iσ(r, t)dt = mίdψ

+ σ{r,t)idt.

So the field consists of a standard m-monopole [9] and a spherically symmetric
electromagnetic field with scalar potential σ(r, t).

(b) SU 2 gauge fields. Without loss of generality we may take

Y=i 1 » (m is an integer). (17)

From (10) we see that

M*o)+[r, [ rA(*o)]]=o. (18)
If m 4=0,1, we have

The field is reduced to a Uι field and the potential has the form (15), the only

change is that i should be replaced by

If m = 0 or 1, we obtain the strictly spherically symmetric SU 2 gauge field and
the synchro-spherically symmetric SU2 gauge fields [2]. We shall discuss them in
the following section.

5. Spherically Symmetric Gauge Fields of Proper Type

Definition 4. Let f be a spherically symmetric gauge field corresponding to a
trivial bundle. If there exists a gauge such that the complementary function uA does
not depend on x, then it is called a spherically symmetric gauge field of proper type
[7]. It has been shown that if a spherically symmetric field £F is regular
everywhere, then it is of proper type. In fact, in this case the bundle is trivial. Let
0,0', x be the points (0,0,0,0), (0,0,0, ί), (x l 5 x 2 ,x 3 5 ί) respectively. Choose a gauge
such that the phase factors for each segment 00' and 0'x are all equal to e. The
phase factor for the arc x x + dx is e — b(x, dx) where b(x, dx) is the gauge potential
[10]. This quantity is the phase factor for the infinitessimal loop 00'xxΌ'Ό, where
x' = x + dx, 0" = (0,0,0, t + dt) [11]. The spherical symmetry implies the existence of

uA such that

b(Ax, dAx) = (ad uA)b(x, dx) . (19)



80 Gu Chaohao and Hu Hesheng

Here uA is independent of x.
Evidently, a spherically symmetric gauge field 3F of proper type can be singular

at r = 0. The construction of spherically symmetric gauge fields of proper type can
be accomplished in the following way. Let τ :A-+uA be an homomorphism of SO3

to G and τ1 the corresponding homomorphism of the Lie algebra so3 to g,
XVX2,X3 be a set of standard base of so3 and Yi = τ1Xi (i = 1,2,3). It is easily seen
that

( 2 0 )

Moreover, wC3(v)Cl(β) is given by the homorphism τ, i.e. uC3{ψ)CM = τ ^
bλ(x0) are still determined by (9)—(11) with Y= Y3 and the gauge potential is given
by

b(Ax0, Ad x) = (ad uA)b(x0, dx) . (21)

The gauge potential obtained this way is equivalent to the gauge potential
obtained through the method in Sect. 3 with the same uC3{φ){xo) = Qxp(φY3) and
b(x0, dx). This is a consequence of Lemma 7. However, in the present case the
potential corresponds to a trivial bundle and admits a simpler explicit expression.
Besides, we can conclude that a spherically symmetric gauge field 3F is of proper
type if and only if the element Y of the Lie algebra, described in the main theorem,
be τ1X3.

For SU 2 case, we know that the representations of SO3 in a two dimensional
space are either a trivial representation A-+e oτ the spin representation A->uA

i /I 0\
with (ad uA) = A,iϊa, suitable base for SU2 is chosen. Then Y3 is 0 or -

The SU2 gauge field obtained are strictly spherically symmetric and synchro-
spherically symmetric (see the end of Appendix II) respectively.

In the appendix we shall list all possible gauge potential for SU3 gauge field. A
class of SU^ gauge potentials is also presented.

Part II. Proof of the Main Theorem

6. Sets of Complementary Functions

At first we shall analyze in detail the properties of complementary functions
defined in Definition 1. The analysis is made for the case that 3F corresponds to a
trivial bundle, but all results are valid for the fields ^ + and <F~ with some
obvious modifications.

Because there may be a set of complementary functions {uA} associated with
each ^ e S O 3 , we use the following notations:

UA = {uA} - the set of complementary functions associated with A.

uA(x) - the value of uA at x.

UA(x) = {uA(x)} - the set of values at x of complementary functions associated
with A.

Lemma 1. Let A, BeSO3. Then

{u\u = uA(Bx)uB(x)} = UAB(x). (22)
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Proof. Using (1), we see that

b{ABx, ΛBdx) = ad uA(Bx)b(Bx, Bdx) - duA(Bx)u~ \Bx)

= ad uA(Bx) ad uB(x)b(x, dx) — ad uA(Bx)duB(x)uB

 1(x)

-duA{Bx)u~\Bx)

= ad (uA(Bx)uB(x))b(x, dx) - d(uA(Bx)uB(x)) (uA(Bx)uB(x)) " 1 .

Hence uA(Bx)uB(x)e UAB(x). Similarly we have

uB\x)eUB-,{Bx). (23)

Consequently, for each uAB(x)e UAB(x) and uB(x)e UB(x) we have

uAB(x)uB \x)=uAB(x)uB-ί(Bx)e UA(Bx) . (24)

Thus (22) is proved.

For simplicity we write (22) as

UΛ(Bx)UB(x)=UAB(x). (25)

Lemma 2. Under the gauge transformation

b'{x, dx) = (ad ζ(x))b(x9 dx)-(dζ(x))ζ- \x) , (26)

the complementary function uA becomes u'A defined by

u'A{x) = ζ{Ax)uA{x)ζ-\x). (27)

Proof Using (1), (26), and (27), it is easily seen that

b'(Ax, Ad x) = (ad u'A(x))b'(x, dx) - {du'A(x))u'A \x) .

This is the conclusion of Lemma 2.
Let x0 be a fixed point, say (0,0, r, ί), and E the unit element of SO 3.

Lemma 3. UE(x0) is a closed subgroup of G.

Proof From Lemma 1 we see that UE(x0) is a subgroup. If αe UE(x0), then there is
a G-valued function ueUE such that u(xo) = a. The function u is the solution of the
differential equation

du = ub-bu (28)

with the initial condition w(xo) = α. Suppose that {an} is a sequence of elements in
UE(x0) and αn-^α0 as rc—•oo. For each αn the differential equation (28) has a
solution un(x) and un(x0) = αw. The value un(x) can be obtained by solving a system
of ordinary equation

with initial condition u(0) = <xn, where x(σ) 0 ̂  σ ̂  1 is a smooth arc connecting x 0

and x. Moreover, the value of un(x) is independent of the choice of the arc x(σ).
Consequently, un(x) converges to a solution u(x) of (29) with initial condition
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u(x0) = α0 and u(x) is independent of the choice of x(σ), so it is a solution of (28).
Hence α o e UE(x0). This proves that the group UE(x0) is closed.

Lemma 4. Suppose that the Lie algebra g does not contain a nontrivial center. If
UE(x0) is a nondiscrete proper subgroup of G, then the field is reducible to a gauge
field whose gauge group has Lie algebra g1φg.

Proof Suppose that ue UE. Then u satisfies (28). The integrability condition of (28)

(zdu(x))fλμ(x) = fλμ(x). (30.0)

Here fλμ(x) is the field strength. The successive gauge derivative fλμ/v(x\... satisfy

(adu(x))/λμ/v(x) = Λμ / v(x), (30.1)

(adu(x))fλμ/vσ(x) = fλφσ(x). (30.2)

Let the subalgebra generated by fλμ(x), Λμ/vW? be Σ(x). From (30.0),
(30.1),..., it is seen that each element of Σ(x) remains unchanged under ad u(x) with
u(x)e UE(x). Moreover, by their construction Σ(x) are parallel along any path with
respect to the gauge potential b. Consequently, the loop phase factors at point x0

(or holonomy group at that point) keep Σ(x0) unchanged. From the hypothesis on
G and UE(x) we see that Σ(x0) φ g and the loop phase factors at the point x0 belong
to a subgroup Gx of lower dimension. Consequently, the field is reducible to a Gγ

gauge field. Lemma 4 is proved.

If g contains a nontrivial center, then G is decomposed to the direct product
U1 x Uί x ... x Uί x G', where the Lie algebra of G' does not contain nontrivial
center. The gauge potential is also decomposed. Further, spherically symmetric Uί

gauge fields are readily constructed (see Sect. 4). Hence it remains to consider the
fields with gauge group G'.

Consequently, without loss of generality we can assume that UE(x0) is discrete
and g does not contain nontrivial center.

Lemma 5. The mapping v4—• UA(x0) is a smooth mapping from SO3 into the coset
space G/UE(x0) where x0 = (0,0, r, t).

Proof The integrability condition of (1) is

fλιλ2(Ax)aλ

μyμluΛ(x)-uA(x)fμiμ2(x) = 0 ,

Λ = ( α > S O 3 .

Differentiation gives

fxMx3(^K<l<luΛ(x)-«Λ(x)fμiβ2ιμM) = 0 (31-1)

Let x = x0 and consider u(x0) as unknowns. We solve these equations firstly. The
independent equations in (31.0), (31.1),... must be finite in number, for otherwise,
the solution uA(x0) does not exist. Evidently, when A = E, uA = e satisfies these
equations.

We use the implicit function theorem to prove the smoothness of uA(x0) near E.
Let M = M(αl5...,αr) be a parametric representation of the group G near e and
w(0,...,0) = e. The system (31.0), (31.1),... with x = x0 can be considered as
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equations of α l 5 . . . , αr. Differentiating these equations with respect to oca(a = 1,..., r)
and letting A = E, oca = 0, we get

where ua= -— eg. From these equations we should have wfl = 0. Otherwise,
a α α 0

Σ(x0) would not be equal to g. The implicit function theorem implies that uA(x0)
with uE(x0) = e is smooth with respect to A near E.

Consider the solution of (31.0), (31.1),... near C. Let A = CB, w = Uc1 (Bxo)uA(xo).
Noting

B = (&£),

we obtain

fλιίl(Bx0)bλ

μXlw(x0) - w(xo)fμiμ2(xo) = 0,

fxMx3(BxoKXlK3Mxo) - Mxo)fμιμ2ljxo) = 0 ,

and hence w is smooth with respect to B near E. Consequently uA(x0) is smooth
with respect to A near arbitrary C. The Eq. (1) is integrable for uA(x) if we take the
obtained uA(x0) as initial condition.

7. Determination of the Potentials

Let (ψ,θ,φ) be the Eulerian angles for rotation A, i.e. A = C3(ψ)Cί{θ)C3(φ). From
Lemmas 1 and 5 we may write

with

UC3(φ)(Xθ) = Q*P(ΦY) > «C'3(2π)( ; Cθ)e ^ o ) 5 ( 3 3 )

where Y= Y(r, t) is a ^-valued smooth function. Moreover, wC3(φ)Ci(0)(xo) is smooth
with respect to (ψ, θ) and

WC 3(2π)Ci(θ)(Xθ)~WC 3(O)Ci(θ)( X;θ)WC3(2π)( X :θ)

When £F corresponds to a trivial bundle we have also

From Lemma 1 it is seen that

uA(Bx0) = uAB(x0)uB-,(Bx0) , (37)

so uA(x) can be determined by the whole set of uA(x0).
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dulC3(ψ)C i(0)(Xθ)
θ) = a C 0 S Ψ + β S i Π Ψ > (38)

where oc,β take values in g and are independent of ψ.

Proof. From Lemma 5 and (37) we have

where x denotes the point C3(t/;)C1(θ)x0. For simplicity we neglect the symbols r
and t. Let C3(t/>1)C1(01)C3(y;)C1(0) - C3(i//)C1(0')C3((/>/). From the matrices in both
sides it is easily seen that

cos θ' = — sin θ1 cos ι/? sin 0 + cos θλ cos 0 ,

Λ sin 0
ctg </>' = ctg φ cos 0 + ctg θ1sm

Qtp in = :

From these equations and

smφ

ύnψ sin0 — cosψ t cos0j cosi/; sin0 — cost/;1 sinθi cos0

we have

dθf

~dθ
= COS ψ ,

1 = 0 dθ

ι COS0! cosip sinθ + sint/;! s in0 x cos0 '

Φ'\Θ = O = Ψ> Ψ'\Θ = O = Ψ I > (4°)

dψ'
= — sini/;ctg01 ,

dθ
sini/;

β = 0 s in0 1 '
(41)

Consequently,

UC3(ψ)(Xθ)

du(
ίC3(ψ)C1(θ) ,(x0)

dθ 1 = 0

On the other hand, if f(x) is any differentiable function of x at
dxγ =sinψdθ, dx2= —cosψdθ at x0. Thus

(42)

= X0'
 w e n a v e

rf0 =
2 x = x 0

δx.
cos φ) dθ . (43)
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Comparing to (42), we obtain the conclusion of Lemma 6.
I f uc3iΦ)(χo)is S i v e n> w e m a Y u s e a s P e c i a l MC3(V)cl(β)(^o) satisfying (34), (35), and

(39) to construct a set of complementary functions uA(x). Of course we may use
another u'C3i )CM(x0) satisfying the same condition to construct another set of
complementary functions u'A(x). However, we have

Lemma 7. u'A(x) and uA(x) are related by (26) with a suitable ζ(x).

Proof. Let

CM = u'c^)cm^xo)^c^)cm^xo) - ( 4 4 )

It is easily verified that ζ(x) is a G-valued function on M + and is regular at x0.
Let A = C3(tp1)C1(01)C3((/>1), ACsiyήCtf) = C^C^C^ψ), then

θ)x, and

UA\X) ~ UC3(ψ')Cι(θ')\Xθ)UC3(φ')yXθ)UC3(ψ)Cι(0)\Xθ)

(x0)C (x)

= ζ(Ax)uA(x)Γi(x).

Lemma 7 follows from Lemma 2.
From Lemma 7 it is seen that without loss of generality we may take

uc3(Ψ)cί{θ)(xo) = uc3(ψ)(
xo) , (0 * π) . (45)

Lemma 8. // b(x0, dx) satisfies

Kxo,uCi{φ){xo)dx) = {?iάuCΛφ){xo))b{xoJx (46)

then

b(x,dx) = (aduA(x0))b(x0,A~1dx) — duA(x) x=Xo _1

dx = A~xdxUA \Xθ)

is a spherically symmetric gauge potential, where x = Ax0.

Proof We first prove that b(x,dx) does not depend on the choice of A. Let

b(Ax0, dAx) = (ad uA(x0)) (x0, dx) - duA(x)\x==XouA \x) ,

b{Bx0, dBx) = (<ιάuB{xo))b{xo,dx)-duB(x)\x=XouB

1{x) .

we want to prove that b(Axo,dx) = b(Bxo,dx).

By a direct calculation this is equivalent to

b(x0, dB~ 1Ax) = (ad uB

 1(xo)uA(xo))b(xo, dx)

+ uB

1(x0)duB(x) χ=χo

dx = B~ίAdx

— uB

ί(x0)duA(x)\x = XouA

1(x0)uB(x0) . (47)

It is easily seen that jB"1v4 = C3(φ) for some φ and

UB H^oKf^o) = uB-i(Bx0)uA(x0) = uB-,(Ax0)uA{x0) = uB-ίA(x0) .



86 Gu Chaohao and Hu Hesheng

Moreover, differentiating uB-lA(x) = uB-1(Ax)uA(x) and setting x = x0, we have

Thus we see that (47) is equivalent to (46). So we proved that b(x,dx) is
independent of the choice of A.

Similarly, a direct calculation gives that

b(ABx0, dABx0) = (ad uA(Bx0))b(Bx0, dBx) -duA(Bx)\x=XouA(Bx0) .

Lemma 8 is proved.
Thus the problem is reduced to construct b(x0, dx) such that (46) is satisfied.
It is easily seen that (46) is equivalent to (10), (11) and

K b 3 ( x 0 ) ] = 0 , (48)

if we take uC3^(x0) = Qxp(φY\ since (10), (11), and (48) are the equivalent formulas
of (46) in the Lie algebra. For the time being Y can depend on χ0.

Now we are going to construct the potential. Let b(x0, dx) be a solution of (10),
(11), and (48). From (42) and (45) it follows that

dθ
Noting that

we have

where A = C3(ψ1)Cί(θ1). Replacing

1— cosίλ
Y. (49)

r smψdθ =

-
Y S1Π (

ή YdXl (50)

x2

x3

= A

"0

0

r

=

Ί) by {ψ,θ) and noticing that

r sin ψ sin θ

— rcosφsinβ

cosθ

cost/;

— sin ψ cos θ

sinφ 0

sin ψ cos θ sin θ

cos ψ sin θ — cos ψ sin θ cos θ

we obtain (13). Here we use (48) instead of b3(xo) = 0. Thus all possible almost
spherically symmetric fields # " + are constructed.

By the symmetry we can choose a suitable gauge such that the potential of $F~
is (14). Since x0 and x'o lie in opposite direction, we have to replace ψ by — ψ in the
construction of uc3(χ)(χΌy Moreover, it is noted that

We prove formula (4). Let ζ(x) = exp(2ψY). It is easily seen that

b + (x,dx) = (adζ(x))b-(x,dx)-(dζ(x))ζ~\x) ,

(51)

(52)
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so # " + and # " " are equivalent at each point of M+ c\M_. It is required that ζ(x) be
a single valued function of M + n M _ . Hence we must have (4).

In order to simplify 7(r, ί) we shall use the following lemma.

Lemma 9. // 7(r, t) is a g-valued smooth function, satisfying exp (4π Y(r, ί)) = e, then
there exists a G-valued smooth function κ(r,t) and an element Yoeg such that

7(r, t) = (ad (κ(r,f)))Fo (53)

Proof. The local existence of a continuous κ{r,t) is known [12]. In addition we
shall prove that κ(r, t) can be a smooth function of r and ί. Let H be the subgroup
of G

h the Lie algebra of H and h1 the orthogonal complementary of h. For any given
r v t v we have

Consider the equation

with fc(r, ί) as unknown function taking values in h1. The equation is satisfied by
r = rv t = tλ, and k = 0. Differentiating the equation and set r = rί, t = t v and k = 0
we obtain

[dfc,y 0 ]=o.

Since dkeh1 we have dk = 0. From the implicit function theory we obtain the
existence of a smooth solution κ(r,i) near an arbitrary point (r 1 ? ί 1 ). So the set
i £ : 0 < r < o o , —oo<ί<oo may be covered by a system of neighborhoods {UJ
such that

y(r,ί) = (adκβ(r,ί))y0

in l/α. In Όac\Uβ define gβa = κβκ~ίeH. We have H bundle over K. Since X is
homeomorphic to # 2 the H bundle is a trivial bundle. Hence for each Ua there
exists ψaeH such that gβa = ΨβΨa1 Define

which is equal to κβ\pβl in UanUβ. We obtain the conclusion of Lemma 9.
Consequently, in the construction of gauge potentials we may assume Y(r, t) be

independent of (r, t).
Further, we define a G-valued function ζ(r, t) by

^=C(r,ί)fc 3(r,r), r(ro,ί) = e, (roΦ0) .

By the gauge transformation via ζ(r,t) we obtain i?3(r?ί) = 0 instead of (48).
Thus the proof of the main theorem is accomplished.
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Appendix I

Spherically Symmetric SU 3 Gauge Fields

For the SU 3 case we may assume

Y=-

m1 0 0

0 m2 0

0 0 m3

where m1? m2, m3 are integers with rn1+m2 + m3=Q. The spherically symmetric
gauge potentials are classified as follows.

/. Proper Type

(a) m1 = 2, m2 = 0, m3 = — 2. Y is the generator Y3 of the 3-dimensional irreducible
representation of SO3. This is the case considered in [5] (see also Appendix II).

(b) m1 = l,m2 = 0,m3= — 1. Y is the generator Y3 of the reducible representation
which is the 2-dimensional irreducible representation of SO3 acturely. We have

b(x,dx) =

where b'(x, dx) is a syncro-spherically symmetric potential and λ(r, t) is an arbitrary
function.

(c) m1=m2 = m3=0. We have

if we take the gauge xιbt = 0 and

where (a^.(r, ί)) is an arbitrary function valued in su3. In this case the "magnetic
part" of the potential vanishes

)

dx)

0

0

0

0

+ i

Mr,t)

0

0

0

Mr,t)

0

0

0

-2λ(r,t)

//. Improper Type

(a) mi*mj9miφmJ±2(iJ=l,2939 ίφj). We have

Ydψ, Ydψ
r - - . r

"λ(r, ί ) 0 0

0 μ(r, t) 0

0 0 -λ(r,t)-μ(r,t)}

(b) m1=m2ή= m3, m3ή=mί + 2.
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ί? + and bt are same as Π(a).

~λ{r,t) z(r9t)

z(r,t) μ(r,t)

0

0

0

0 -λ(r,t)-μ(r,ή

(c) m2 = m1— 2, m3ή=mί9m29 ra1+2,ra2 — 2.

f?4 are same as II (a), bf are equal to those of II (a) with the additional terms
which are gauge potentials of a syncro-spherically symmetric field in the gauge
considered in Sect. 3.

Remark. Except the cases I (a) and I(c) the fields are reducible.

Appendix II

A Special Class of Spherically Symmetric SUN Gauge Fields

Let

Y = i

I

Γ = 2f+l)

be a diagonal matrix. Y is a generator 73 of the irreducible representation of SO3.
Let

DUΨ,Θ,O)=ΊL{Φ>Θ) >

where Dι

mn are the generalized spherical functions and φ = ψ — %. So (θ,φ) are the
spherical coordinates of a unit sphere. Using the method of Sect. 3 we obtain the
matrix expressions of the gauge potentials

Σ

Σ {(TLTL- 1-TL-I Ό (d8 cos φ + es cos θ sin φ) (A)
= -1+ 1

+ ί(TlXs_ί + T^s_ίT*s)(-dscosθsmφ + escosφ)}\,

Γ ι

b3(x)= Σ {(τLτL-i-τL iTL)("essinθ) + KT^X^i + T^xT
ι

nsdssin0)}
Ls = - 1 +1

. ' c Γ f i

where m, n are the indices for the elements of N x N matrices, cs, ds, es are arbitrary
functions of (r, t).
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In particular, for N = 2 (A) are equavalent to the general form of the synchro-
spherically symmetric potentials

with the gauge condition

For JV = 3 the expression (A) are consistent with the expression obtained in [15].

Note. From a letter from Prof. R. Jackiw dated March 31, 1980, we became aware that he solved the
same problem, using the method in [6]. He stated the results and the method in his lectures in February
1980 at Schladming, Austria. The results are consistent with ours. Our proof is more complicated, but
we do not assume a priori that the complementary function UA(x) is single-valued in the local sense and
differentiable with respect to A. We are grateful to Prof. Jackiw for his letter and for telling us some
negligence in the Appendix I of our preprint ITP-SB-100-79.
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