Commun. Math. Phys. 78, 391-408 (1981)

Absence of Singular Continuous Spectrum for Certain Self-Adjoint Operators

E. Mourre

Centre de Physique Théorique, CNRS Marseille, F-13288 Marseille Cedex 2, France

Abstract. We give a sufficient condition for a self-adjoint operator to have the following properties in a neighborhood of a point E of its spectrum:

- a) its point spectrum is finite;
- b) its singular continuous spectrum is empty;
- c) its resolvent satisfies a class of a priori estimates.

Notations, Definitions, and Main Theorem

Let *H* be a self-adjoint operator on a Hilbert space \mathscr{H} . We will denote by $\mathscr{H}_n(n \in \mathbb{Z})$ the Hilbert space constructed from the spectral representation for *H* with the scalar product:

$$(\Phi | \Psi)_n = \int (\lambda^2 + 1)^{n/2} (\Phi | P_H(d\lambda) \Psi).$$

For functions $P \in L^{\infty}(\mathbf{R})$, P_H will denote the associated operator given by the usual functional calculus.

 $P_H(E, \delta)$ will denote the spectral projection for H onto the interval $(E - \delta, E + \delta)$. P_H^p and P_H^c will denote the spectral projectors respectively onto the point spectrum and the continuous spectrum of H; $\sigma_c(H) = \mathbf{R}/\{E \in \mathbf{R} | E \text{ is an eigenvalue} \text{ of } H\}$.

If A is a self-adjoint operator and $D(A) \cap D(H)$ is dense in \mathcal{H} , i[H, A] will denote the symmetric form on $D(A) \cap D(H)$ given by

$$(\Phi|i[H,A]\Psi) = i\{(H\Phi|A\Psi) - (A\Phi|H\Psi)\}$$

for $\Psi, \Phi \in D(A) \cap D(H)$. If this form is bounded below and closeable, $i[H, A]^0$ will denote the self-adjoint operator associated to the closure [1].

1. Definition. Let H be a self-adjoint operator on a Hilbert space with domain D(H); a self-adjoint operator A is a conjugate operator for H at a point $E \in \mathbf{R}$ if and only if the following conditions hold:

- (a) $D(A) \cap D(H)$ is a core for H.
- (b) $e^{+iA\alpha}$ leaves the domain of H invariant and for each $\Psi \in D(H)$

$$\sup_{|\alpha|<1} \|He^{+iA\alpha}\Psi\| < \infty.$$

0010-3616/81/0078/0391/\$03.60

(c) The form i[H, A] = i(HA - AH) defined on $D(A) \cap D(H)$ is bounded below and closeable; moreover, the self-adjoint operator $i[H, A]^0$ associated to its closure admits a domain containing D(H).

(d) The form defined on $D(A) \cap D(H)$ by $[[H, A]^0, A]$ is bounded as a map from \mathcal{H}_{+2} into \mathcal{H}_{-2} .

(e) There exist strictly positive numbers α and δ and a compact operator K on \mathcal{H} , so that:

$$P_{H}(E,\delta)i[H,A]^{0}P_{H}(E,\delta) \ge \alpha P_{H}(E,\delta) + P_{H}(E,\delta)KP_{H}(E,\delta).$$

Theorem. Let *H* be a self-adjoint operator, having a conjugate operator *A* at the point $E \in \mathbf{R}$, (i.e. suppose *H* and *A* satisfy conditions (a)–(e) above). Then there is a neighborhood $(E-\delta, E+\delta)$ of *E* so that :

1. In $(E - \delta, E + \delta)$ the point spectrum of H is finite.

2. For each closed interval $[a,b] \subset (E-\delta, E+\delta) \cap \sigma_c(H)$, there exists a finite constant c_0 so that:

$$\sup_{\substack{\text{Rez}\in[a,b]\\\text{Im}\,z\,\neq\,0}} \||A+i|^{-1}(H-z)^{-1}|A+i|^{-1}\| \leq c_0.$$

Remark. The above theorem gives a method for obtaining a priori estimates of Agmon type [2] for certain self-adjoint operators, following from the existence of the conjugate operator A of H in the neighborhood of some point.

The essential condition in the definition of conjugate operator is condition (e); the other conditions justify the algebraic manipulations. To obtain the a priori estimates on $(H-z)^{-1}$ when z approaches a point $E \in \sigma_c(H)$, we prove a priori estimates, uniform in ε and z, on the operator $(H-z-i\varepsilon B^*B)^{-1}$. Here ε and Imz have the same sign, $\operatorname{Re} z \in (E-\delta_0, E+\delta_0)$, and $B^*B = P_H(E, 2\delta_0)i[H, A]P_H(E, 2\delta_0)$. This estimate is obtained by proving a differential inequality of the form:

$$\left\|\frac{d}{d\varepsilon}F_{z}(\varepsilon)\right\| \leq K(\varepsilon, \|F_{z}(\varepsilon)\|)$$

for $F_z(\varepsilon) = |A+i|^{-1} (H-z-i\varepsilon B^*B)^{-1} |A+i|^{-1}$.

In Sect. I, we give examples and applications. As new results we obtain the absence of singular continuous spectrum and a priori estimates in the following two cases:

(a) Relatively compact perturbations of certain pseudo-differential operators.

(b) Three-body Schrödinger operators with long-range two-body forces.

In Sect. II we give the proof of the main theorem.

I. Examples and Applications

1. The Laplacian

Let $\mathscr{H} = L^2(\mathbf{R}^n, d^n x), H = H_0 = -\Delta$ and

$$A = \frac{1}{4}(x \cdot p + p \cdot x) \qquad p = -iV.$$

A is the generator of the dilations introduced by Combes and used in [3]. $-\Delta$ and A are defined on \mathscr{S} , the \mathscr{C}^{∞} functions of rapid decrease. \mathscr{S} is a core for

H. The explicit formula:

$$e^{+iA\alpha}(H_0+i)^{-1} = (e^{-\alpha}H_0+i)^{-1}e^{+iA\alpha}$$

shows that $e^{+iA\alpha}$ leave D(H) invariant. \mathscr{S} is invariant under the dilation group and $i[-\Delta, A] = -\Delta$ in the sense of quadratic forms on \mathcal{S} . By Proposition II.1, condition (c) holds on $D(A) \cap D(H)$ and $i[H, A]^0 = -\Delta$. Condition (d) then reduces to condition (c). Condition (e) is trivially satisfied at any point $E \neq 0$ by choosing

 $\delta < \frac{|E|}{2}$.

2. Two-Body Schrödinger Operators

Let

$$\mathscr{H} = L^2(\mathbf{R}^n, d^n x), \quad H = -\varDelta + V.$$

We will often write H_0 for $-\Delta$. Much work has been done on these operators and we refer the reader to [4] for detailed references. Moreover, recently a very intuitive method has been introduced by Enss to prove asymptotic completeness for such systems [5].

We shall suppose that:

(i) V is H_0 compact;

(ii) the operator $i\left\{V\frac{xp+px}{4} - \frac{xp+px}{4}V\right\}$ is defined on \mathscr{S} and coincides on \mathscr{S} with an H_0 compact operator *B*.

(iii) B admits a decomposition: $B = B_s + B_l$ where $B_s^*|x|$ and $|x|B_s$ are H_0 bounded operators, and $[B_l, xp + px]$ coincides on \mathcal{S} with a form coming from an H_0 compact operator.

Remark. When V is the operator of multiplication by a function v(x), [V, xp + px]= $2ix \cdot \nabla v$, so that condition (ii) is satisfied if $x \cdot \nabla v$ is H_0 compact. Condition (iii) is satisfied if there is a smooth function j(x) of compact support such that the operators $x_i \frac{\partial}{\partial x_i} \left\{ (1-j(x)) x_j \frac{\partial v}{\partial x_i} \right\}$ are H_0 compact for all i, j.

Theorem I.1. If V is a symmetric operator satisfying hypotheses (i)...(iii), then the operator (sgn E) A is conjugate to $H = H_0 + V$ at all $E \neq 0$. $(A = \frac{1}{4}(xp + px))$.

If E < 0, then 0 and **1** are also conjugate operators to H at E.

Proof. Since V is H_0 compact, $D(H) = D(H_0)$. By Example 1, $D(H_0)$ and therefore D(H) is left invariant by $e^{\pm iA\alpha}$. By hypothesis (ii) the form i[H, A] coincides on \mathscr{S} with the form associated to the symmetric operator $H_0 + B$ on \mathcal{S} , hence by Proposition II.1, condition (c) holds with $i[H, A]^0 = H_0 + B$.

To show that condition (d) holds, we write:

$$[A, i[H, A]^{0}] = [A, B_{s}] + [A, H_{0} + B_{l}]$$

the first term is bounded as a map from \mathscr{H}_{+2} into \mathscr{H}_{-2} by hypotheses (iii), the second coincides on \mathscr{S} with the quadratic form of an H_0 bounded, self-adjoint operator.

E. Mourre

Let us verify condition (e).

$$P_{H}(E,\delta)i[H,A]^{0}P_{H}(E,\delta) = P_{H}(E,\delta)\{H-V+B\}P_{H}(E,\delta).$$

Since V and B = i[V, A] are H compact operators, by taking $\delta < \frac{|E|}{2}$ we have, letting $P_H(E, \delta) = P_H$,

$$P_H i [H, A]^0 P_H \ge \frac{E}{2} P_H + P_H K P_H \quad \text{if} \quad E > 0 \,.$$

If E is negative, we can see that the following two relations hold

$$P_{H}i[H, -A]^{0}P_{H} \ge \frac{|E|}{2}P_{H} + P_{H} - KP_{H}$$
$$P_{H}i[H, A]^{0}P_{H} = P_{H}(H_{0} + B)P_{H}.$$

Adding them, we see that 0 and therefore 1 are both conjugate operators for *H* at energy E < 0.

Remarks. As a consequence of Theorem I.1, we proved that the eigenvalues of H can only accumulate at E=0, and are of finite multiplicity; outsided of them, the resolvent $(H-z)^{-1}$ satisfies a priori estimate of Agmon's type [2].

3. Perturbations of Pseudo-Differential Operators

In [6], among the extensions of the method introduced in [5], the author proves similar results for short-range perturbations of pseudo-differential operators.

Let $\mathscr{H} = L^2(\mathbf{R}^n, d^n x)$ and denote by $L^2(\mathbf{R}^n, d^n p)$ the Hilbert space obtained by Fourier transformation.

Let $h_0(p)$ be a measurable function from \mathbb{R}^n to \mathbb{R} and h_0 the associated multiplication operator on $L^2(\mathbb{R}^n, d^n p)$. Suppose that:

$$\lim_{|p|\to\infty}|h_0(p)|=\infty.$$

Definition. $E \in \mathbf{R}$ is a regular point of h_0 if and only if there is a neighborhood $(E - \delta_0, E + \delta_0)$ of E so that on

$$O(E, \delta_0) = \{ p \in \mathbf{R}^n | |h_0(p) - E| < \delta_0 \}.$$

 h_0 is \mathscr{C}^m for an $m \ge 3$ and

$$\sum_{i=1}^{n} \left(\frac{\partial h_0}{\partial p_i} \right)^2 (p) \ge \alpha > 0, \qquad p \in O(E, \delta_0).$$

Definition. $h_0 + V$ is a regular perturbation of h_0 if V satisfies the following conditions.

1. V is a symmetric h_0 -compact operator.

2. For all real valued $g \in \mathscr{C}_0^m(\mathbf{R}^n)$, the \mathscr{C}^m functions of compact support, the operators

$$B_i = (x_i g(p) + g(p) x_i) V - V(x_i g(p) + g(p) x_i)$$

are defined on \mathscr{S} and extended to bounded, h_0 -compact operators.

3. $[x_ig(p)+g(p)x_j, B_i]$ is bounded as a map from \mathcal{H}_{+2} to \mathcal{H}_{-2} .

Theorem I.2. Let $H = h_0 + V$ be a regular perturbation of h_0 . For each regular point *E* of h_0 , there is an operator *A* conjugate to *H* at *E*.

Corollary I.3. Let $h_0 + V$ be a regular perturbation of h_0 . For each regular point E of h_0 , there is a neighborhood $(E - \delta, E + \delta)$ so that

1. the point spectrum of $h_0 + V$ is finite in $(E - \delta, E + \delta)$.

2. For all $[a,b] \in (E-\delta, E+\delta) \cap \sigma_c(H)$ there is a finite constant c_0 so that:

$$\sup_{\substack{\text{Rez}\in[a,b]\\mz\neq0}} \|(1+|x|)^{-1}(H-z)^{-1}(1+|x|)^{-1}\| \leq c_0.$$

Proof. Since $|h_0(p)| \to \infty$ as $|p| \to \infty$, $O(E, \delta_0)$ is a bounded subset of \mathbb{R}^n , so that we can find a \mathscr{C}^{m-1} vector field $g_i(p)i \in \{1, ..., n\}$ of compact support in \mathbb{R}^n , with

$$g_i(p) = \frac{\partial h_0}{\partial p_i}(p) \quad \text{if} \quad p \in O(E, \delta_0)$$
$$g_i(p) = 0 \quad \text{if} \quad |h_0(p)| > M_0$$

Let \hat{A} the formally symmetric operator defined on $L^2(\mathbf{R}^n, d^n p)$ by

$$\hat{A} = \sum_{i=1}^{n} g_i(p) i \frac{\partial}{\partial p_i} + \frac{i}{2} \frac{\partial g_i}{\partial p_i}(p) = \frac{1}{2} \sum_{i} (g_i x_i + x_i g_i).$$

By the commutator theorem [4] it is easily seen that \hat{A} is essentially self-adjoint on the domain of $x^2 = \sum_{i=1}^{n} x_i^2$.

Let A be the self-adjoint extension so obtained. Since $D(x^2) \cap D(h_0)$ is a core for h_0 , $D(A) \cap D(h_0)$ is a core for h_0 . One can easily see (cf. Appendix A.1) that the unitary group $e^{+iA\alpha}$ is actually the group of unitary transformations on $L^2(\mathbb{R}^n, d^n p)$ associated with the group of diffeomorphisms $\Gamma_{\alpha} : \mathbb{R}^n \mapsto \mathbb{R}^n$ determined by the differential equation:

$$\frac{d}{d\alpha} \Gamma_{\alpha}^{i}(p) = g_{i}(\Gamma_{\alpha}(p))$$
$$\Gamma_{0}(p) = p.$$

It follows that $e^{+iA\alpha}$ leaves invariant the functions $\Psi(p)$ with support contained in $\{p \in \mathbb{R}^n | |h_0(p)| > M_0\}$, and hence $e^{iA\alpha}$ leaves $D(h_0)$ invariant. Conditions (c) and (d) are satisfied because of the regularity assumptions (2) and (3) on *V*. (These hypotheses can be easily verified for a class of long range potentials with sufficient regularity at infinity.)

Let us verify property (e). By hypothesis there exist $\alpha > 0$, $\delta_0 > 0$ such that

$$P_{h_0}(E, \delta_0) i [h_0, A]^0 P_{h_0}(E, \delta_0) \ge \alpha P_{h_0}(E, \delta_0).$$

For any smooth function \tilde{P} such that $\tilde{P}=1$ on $(E-\delta, E+\delta)$ $\delta < \delta_0$ and $\tilde{P}=0$ on $\mathbf{R}/(E-\delta_0, E+\delta_0)$, we have:

$$\tilde{P}_{h_0}i[h_0, A]^0\tilde{P}_{h_0} \ge \alpha \tilde{P}_{h_0}^2$$
 and $P(E, \delta) = P(E, \delta)\tilde{P}$.

Note that $\tilde{P}_H - \tilde{P}_{h_0}$ is a compact operator since V is h_0 compact and $\tilde{P}(\lambda)$ is a smooth function of compact support.

Then:

$$\begin{split} &P_{H}(E,\delta)i[h_{0},A]^{0}P_{H}(E,\delta) \\ &= P_{H}(E,\delta)\tilde{P}_{H}\sum_{i}g_{i}^{2}(p)\tilde{P}_{H}P_{H}(E,\delta) \\ &= P_{H}(E,\delta)\tilde{P}_{h_{0}}\sum_{i}g_{i}^{2}(p)\tilde{P}_{h_{0}}P_{H}(E,\delta) + P_{H}(E,\delta)K'P_{H}(E,\delta) \\ &\geq \alpha P_{H}(E,\delta)\tilde{P}_{h_{0}}^{2}P_{H}(E,\delta) + P_{H}(E,\delta)K'P_{H}(E,\delta) \\ &\geq \alpha P_{H}^{2}(E,\delta) + P_{H}(E,\delta)K''P_{H}(E,\delta) \,. \end{split}$$

By hypothesis (2) [V, A] is h_0 compact, hence there exist numbers α , $\delta > 0$ and a compact operator K so that condition (e) holds. This proves Theorem I.2. The Corollary I.3 follows from Theorem I.2 and the abstract theorem since D(A) contains D(|x|), and hence $A(1+|x|)^{-1}$ is a bounded operator.

4. Three-Body Schrödinger Operators

Let x_i , m_i be the coordinates and mass of the *i*-th particle where $x_i \in \mathbb{R}^n$, $i \in \{1, 2, 3\}$. For each pair of particles $(i, j) = \alpha$ (such pairs are always denoted by Greek letters), we will denote

$$\begin{aligned} x_{\alpha} = x_{i} - x_{j}; \quad y_{\alpha} = x_{k} - \frac{m_{i}x_{i} + m_{j}x_{j}}{m_{i} + m_{j}} & k \notin \alpha \\ m_{\alpha}^{-1} = m_{i}^{-1} + m_{j}^{-1} \\ n_{\alpha}^{-1} = m_{k}^{-1} + (m_{i} + m_{j})^{-1} \end{aligned}$$

when one removes the center of mass of the system, the Hilbert space is then

$$\mathscr{H} = L^2(\mathbf{R}^{2n}, d^n x_\alpha d^n y_\alpha) \qquad \forall \alpha \,.$$

 k_{α} and p_{α} will denote $-i\nabla_{x_{\alpha}}$ and $-i\nabla_{y_{\alpha}}$.

In \mathcal{H} , the Hamiltonian of the system is written

$$H = H_0 + V$$

$$H_0 = \frac{1}{2m_{\alpha}}k_{\alpha}^2 + \frac{1}{2n_{\alpha}}p_{\alpha}^2 \quad \forall \alpha \,.$$

The dilation group acts in the same way independently of the representation $L^2(d^n x_{\alpha}, d^n y_{\alpha})$ of \mathcal{H} . Let A be its generator normalized so that $i[H_0, A] = H_0$. We

have $A = A_{\alpha}^{1} + A_{\alpha}^{2}$ where A_{α}^{1} and A_{α}^{2} are the generators of the dilation group on $L^{2}(d^{n}x_{\alpha})$ and $L^{2}(d^{n}y_{\alpha})$, respectively.

Hypotheses on the potential V

Suppose that $V = \sum v_{\alpha}$ where, for each α , v_{α} is an operator acting on $L^{2}(d^{n}x_{\alpha})$ and satisfying hypotheses (i)-(iii) of Example 2.

We will further denote:

$$H_{\alpha} = H_0 + v_{\alpha} = h_{\alpha} + \frac{p_{\alpha}^2}{2n_{\alpha}}; \quad h_{\alpha} = \frac{k_{\alpha}^2}{2m_{\alpha}} + v_{\alpha}.$$

By Theorem I.1, the eigenvalues of h_{α} have finite multiplicity and can only accumulate at 0.

Theorem I.3. Let $H = H_0 + V$ on $L^2(d^n x_{\alpha}, d^n y_{\alpha})$ where V is a symmetric operator satisfying the above hypotheses. Then $A = A_{\alpha}^{1} + A_{\alpha}^{2}$ is a conjugate operator for H at all $E \in \mathbf{R}$ with

$$E \notin \bigcup_{\alpha} \sigma_p(h_{\alpha}) \cup \{0\}$$

Corollary I.4. 1. The point spectrum of $H = H_0 + \sum_{\alpha} v_{\alpha}$ can accumulate only at 0 or

at eigenvalues of subsystems.

2. For all intervals $[a,b] \in \mathbf{R} \setminus \{\sigma_p(H) \bigcup_{\alpha} \sigma_p(h_{\alpha}) \cup \{0\}\}, \text{ there is a } c_0 \text{ so that}$

$$\sup_{\substack{\text{Rez}\in[a,b]\\\text{Im}z\neq 0}} \|(1+|x|)^{-1}(H-z)^{-1}(1+|x|)^{-1}\| \leq c_0.$$

Under the hypotheses made on the two-body potential v_{α} , conditions (a)-(d) are satisfied in the same way that they were in the two-body problem. Let us now prove that condition (e) holds.

Proposition 4.1. Let $E \in \mathbf{R}$, and let c_{α} be an h_{α} -compact operator in $L^{2}(\mathbf{R}^{n}, d^{n}x_{\alpha})$. Then for every $\varepsilon > 0$ there is $\delta_0 > 0$, a finite rank spectral projection $e_{\alpha}^{N_0}$ for h_{α} and an operator K compact in $\mathscr{H} = L^2(\mathbf{R}^{2n}, d^n x_{\alpha} d^n y_{\alpha})$ so that

$$P_H c_{\alpha} P_H = P_H E_{\alpha}^N c_{\alpha} E_{\alpha}^N P_H + P_H K P_H + o(\varepsilon)$$

where:

(i) $E_{\alpha}^{N} = e_{\alpha}^{N} \otimes \mathbb{1}y_{\alpha}$ where e_{α}^{N} is a finite rank spectral projection for h_{α} that contains $e_{\alpha}^{N_{0}}$.

(ii) P_H is any spectral projection for H onto any Borel set contained in $(E-\delta_0,E+\delta_0)$;

(iii) $\|o(\varepsilon)\| \leq \frac{\varepsilon}{\zeta}$.

Proof. Since c_{α} is an h_{α} -compact operator, we can find $e_{\alpha}^{N_0}$ so that

$$\|e_{\alpha}^{N_0}c_{\alpha}e_{\alpha}^{N_0}-P_{h_{\alpha}}^pc_{\alpha}P_{h_{\alpha}}^p\|\leq \frac{\varepsilon}{12}.$$

Furthermore, from general properties of the continuous spectrum, one can find a $\delta_0 > 0$ and a smooth function \tilde{P} with $\tilde{P} = 1$ on $(E - \delta_0, E + \delta_0)$ and 0 on $\mathbf{R} \setminus (E - 2\delta_0, E + 2\delta_0)$ so that

$$\|\tilde{P}_{H_{\alpha}}\{c_{\alpha}-P_{h_{\alpha}}^{p}c_{\alpha}P_{h_{\alpha}}^{p}\}\tilde{P}_{H_{\alpha}}\|\leq\frac{\varepsilon}{12}.$$

Hence for all $\delta \leq \delta_0$ and all spectral projections P_H on $(E - \delta, E + \delta)$ we have

$$P_{H}c_{\alpha}P_{H} = P_{H}E_{\alpha}^{N}c_{\alpha}E_{\alpha}^{N}P_{H} + P_{H}\{c_{\alpha} - P_{h_{\alpha}}^{p}c_{\alpha}P_{h_{\alpha}}^{p}\}P_{H} + o_{1}(\varepsilon)$$

with $||o_1(\varepsilon)|| \leq \frac{\varepsilon}{12}$.

On the other hand $P_H = P_H \tilde{P}_H$ and thus

$$\begin{split} P_{H} \{ c_{\alpha} - P_{h_{\alpha}}^{p} c_{\alpha} P_{h_{\alpha}}^{p} \} P_{H} = P_{H} (P_{H} - P_{H_{\alpha}}) \{ c_{\alpha} - P_{h_{\alpha}}^{p} c_{\alpha} P_{h_{\alpha}}^{p} \} P_{H} \\ + P_{H} \tilde{P}_{H_{\alpha}} \{ c_{\alpha} - P_{h_{\alpha}}^{p} c_{\alpha} P_{h_{\alpha}}^{p} \} (\tilde{P}_{H} - \tilde{P}_{H_{\alpha}}) P_{H} \\ + P_{H} \tilde{P}_{H_{\alpha}} \{ c_{\alpha} - P_{h_{\alpha}}^{p} c_{\alpha} P_{h_{\alpha}}^{p} \} \tilde{P}_{H_{\alpha}} P_{H} , \end{split}$$

where the first two terms on the right hand side are compact operators in \mathscr{H} and the last has norm less than $\frac{\varepsilon}{12}$.

Proposition 4.2. For all $\varepsilon > 0$, we can find $\delta_0 > 0$, $E_{\alpha}^{N_0} = e_{\alpha}^{N_0} \otimes \mathbb{1}_{y_{\alpha}}$, and a compact operator K so that:

$$\begin{split} P_{H}i\Big[H_{0} + \sum_{\alpha} v_{\alpha}, A\Big]P_{H} = P_{H}\Big(1 - \sum_{\alpha} E_{\alpha}^{N_{0}}\Big)H_{0}\Big(1 - \sum_{\alpha} E_{\alpha}^{N_{0}}\Big)P_{H} \\ &+ \sum_{\alpha} P_{H}E_{\alpha}^{N_{0}}\{H_{0} + i[v_{\alpha}, A_{\alpha}^{1}]\}E_{\alpha}^{N_{0}}P_{H} \\ &+ o(\varepsilon) + P_{H}KP_{H} \end{split}$$

with $||o(\varepsilon)|| < \varepsilon$, for any spectral projection P_H onto an interval contained in $(E - \delta_0, E + \delta_0)$.

Proof. We have

$$\begin{split} H_0 = & \left(1 - \sum_{\alpha} E_{\alpha}^N\right) H_0 \left(1 - \sum_{\alpha} E_{\alpha}^N\right) + \sum_{\alpha} E_{\alpha}^N H_0 E_{\alpha}^N \\ & + \sum_{\alpha} \left\{ E_{\alpha}^N H_0 (1 - E_{\alpha}^N) + (1 - E_{\alpha}^N) H_0 E_{\alpha}^N \right\} \\ & - \sum_{\alpha \neq \beta} \sum_{\alpha} E_{\alpha}^N H_0 E_{\beta}^N \,. \end{split}$$

The terms in the last sum are all compact operators in \mathscr{H} and $E_{\alpha}^{N}H_{0}(1-E_{\alpha}^{N})$ = $-E_{\alpha}^{N}v_{\alpha}(1-E_{\alpha}^{N})$ since E_{α}^{N} commutes with $H_{\alpha}=H_{0}+v_{\alpha}$. We consider spectral projections e_{α}^{N} for h_{α} so that

$$\sum_{\beta} E^{N}_{\beta} H_{0}(1 - E^{N}_{\beta}) = \sum_{\beta} P^{p}_{h_{\beta}}(-v_{\beta}) P^{c}_{h_{\beta}} + o(\varepsilon)$$

with $||o(\varepsilon)|| < \frac{\varepsilon}{2}$.

Next, we apply Proposition 4.1 to each of the operators

$$c_{\alpha} = i [v_{\alpha}, A^{1}_{\alpha}] - P^{p}_{h_{\alpha}} v_{\alpha} P^{c}_{h_{\alpha}} - P^{c}_{h_{\alpha}} v_{\alpha} P^{p}_{h_{\alpha}}.$$

By Proposition 4.1, we can find $E_{\alpha}^{N_0}$ and $\delta_0 > 0$ satisfying Proposition 4.2.

Proposition 4.3. Let $\alpha_0 = \text{dist}(E, \{0\} \bigcup_{\alpha} \sigma_p(h_{\alpha}))$. We can find δ_0 so that

$$\sum_{\alpha} P_H E_{\alpha}^N \{ H_0 + i [v_{\alpha}, A_{\alpha}^1] \} E_{\alpha}^N P_H \ge \sum_{\alpha} \frac{\alpha_0}{2} P_H E_{\alpha}^N P_H + P_H K P_H; P_H = P_H (E, \delta_0)$$

Proof. If we choose δ_0 so that

$$\delta_0 \leq \frac{1}{4} \inf_{\alpha} \inf_{i \neq j} |\lambda_{\alpha}^i - \lambda_{\alpha}^j|$$
$$\delta_0 \leq \frac{\alpha_0}{4}.$$

 λ_{α}^{i} , being the eigenvalues of $h_{\alpha}e_{\alpha}^{N}$. If we pick a function \tilde{P} equal to 1 on $(E - \delta_{0}, E + \delta_{0})$ and 0 on $\mathbf{R} \setminus (E - 2\delta_0, E + 2\delta_0),$

$$\tilde{P}_{H_{\alpha}}E^{i}_{\alpha}\{H_{0}+i[v_{\alpha},A^{1}_{\alpha}]\}E^{j}_{\alpha}\tilde{P}_{H_{\alpha}}=0 \quad \text{if} \quad i \neq j$$

since $E^{j}_{\alpha}\tilde{P}_{H_{\alpha}}$ and $E^{i}_{\alpha}\tilde{P}_{H_{\alpha}}$ viewed as functions of p^{2}_{α} have support in disjoint intervals $\left(E_{\alpha}^{i}\tilde{P}(H_{\alpha})=\tilde{P}\left(\lambda_{\alpha}^{i}+\frac{p_{\alpha}^{2}}{2n}\right)E_{\alpha}^{i}\right)$. Furthermore, by the Virial Theorem,

$$\begin{split} \tilde{P}_{H_{\alpha}} E_{\alpha}^{N} \{H_{0} + i[v_{\alpha}, A_{\alpha}^{1}]\} E_{\alpha}^{N} \tilde{P}_{H_{\alpha}} \\ &= \sum_{i} \tilde{P}_{H_{\alpha}} E_{\alpha}^{i} i[h_{\alpha}, A_{\alpha}^{1}] E_{\alpha}^{i} \tilde{P}_{H_{\alpha}} \\ &+ \sum_{i} \tilde{P}_{H_{\alpha}} E_{\alpha}^{i} \frac{p_{\alpha}^{2}}{2n_{\alpha}} E_{\alpha}^{i} \tilde{P}_{H_{\alpha}} \\ &= \sum_{i} \tilde{P}_{H_{\alpha}} E_{\alpha}^{i} \frac{p_{\alpha}^{2}}{2n_{\alpha}} E_{\alpha}^{i} \tilde{P}_{H_{\alpha}} \\ &\geq \frac{\alpha_{0}}{2} \tilde{P}_{H_{\alpha}} E_{\alpha}^{N} \tilde{P}_{H_{\alpha}}. \end{split}$$

Propositions 4.2 and 4.3 enable us to find, for all $\varepsilon > 0$, (e_{α}^{N}) and $\delta_{0} > 0$ so that $P_{H}(E,\delta)i[H,A]^{0}P_{H}(E,\delta)$

$$\begin{split} & \geq P_{H} \Big(1 - \sum_{\alpha} E_{\alpha}^{N} \Big) H_{0} \Big(1 - \sum_{\alpha} E_{\alpha}^{N} \Big) P_{H} \\ & + \frac{\alpha_{0}}{2} \sum_{\alpha} P_{H} E_{\alpha}^{N} P_{H} \\ & + P_{H} K P_{H} + P_{H} o(\varepsilon) P_{H} \,, \end{split}$$

where $||o(\varepsilon)|| < \varepsilon$, for all $\delta < \delta_0$.

To verify condition (e), since $\varepsilon > 0$ is arbitrary, it now suffices to show that there is a finite constant c_0 so that

$$P_{H} \leq c_{0} \left\{ P_{H} \left(1 - \sum_{\alpha} E_{\alpha}^{N} \right) H_{0} \left(1 - \sum_{\alpha} E_{\alpha}^{N} \right) P_{H} + \sum_{\alpha} P_{H} E_{\alpha}^{N} P_{H} \right\}$$

which is immediate if $E \neq 0$; the constant c_0 evidently does not depend on N and δ .

II. Proof of Theorem I

We start the proof of the abstract theorem by the following proposition which is useful in applications to verify the hypothesis (c) when $D(A) \cap D(H)$ is not explicitly known.

Proposition II.1. Let H and A be self-adjoint operators that satisfy conditions (a), (b) and the following conditions (c').

(c') There is a set $\mathscr{S} \subset D(A) \cap D(H)$ such that

i) $e^{+iA\alpha}\mathscr{G}\subset\mathscr{G}$,

ii) \mathcal{S} is a core for H,

iii) the form i[H, A] on \mathscr{S} is bounded below and closeable, and the associated self-adjoint operator $i[H, A]^{0}_{\mathscr{S}}$ satisfies

$$D(i[H, A]^0_{\mathscr{G}}) \supset D(H)$$

then for all Φ , $\Psi \in D(A) \cap D(H)$

$$(\Phi|i[H,A]\Psi) = (\Phi|i[H,A]^0_{\mathscr{S}}\Psi)$$

and hence the form i[H, A] on $D(A) \cap D(H)$ is closeable and the associated selfadjoint operator satisfies:

$$i[H,A]^0 = i[H,A]^0_{\mathscr{G}}.$$

Proof. It suffices to check that for each $\Phi, \Psi \in D(A) \cap D(H)$

$$(\Phi|i[H,A]\Psi) = (\Phi|i[H,A]^0_{\mathscr{S}}\Psi).$$

By hypothesis (b), the operators $He^{+iA\alpha}(H+i)^{-1}$ are closed and everywhere defined, hence bounded by the closed graph theorem. For each $\Psi \in \mathcal{H}$, by (b)

 $\sup_{\alpha \in [-1, +1]} ||He^{+iA\alpha}(H+i)^{-1}\Psi|| < \infty \text{ and by the principle of uniform boundedness in Banach spaces, this family of operators is uniformly bounded: there is a <math>c_0 < \infty$

Banach spaces, this family of operators is uniformly bounded: there is a $c_0 < \infty$ such that:

$$\sup_{\alpha \in [-1, +1]} \|He^{+iA\alpha}(H+i)^{-1}\| \le c_0.$$
 (II.1)

Consequently, for each Φ , $\Psi \in D(A) \cap D(H)$, $(H(\alpha) = e^{-iA\alpha}He^{+iA\alpha})$, $\lim_{\alpha \to 0} \frac{1}{\alpha} (\Phi | (H(\alpha) - H) \Psi)$ $= \lim_{\alpha \to 0} \frac{1}{\alpha} (\Phi | (e^{-iA\alpha} - 1)He^{+iA\alpha}\Psi) + \frac{1}{\alpha} (\Phi | H(e^{+iA\alpha} - 1)\Psi)$ $= (\Phi | i[H, A] \Psi).$

400

Since $He^{+iA\alpha}\Psi$ is uniformly bounded in α , this family of vectors converges weakly to $H\Psi$ when $\alpha \rightarrow 0$.

For each $\Phi, \Psi \in D(H)$ there are sequences u_n and v_n such that

$$\|(H+i)(u_n-\Phi)\| \rightarrow 0, \qquad \|(H+i)(v_n-\Psi)\| \rightarrow 0$$

with $u_n, v_n \in \mathcal{S}$. Thus:

$$\frac{1}{\alpha}(\Phi|(H(\alpha)-H)\Psi) = \lim_{n\to\infty}\frac{1}{\alpha}(u_n|(H(\alpha)-H)v_n).$$

By hypothesis (c'), the derivative

$$\frac{d}{d\alpha}(u_n|H(\alpha)v_n) = (u_n|e^{-iA\alpha}i[H,A]^0_{\mathscr{S}}e^{+iA\alpha}v_n)$$

is a continuous function: one can then use the mean value theorem to obtain:

$$\frac{1}{\alpha}(\Phi|(H(\alpha)-H)\Psi) = \lim_{n\to\infty} (u_n|e^{-iA\alpha_n}i[H,A]^0_{\mathscr{S}}e^{+iA\alpha_n}v_n),$$

where $\alpha_n \in [0, \alpha]$. Since $D(i[H, A]^0_{\mathscr{S}}) \supset D(H)$, (II.1) assures that as $n \to \infty, \alpha \to 0$

$$(\Phi | i[H, A] \Psi) = \lim_{\alpha \to 0} \frac{1}{\alpha} (\Phi | (H(\alpha) - H) \Psi)$$
$$= (\Phi | i[H, A]_{\mathscr{Q}}^{0} \Psi).$$

Proposition II.2. Suppose that the two self-adjoint operators H and A satisfy conditions (a)–(c). Then $(H-z)^{-1}$ leaves D(A) invariant for all $z \notin \sigma(H)$.

Proof. Since A is self-adjoint, it suffices to show that the family of operators

$$e^{-iA\alpha}(H-z)^{-1}(A+i)^{-1} = (H(\alpha)-z)^{-1}e^{-iA\alpha}(A+i)^{-1}$$

is strongly differentiable; it suffices to show that the family $H(\alpha)(H-z)^{-1}$ is strongly differentiable, or equivalently to show that for each $\Psi \in D(H)$

$$\lim_{\alpha \to 0} \left\| \frac{H(\alpha) - H}{\alpha} \Psi - i [H, A]^0 \Psi \right\| = 0.$$

Let $\Psi_n \in D(A) \cap D(H)$ so that $||(H+i)(\Psi_n - \Psi)|| \to 0$. Then

$$\frac{H(\alpha) - H}{\alpha} \Psi - i[H, A]^0 \Psi = \lim_{n \to \infty} \frac{H(\alpha) - H}{\alpha} \Psi_n - i[H, A]^0 \Psi_n$$

exactly as in Proposition II.1. Since $e^{+iA\alpha}$ leaves $D(A) \cap D(H)$ invariant for each $\Phi \in D(A) \cap D(H)$, $\|\Phi\| = 1$, there exist $\alpha_{n,\Phi} \in [0,\alpha]$ so that

$$\left(\Phi \left| \frac{H(\alpha) - H}{\alpha} \Psi_n \right) = \left(\Phi \right| e^{-iA\alpha_n} \varphi i [H, A]^0 e^{+iA\alpha_n, \Phi} \Psi_n\right).$$

Bound (II.1) and the hypothesis that $D(H) \subset D(i[H, A]^0)$, together imply

$$\|(H(\alpha) - H)\Psi\| \le \alpha c_0 \|(H+i)\Psi\|$$
(II.2)

for all $\Psi \in D(H)$. Furthermore,

$$\begin{split} \left\| \left(\oint \left| \frac{H(\alpha) - H}{\alpha} \Psi_n \right) - \left(\oint |i[H, A]^0 \Psi_n \right) \right| \\ &\leq c \| (H+i)(\Psi_n - \Psi) \| + \| (\Phi | \{ e^{-iA\alpha_n, \Phi} i[H, A]^0 e^{+iA\alpha_n, \Phi} - i[H, A]^0 \} \Psi) \| \\ &\leq o \left(\frac{1}{n} \right) + \sup_{\alpha' \in [0, \alpha]} \| \{ e^{-iA\alpha'} i[H, A]^0 e^{+iA\alpha'} - i[H, A]^0 \} \Psi \| \\ &\leq o \left(\frac{1}{n} \right) + \sup_{\alpha' \in [0, \alpha]} \| i[H, A]^0 (e^{+iA\alpha'} - \mathbb{1}) \Psi \| + \| (e^{-iA\alpha'} - \mathbb{1}) i[H, A]^0 \Psi \| \\ &\leq o \left(\frac{1}{n} \right) + o(\alpha) + \sup_{\alpha' \in [0, \alpha]} c_0 \| H(e^{+iA\alpha'} - 1) \Psi \| \,. \end{split}$$

But finally

$$\begin{aligned} \|H(e^{+iA\alpha'}-1)\Psi\| &= \|(H(\alpha')-e^{-iA\alpha'}H)\Psi\| \\ &\leq \|(H(\alpha')-H)\Psi\| + \|(1-e^{-iA\alpha'})H\Psi\| \end{aligned}$$

which goes to zero as $\alpha \rightarrow 0$ by (II.2).

Proposition II.3. If the operators H, A satisfy conditions (a)–(c), then $(A \pm i\lambda)^{-1}$ leaves D(H) invariant for sufficiently large λ . Further $(H+i)i\lambda(A+i\lambda)^{-1}(H+i)^{-1}$ converges strongly to 1 as $|\lambda| \rightarrow \infty$.

Proof. By Proposition II.2, we have in the operator sense

$$\begin{aligned} (A+i\lambda)^{-1}(H+i)^{-1} - (H+i)^{-1}(A+i\lambda)^{-1} \\ &= (A+i\lambda)^{-1} \{ (H+i)^{-1}A - A(H+i)^{-1} \} (A+i\lambda)^{-1} \\ &= (A+i\lambda)^{-1}(H+i)^{-1} [A,H](H+i)^{-1}(A+i\lambda)^{-1}, \end{aligned}$$

where the last equality holds in the sense of quadratic form on \mathscr{H} . By condition (c), there is a bounded operator $B(\lambda) = [A, H]^0 (H+i)^{-1} (A+i\lambda)^{-1}$ with $||B(\lambda)|| \to 0$ as $|\lambda| \to \infty$ such that

$$(A+i\lambda)^{-1}(H+i)^{-1}(1-B(\lambda)) = (H+i)^{-1}(A+i\lambda)^{-1}.$$

This proves Proposition II.3 since when $|\lambda|$ is sufficiently large, $1 - B(\lambda)$ is invertible and $i\lambda(A + i\lambda)^{-1}(1 - B(\lambda))^{-1}$ converges strongly to 1 as $|\lambda| \to \infty$.

Proposition II.4 (The Virial Theorem). Let H and A be two self-adjoint operators satisfying conditions (a)–(c). Then

1. For all $\Psi \in D(H)$

$$[H, A]^0 \Psi = \lim_{|\lambda| \to \infty} [H, Ai\lambda(A + i\lambda)^{-1}] \Psi.$$

2. If Ψ is an eigenvector of H, we have

$$(\Psi|[H,A]^{0}\Psi)=0.$$

Proof. Let $\Psi \in D(H)$, $\Phi \in D(A) \cap D(H)$. By Propositions II.2 and II.3, for sufficiently large $|\lambda|$,

$$\begin{aligned} (\Phi | [H, Ai\lambda(A+i\lambda)^{-1}] \Psi) \\ &= (\Phi | \{HAi\lambda(A+i\lambda)^{-1} - Ai\lambda(A+i\lambda)^{-1}H\} \Psi) \\ &= (\Phi | (HA - AH)i\lambda(A+i\lambda)^{-1} \Psi) \\ &+ (A\Phi | \{Hi\lambda(A+i\lambda)^{-1} - i\lambda(A+i\lambda)^{-1}H\} \Psi) \\ &= (\Phi | [H, A]^{0}i\lambda(A+i\lambda)^{-1} \Psi) \\ &+ (\Phi | A(A+i\lambda)^{-1} [H, A]^{0}i\lambda(A+i\lambda)^{-1} \Psi). \end{aligned}$$
(II.3)

Since $[A, H]^0 i\lambda (A + i\lambda)^{-1} \Psi \rightarrow [A, H]^0 \Psi$ by Proposition II.3 and condition (c), and since $A(A + i\lambda)^{-1} \xrightarrow{s} 0$, Proposition II.3 implies that

$$\lim_{|\lambda|\to\infty} [H, Ai\lambda(A+i\lambda)^{-1}] \Psi = [H, A]^0 \Psi.$$

Proving (1). Finally, if Ψ is an eigenvector for H, $\Psi \in D(H)$ and $H\Psi = E\Psi$, so that

$$(\Psi|[H,A]^{\circ}\Psi) = \lim_{|\lambda| \to \infty} (\Psi|[H,Ai\lambda(A+i\lambda)^{-1}]\Psi) = 0.$$

Proof of Part (1) of Theorem 1

If one supposes that the self-adjoint operators H, A satisfy conditions (a)–(c), and if furthermore they satisfy condition (e) at $E \in \mathbf{R}$ then the point spectrum in $(E - \delta, E + \delta)$ is finite. Suppose not. Then there is a sequence Ψ_n of orthonormal eigenvectors $H\Psi_n = E_n\Psi_n$. By Proposition II.4

$$0 = (\Psi_n | i[H, A]^0 \Psi_n) = (\Psi_n | P_H(E, \delta) i[H, A]^0 P_H(E, \delta) \Psi_n)$$

$$\geq \alpha \|\Psi_n\|^2 + (\Psi_n | K \Psi_n).$$

Since the Ψ_n are orthonormal, $\Psi_n \xrightarrow{w} 0$ in \mathscr{H} and since K is compact $\lim (\Psi_n | i[H, A]^0 \Psi_n) \ge \alpha$ which is impossible.

Proposition II.5 (Quadratic Estimate). Let H be a self-adjoint operator with domain D(H) and B^*B a bounded positive operator on \mathcal{H} . Then

1. $H-z-i\epsilon B^*B$ is invertible if $\operatorname{Im} z$ and ϵ have the same sign.

2. If Im z and ε have the same sign, let

$$G_z(\varepsilon) = (H - z - i\varepsilon B^*B)^{-1}$$
.

Let B' an operator with $B'*B' \leq B*B$ and C any bounded self-adjoint operator on \mathcal{H} , then :

$$\|B'G_{z}(\varepsilon)C\| \leq \frac{1}{\sqrt{\varepsilon}} \|CG_{z}(\varepsilon)C\|^{1/2}.$$

Proof. Since B^*B is bounded $H - z - i\varepsilon B^*B$ is a closed operator on D(H). When $\Psi \in D(H)$ and ε and Imz have the same sign, we have

$$\|(H-z-i\varepsilon B^*B)\Psi\|^2 = \|(H-\operatorname{Re} z)\Psi\|^2 + \|(\operatorname{Im} z+\varepsilon B^*B)\Psi\|^2$$
$$-2\operatorname{Im}((H-\operatorname{Re} z)\Psi|\varepsilon B^*B\Psi)$$
$$\geq (\operatorname{Im} z)^2 \|\Psi\|^2.$$
(II.4)

From this inequality and the fact that $H-z-i\epsilon B^*B$ is a closed operator, it follows that $H-z-i\epsilon B^*B$ is injective with closed range in \mathscr{H} . By the open mapping theorem, its inverse exists as a bounded operator from $\operatorname{Rang}(H-z-i\epsilon B^*B)$ into \mathscr{H}_{+2} . But $\operatorname{Rang}(H-z-i\epsilon B^*B)=\mathscr{H}$ since if $\Phi_0 \in \mathscr{H}$ is orthogonal to this range, then $\Phi_0 \in D(H)$ and $(H-\overline{z}+i\epsilon B^*B)\Phi_0=0$ which by (II.4) implies $\Phi_0=0$. Finally:

$$\begin{split} \|B'G_z(\varepsilon)C\|^2 &= \|CG_z^*(\varepsilon)B'^*B'G_z(\varepsilon)C\| \\ &\leq \frac{1}{\varepsilon} \|C(H-\overline{z}+i\varepsilon B^*B)^{-1}(\operatorname{Im} z+\varepsilon B^*B)(H-z-i\varepsilon B^*B)^{-1}C\| \\ &\leq \frac{1}{2\varepsilon} \|C(G_z^*(\varepsilon)-G_z(\varepsilon))C\| \\ &\leq \frac{1}{\varepsilon} \|CG_z(\varepsilon)C\| = \frac{1}{\varepsilon} \|CG_z^*(\varepsilon)C\| \,. \end{split}$$

Proof of Part (2) of Theorem 1

We will prove the following lemma which clearly implies statement (2) of Theorem 1.

Lemma. Let *H* be a self-adjoint operator with conjugate operator *A* in a neighborhood of *E*, i.e. suppose *H*, *A*, and *E* satisfy conditions (a)–(e). Then for any $E' \in (E - \delta, E + \delta) \cap \sigma_c(H)$, there is a neighborhood (a, b) of *E'* and a constant c_0 so that

$$\sup_{\substack{\text{Rez}\in[a,b]\\\text{Im}z\neq 0}} |||A+i|^{-1}(H-z)^{-1}|A+i|^{-1}|| \leq c_0.$$

Proof. By hypothesis (e), there are numbers α , $\delta > 0$ and a compact operator K on \mathscr{H} such that

$$P_{H}(E,\delta)i[H,A]^{0}P_{H}(E,\delta) \ge \alpha P_{H}^{2}(E,\delta) + P_{H}(E,\delta)KP_{H}(E,\delta),$$

where $P_H(E, \delta)$ is the spectral projector of H onto the interval $(E - \delta, E + \delta)$. By hypothesis $E' \in \sigma_c(H)$, hence the spectral projector for H onto $(E' - \varepsilon, E' + \varepsilon)$ converges weakly to zero as $\varepsilon \to 0$. Hence one can find $\delta' > 0$ and a smooth function $P \leq 1$, P = 1 on $(E' - \delta', E' + \delta')$, P = 0 on $\mathbf{R}/(E - \delta, E + \delta)$ so that (denoting by P_H the operator associated to this P)

$$\pm P_H K P_H \leq \frac{\alpha}{2} P_H^2$$

and hence

$$P_H i [H, A]^0 P_H \ge \frac{\alpha}{2} P_H^2.$$

Let $B^*B = P_H i [H, A]^0 P_H$.

By Proposition II.5, $G_z(\varepsilon) = (H - z - i\varepsilon B^*B)^{-1}$ exists if Im z and ε have the same sign. Let

$$F_z(\varepsilon) = |A+i|^{-1} G_z(\varepsilon) |A+i|^{-1}.$$

We have by Proposition II.5

$$\|P_H G_z(\varepsilon)|A+i|^{-1}\| \leq \frac{c}{\sqrt{\varepsilon}} \|F_z(\varepsilon)\|^{1/2}.$$
 (II.5)

Furthermore,

$$\begin{aligned} \|(1-P_{H})G_{z}(\varepsilon)|A+i|^{-1}\| \\ &\leq \|(1-P_{H})G_{z}(0)\| \|(1-i\varepsilon B^{*}BG_{z}(\varepsilon))|A+i|^{-1}\| \\ &\leq c\|(1-P_{H})G_{z}(0)\|. \end{aligned}$$
(II.6)

Remark. (II.5) and (II.6) remain true if one replaces P_H and $(1-P_H)$ by $(H+i)P_H$ and $(H+i)(1-P_H)$. If we restrict Rez to a closed interval [a, b] strictly contained in $(E'-\delta', E'+\delta'), (1-P_H)G_z(0)$ is uniformly bounded, and there is a constant c so that:

$$\|F_{z}(\varepsilon)\| \leq \frac{c}{\varepsilon} \qquad \operatorname{Re} z \in [a, b].$$
 (II.7)

Furthermore

$$\frac{d}{d\varepsilon} F_z(\varepsilon) = |A+i|^{-1} G_z(\varepsilon) P_H i [H, A]^0 P_H G_z(\varepsilon) |A+i|^{-1}.$$

We can write

$$\begin{split} P_{H}[H,A]^{0}P_{H} = & [H,A]^{0} - (1-P_{H})[H,A]^{0}P_{H} \\ & - P_{H}[H,A]^{0}(1-P_{H}) - (1-P_{H})[H,A]^{0}(1-P_{H}) \end{split}$$

so that by Eqs. (II.5) and (II.6) and the remarks following them, there are constants c_1, c_2 so that

$$\left\| \frac{d}{d\varepsilon} F_{z}(\varepsilon) \right\| \leq \left\| |A+i|^{-1} G_{z}(\varepsilon) i [H, A]^{0} G_{z}(\varepsilon) |A+i|^{-1} \right\|$$
$$+ c_{1} + c_{2} \frac{1}{\sqrt{\varepsilon}} \left\| F_{z}(\varepsilon) \right\|^{1/2}.$$
(II.8)

By condition (d) and Proposition II.6 (see the appendix), $G_z(\varepsilon) : D(A) \to D(A) \cap D(H)$ and $[B^*B, A]$ is bounded as a map from \mathscr{H}_{+2} into \mathscr{H}_{-2} . Hence in (II.8), we can write $[H, A]^0$ as $[H - z - i\varepsilon B^*B, A] + i\varepsilon [B^*B, A]$. Substituting this relation into (II.8), we find that

$$\left\|\frac{d}{d\varepsilon}F_{z}(\varepsilon)\right\| \leq \tilde{c}_{1} + \tilde{c}_{2}\frac{1}{\sqrt{\varepsilon}} \|F_{z}(\varepsilon)\|^{1/2} + \tilde{c}_{3}\|F_{z}(\varepsilon)\|$$

for constants $\tilde{c}_1, \tilde{c}_2, \tilde{c}_3$ independent of ε and z such that $\operatorname{Re} z \in [a, b]$ and $\operatorname{Im} z$ and ε with the same sign.

This differential inequality together with the relation (II.7) shows that there exists a constant c_0 so that

$$\|F_z(\varepsilon)\| \leq c_0$$

for all z with $\operatorname{Re} z \in [a, b]$, $\operatorname{Im} z \neq 0$ and $\operatorname{Im} z$, ε having the same sign.

Appendix I

Let $\{g_i(p)\}i \in \{1, ..., n\}$ be a \mathscr{C}^2 vector field, and let \hat{A} be the symmetric operator defined on $L^2(\mathbb{R}^n, d^n p)$ by

$$\hat{A} = \sum_{i=1}^{n} g_i(p) i \frac{\partial}{\partial p_i} + \frac{i}{2} \frac{\partial g_i}{\partial p_i}(p)$$
$$= \frac{1}{2} \sum_{i} (g_i x_i + x_i g_i).$$

If each g_i is \mathscr{C}^2 the quadratic form defined by \hat{A} admits a form domain containing the form domain of $x^2 = \sum_{i=1}^{n} x_i^2$, the same holds for the quadratic form $\hat{A}x^2 - x^2\hat{A}$. By the commutator theorem ([4, Vol. II]), \hat{A} defines a self-adjoint operator Awhich is essentially self-adjoint on any core for x^2 . On the other hand, the system of differential equations

$$\frac{d}{d\alpha} \Gamma_{\alpha}^{i}(p) = g_{i}(\Gamma_{\alpha}(p))$$
$$\Gamma_{0}(p) = p$$

defines a group of homeomorphism $\Gamma_{\alpha} : \mathbf{R}^n \mapsto \mathbf{R}^n$ and the following group of unitary transformations on $L^2(\mathbf{R}^n, d^n p)$

$$(U_{\alpha}\Psi)(p) = \left|\det\left(\frac{\partial\Gamma_{\alpha}^{i}}{\partial p_{j}}(p)\right)\right|^{1/2}\Psi(\Gamma_{\alpha}(p))$$

we then have

$$\frac{d}{d\alpha}(U_{\alpha}\Psi)_{\alpha=0}(p) = \sum_{i} g_{i}(p) \frac{\partial \Psi}{\partial p_{i}}(p) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial g_{i}}{\partial p_{i}}(p) \cdot \Psi(P)$$
$$= -i(A\Psi)(p),$$

where A is the self-adjoint extension of \hat{A} .

Let us finally note that D(A) contains D(|x|).

406

Appendix II

Proposition II.6. Let H, A be operators that satisfy conditions (a)...(d). Then: 1. Let g be any function with $t\hat{g}(t) \in L^1(\mathbf{R}, dt)$, then

$$g(H): D(A) \cap D(H) \rightarrow D(A)$$
.

2. Let $B^*B = P_H i [H, A]^0 P_H$ as defined in the lemma of Sect. II. Then $[B^*B, A]$ is a bounded map from \mathcal{H}_{+2} into \mathcal{H}_{-2} .

3. $G_z(\varepsilon): D(A) \to D(A) \cap D(H)$.

Proof. Let $\Psi \in D(A) \cap D(H)$, $A(\lambda) = Ai\lambda(A + i\lambda)^{-1}$ for some sufficiently large $|\lambda|$. Then

$$\left\|\left\{A(\lambda)e^{-iHt} - e^{-iHt}A(\lambda)\right\}\Psi\right\| \leq \sup_{\substack{\boldsymbol{\Phi} \in D(H)\\ \|\boldsymbol{\Phi}\| = 1}} \left|\int_{0}^{t} (\boldsymbol{\Phi}|e^{+i(s-t)H}[H, A(\lambda)]e^{-isH}\Psi)\,ds\right|.$$

Since e^{-iHs} leaves D(H), and also $A(\lambda)$ by Proposition II.3, we then have

$$\|\{A(\lambda)e^{-iHt} - e^{-iHt}A(\lambda)\}\Psi\| \leq |t| \sup_{\substack{|s| \leq |t| \\ \|\Phi'\| = 1}} \sup_{\substack{|\sigma'| = 1}} |(\Phi'|[H, A(\lambda)]e^{-isH}\Psi)|.$$

By Eq. (II.3) in Propositions II.4 and II.3, one then sees that

$$\|Ae^{-iHt}\Psi\| \leq \lim_{|\lambda| \to \infty} \|A(\lambda)e^{-iHt}\Psi\|$$
$$\leq c|t| \|(H+i)\Psi\| + \|A\Psi\|.$$

It is now enough to use the identity $g(H) = \int_{-\infty}^{+\infty} \hat{g}(t) e^{-iHt} dt$ to see that

$$g(H): D(A) \cap D(H) \rightarrow D(A)$$
 if $|t| \hat{g}(t) \in L^1(\mathbf{R}, dt)$

and that

$$\|\{Ag(H) - g(H)A\}\Psi\| \le c \|(H+i)\Psi\| \int_{-\infty}^{+\infty} |t| |\hat{g}(t)| dt.$$
 (II.9)

Let $B^*B = P_H i [H, A]^0 P_H$. Since $P(\lambda)$ is smooth, its Fourier transform decays rapidly. Hence P_H takes $D(A) \cap D(H)$ into $D(A) \cap D(H)$ and so $[B^*B, A]$ in the sense of quadratic forms on $D(A) \cap D(H)$ can be written:

$$[B^*B, A] = [P_H, A][H, A]^0 P_H + P_H[[H, A]^0, A] P_H + P_H[H, A]^0 [P_H, A].$$

By hypothesis (d) and the relation (II.9), the form $[B^*B, A]$ on $D(A) \cap D(H)$ is bounded as a map from \mathscr{H}_{+2} into \mathscr{H}_{-2} and in particular if

$$\begin{split} \Psi &\in D(H) \left\| \left[(H - z - i\varepsilon B^* B), A(\lambda) \right] \Psi \right\|_{-2} \\ &\leq \sup_{\substack{\Phi \in D(A) \cap D(H) \\ \|\Phi\|_{+2} = 1}} \left\{ \left| (\Phi | [H - z - i\varepsilon B^* B, A] i\lambda (A + i\lambda)^{-1} \Psi) \right| \\ &+ \left| (\Phi | A(A + i\lambda)^{-1} [H - z - i\varepsilon B^* B, A] i\lambda (A + i\lambda)^{-1} \Psi) \right| \right\} \end{split}$$

By Proposition II.3, the operators $\lambda(A+i\lambda)^{-1}$ and $A(A+i\lambda)^{-1} = 1 - i\lambda(A+i\lambda)^{-1}$ are uniformly bounded from \mathcal{H}_{+2} into \mathcal{H}_{+2} for λ large enough. It follows that $[H-z-i\epsilon B^*B, A(\lambda)]$ are uniformly bounded (in λ) from \mathcal{H}_{+2} into \mathcal{H}_{-2} . It follows that $G_z(\epsilon) = (H-z-i\epsilon B^*B)^{-1}$ preserves D(A) and hence:

$$G_{z}(\varepsilon): D(A) \rightarrow D(A) \cap D(H).$$

Acknowledgements. I am grateful to P. Perry for his careful reading of the French version of this work and for his translation, and to B. Simon for encouraging its publication.

References

- 1. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966
- 2. Agmon, S.: Ann. Scuola Norm. Sup. Pisa, Ser. 4, 2, 151–218 (1975)
- 3. Aguilar, J., Combes, J.M.: Commun. Math. Phys. **22**, 269–279 (1971) Balslev, E., Combes, J.M.: Commun. Math. Phys. **22**, 280–294 (1971)
- 4. Reed, M., Simon, B.: Methods of modern mathematical physics. Tomes II and III. New York: Academic Press 1979
- 5. Enss, V.: Commun. Math. Phys. 61, 285 (1978)
- 6. Simon, B.: Duke Math. J. 46, 119-168 (1979)

Communicated by B. Simon

Received March 19, 1980; in revised form July 21, 1980