Absence of Singular Continuous Spectrum for Certain Self-Adjoint Operators

E. Mourre
Centre de Physique Théorique, CNRS Marseille, F-13288 Marseille Cedex 2, France

Abstract

We give a sufficient condition for a self-adjoint operator to have the following properties in a neighborhood of a point E of its spectrum: a) its point spectrum is finite; b) its singular continuous spectrum is empty; c) its resolvent satisfies a class of a priori estimates.

Notations, Definitions, and Main Theorem

Let H be a self-adjoint operator on a Hilbert space \mathscr{H}. We will denote by $\mathscr{H}_{n}(n \in \mathbf{Z})$ the Hilbert space constructed from the spectral representation for H with the scalar product:

$$
(\Phi \mid \Psi)_{n}=\int\left(\lambda^{2}+1\right)^{n / 2}\left(\Phi \mid P_{H}(d \lambda) \Psi\right)
$$

For functions $P \in L^{\infty}(\mathbf{R}), P_{H}$ will denote the associated operator given by the usual functional calculus.
$P_{H}(E, \delta)$ will denote the spectral projection for H onto the interval $(E-\delta, E+\delta)$. P_{H}^{p} and P_{H}^{c} will denote the spectral projectors respectively onto the point spectrum and the continuous spectrum of $H ; \sigma_{c}(H)=\mathbf{R} /\{E \in \mathbf{R} \mid E$ is an eigenvalue of $H\}$.

If A is a self-adjoint operator and $D(A) \cap D(H)$ is dense in $\mathscr{H}, i[H, A]$ will denote the symmetric form on $D(A) \cap D(H)$ given by

$$
(\Phi \mid i[H, A] \Psi)=i\{(H \Phi \mid A \Psi)-(A \Phi \mid H \Psi)\}
$$

for $\Psi, \Phi \in D(A) \cap D(H)$. If this form is bounded below and closeable, $i[H, A]^{0}$ will denote the self-adjoint operator associated to the closure [1].

1. Definition. Let H be a self-adjoint operator on a Hilbert space with domain $D(H)$; a self-adjoint operator A is a conjugate operator for H at a point $E \in \mathbf{R}$ if and only if the following conditions hold:
(a) $D(A) \cap D(H)$ is a core for H.
(b) $e^{+i A \alpha}$ leaves the domain of H invariant and for each $\Psi \in D(H)$

$$
\sup _{|\alpha|<1}\left\|H e^{+i A \alpha} \Psi\right\|<\infty
$$

(c) The form $i[H, A]=i(H A-A H)$ defined on $D(A) \cap D(H)$ is bounded below and closeable; moreover, the self-adjoint operator $i[H, A]^{0}$ associated to its closure admits a domain containing $D(H)$.
(d) The form defined on $D(A) \cap D(H)$ by $\left[[H, A]^{0}, A\right]$ is bounded as a map from \mathscr{H}_{+2} into \mathscr{H}_{-2}.
(e) There exist strictly positive numbers α and δ and a compact operator K on \mathscr{H}, so that:

$$
P_{H}(E, \delta) i[H, A]^{0} P_{H}(E, \delta) \geqq \alpha P_{H}(E, \delta)+P_{H}(E, \delta) K P_{H}(E, \delta)
$$

Theorem. Let H be a self-adjoint operator, having a conjugate operator A at the point $E \in \mathbf{R}$, (i.e. suppose H and A satisfy conditions (a)-(e) above). Then there is a neighborhood $(E-\delta, E+\delta)$ of E so that:

1. In $(E-\delta, E+\delta)$ the point spectrum of H is finite.
2. For each closed interval $[a, b] \subset(E-\delta, E+\delta) \cap \sigma_{c}(H)$, there exists a finite constant c_{0} so that:

$$
\sup _{\substack{\operatorname{Reze\in a(ab]} \\ \operatorname{lm} z \neq 0}}\left\||A+i|^{-1}(H-z)^{-1}|A+i|^{-1}\right\| \leqq c_{0} .
$$

Remark. The above theorem gives a method for obtaining a priori estimates of Agmon type [2] for certain self-adjoint operators, following from the existence of the conjugate operator A of H in the neighborhood of some point.

The essential condition in the definition of conjugate operator is condition (e); the other conditions justify the algebraic manipulations. To obtain the a priori estimates on $(H-z)^{-1}$ when z approaches a point $E \in \sigma_{c}(H)$, we prove a priori estimates, uniform in ε and z, on the operator $\left(H-z-i \varepsilon B^{*} B\right)^{-1}$. Here ε and $\operatorname{Im} z$ have the same sign, $\operatorname{Re} z \in\left(E-\delta_{0}, E+\delta_{0}\right)$, and $B^{*} B=P_{H}\left(E, 2 \delta_{0}\right) i[H, A] P_{H}\left(E, 2 \delta_{0}\right)$. This estimate is obtained by proving a differential inequality of the form:

$$
\left\|\frac{d}{d \varepsilon} F_{z}(\varepsilon)\right\| \leqq K\left(\varepsilon,\left\|F_{z}(\varepsilon)\right\|\right)
$$

for $F_{z}(\varepsilon)=|A+i|^{-1}\left(H-z-i \varepsilon B^{*} B\right)^{-1}|A+i|^{-1}$.
In Sect. I, we give examples and applications. As new results we obtain the absence of singular continuous spectrum and a priori estimates in the following two cases:
(a) Relatively compact perturbations of certain pseudo-differential operators.
(b) Three-body Schrödinger operators with long-range two-body forces.

In Sect. II we give the proof of the main theorem.

I. Examples and Applications

1. The Laplacian

Let $\mathscr{H}=L^{2}\left(\mathbf{R}^{n}, d^{n} x\right), H=H_{0}=-\Delta$ and

$$
A=\frac{1}{4}(x \cdot p+p \cdot x) \quad p=-i \nabla .
$$

A is the generator of the dilations introduced by Combes and used in [3].
$-\Delta$ and A are defined on \mathscr{S}, the $\mathscr{C}{ }^{\infty}$ functions of rapid decrease. \mathscr{S} is a core for
H. The explicit formula:

$$
e^{+i A \alpha}\left(H_{0}+i\right)^{-1}=\left(e^{-\alpha} H_{0}+i\right)^{-1} e^{+i A \alpha}
$$

shows that $e^{+i A \alpha}$ léave $D(H)$ invariant. \mathscr{S} is invariant under the dilation group and $i[-\Delta, A]=-\Delta$ in the sense of quadratic forms on \mathscr{S}. By Proposition II.1, condition (c) holds on $D(A) \cap D(H)$ and $i[H, A]^{0}=-\Delta$. Condition (d) then reduces to condition (c). Condition (e) is trivially satisfied at any point $E \neq 0$ by choosing $\delta<\frac{|E|}{2}$.

2. Two-Body Schrödinger Operators

Let

$$
\mathscr{H}=L^{2}\left(\mathbf{R}^{n}, d^{n} x\right), \quad H=-\Delta+V .
$$

We will often write H_{0} for $-\Delta$. Much work has been done on these operators and we refer the reader to [4] for detailed references. Moreover, recently a very intuitive method has been introduced by Enss to prove asymptotic completeness for such systems [5].

We shall suppose that:
(i) V is H_{0} compact ;
(ii) the operator $i\left\{V \frac{x p+p x}{4}-\frac{x p+p x}{4} V\right\}$ is defined on \mathscr{S} and coincides on \mathscr{S} with an H_{0} compact operator B.
(iii) B admits a decomposition: $B=B_{s}+B_{l}$ where $B_{s}^{*}|x|$ and $|x| B_{s}$ are H_{0} bounded operators, and $\left[B_{l}, x p+p x\right]$ coincides on \mathscr{S} with a form coming from an H_{0} compact operator.
Remark. When V is the operator of multiplication by a function $v(x),[V, x p+p x]$ $=2 i x \cdot \nabla v$, so that condition (ii) is satisfied if $x \cdot \nabla v$ is H_{0} compact. Condition (iii) is satisfied if there is a smooth function $j(x)$ of compact support such that the operators $x_{i} \frac{\partial}{\partial x_{i}}\left\{(1-j(x)) x_{j} \frac{\partial v}{\partial x_{j}}\right\}$ are H_{0} compact for all i, j.
Theorem I.1. If V is a symmetric operator satisfying hypotheses (i)...(iii), then the operator $(\operatorname{sgn} E) A$ is conjugate to $H=H_{0}+V$ at all $E \neq 0 .\left(A=\frac{1}{4}(x p+p x)\right.$.)

If $E<0$, then 0 and $\mathbb{1}$ are also conjugate operators to H at E.
Proof. Since V is H_{0} compact, $D(H)=D\left(H_{0}\right)$. By Example 1, $D\left(H_{0}\right)$ and therefore $D(H)$ is left invariant by $e^{+i A \alpha}$. By hypothesis (ii) the form $i[H, A]$ coincides on \mathscr{S} with the form associated to the symmetric operator $H_{0}+B$ on \mathscr{S}, hence by Proposition II.1, condition (c) holds with $i[H, A]^{0}=H_{0}+B$.

To show that condition (d) holds, we write:

$$
\left[A, i[H, A]^{0}\right]=\left[A, B_{s}\right]+\left[A, H_{0}+B_{l}\right]
$$

the first term is bounded as a map from \mathscr{H}_{+2} into \mathscr{H}_{-2} by hypotheses (iii), the second coincides on \mathscr{S} with the quadratic form of an H_{0} bounded, self-adjoint operator.

Let us verify condition (e).

$$
P_{H}(E, \delta) i[H, A]^{0} P_{H}(E, \delta)=P_{H}(E, \delta)\{H-V+B\} P_{H}(E, \delta)
$$

Since V and $B=i[V, A]$ are H compact operators, by taking $\delta<\frac{|E|}{2}$ we have, letting $P_{H}(E, \delta)=P_{H}$,

$$
P_{H} i[H, A]^{0} P_{H} \geqq \frac{E}{2} P_{H}+P_{H} K P_{H} \quad \text { if } \quad E>0
$$

If E is negative, we can see that the following two relations hold

$$
\begin{gathered}
P_{H} i[H,-A]^{0} P_{H} \geqq \frac{|E|}{2} P_{H}+P_{H}-K P_{H} \\
P_{H} i[H, A]^{0} P_{H}=P_{H}\left(H_{0}+B\right) P_{H} .
\end{gathered}
$$

Adding them, we see that 0 and therefore $\mathbb{1}$ are both conjugate operators for H at energy $E<0$.

Remarks. As a consequence of Theorem I.1, we proved that the eigenvalues of H can only accumulate at $E=0$, and are of finite multiplicity; outsided of them, the resolvent $(H-z)^{-1}$ satisfies a priori estimate of Agmon's type [2].

3. Perturbations of Pseudo-Differential Operators

In [6], among the extensions of the method introduced in [5], the author proves similar results for short-range perturbations of pseudo-differential operators.

Let $\mathscr{H}=L^{2}\left(\mathbf{R}^{n}, d^{n} x\right)$ and denote by $L^{2}\left(\mathbf{R}^{n}, d^{n} p\right)$ the Hilbert space obtained by Fourier transformation.

Let $h_{0}(p)$ be a measurable function from R^{n} to R and h_{0} the associated multiplication operator on $L^{2}\left(\mathbf{R}^{n}, d^{n} p\right)$. Suppose that:

$$
\lim _{|p| \rightarrow \infty}\left|h_{0}(p)\right|=\infty
$$

Definition. $E \in \mathbf{R}$ is a regular point of h_{0} if and only if there is a neighborhood ($E-\delta_{0}, E+\delta_{0}$) of E so that on

$$
O\left(E, \delta_{0}\right)=\left\{p \in \mathbf{R}^{n}| | h_{0}(p)-E \mid<\delta_{0}\right\}
$$

h_{0} is \mathscr{C}^{m} for an $m \geqq 3$ and

$$
\sum_{i=1}^{n}\left(\frac{\partial h_{0}}{\partial p_{i}}\right)^{2}(p) \geqq \alpha>0, \quad p \in O\left(E, \delta_{0}\right)
$$

Definition. $h_{0}+V$ is a regular perturbation of h_{0} if V satisfies the following conditions.

1. V is a symmetric h_{0}-compact operator.
2. For all real valued $g \in \mathscr{C}_{0}^{m}\left(\mathbf{R}^{n}\right)$, the \mathscr{C}^{m} functions of compact support, the operators

$$
B_{i}=\left(x_{i} g(p)+g(p) x_{i}\right) V-V\left(x_{i} g(p)+g(p) x_{i}\right)
$$

are defined on \mathscr{S} and extended to bounded, h_{0}-compact operators.
3. $\left[x_{j} g(p)+g(p) x_{j}, B_{i}\right]$ is bounded as a map from \mathscr{H}_{+2} to \mathscr{H}_{-2}.

Theorem I.2. Let $H=h_{0}+V$ be a regular perturbation of h_{0}. For each regular point E of h_{0}, there is an operator A conjugate to H at E.

Corollary I.3. Let $h_{0}+V$ be a regular perturbation of h_{0}. For each regular point E of h_{0}, there is a neighborhood $(E-\delta, E+\delta)$ so that

1. the point spectrum of $h_{0}+V$ is finite in $(E-\delta, E+\delta)$.
2. For all $[a, b] \subset(E-\delta, E+\delta) \cap \sigma_{c}(H)$ there is a finite constant c_{0} so that:

$$
\sup _{\substack{\operatorname{Reveca}, b] \\ \operatorname{Im} z \neq 0}}\left\|(1+|x|)^{-1}(H-z)^{-1}(1+|x|)^{-1}\right\| \leqq c_{0} .
$$

Proof. Since $\left|h_{0}(p)\right| \rightarrow \infty$ as $|p| \rightarrow \infty, O\left(E, \delta_{0}\right)$ is a bounded subset of \mathbf{R}^{n}, so that we can find a \mathscr{C}^{m-1} vector field $g_{i}(p) i \in\{1, \ldots, n\}$ of compact support in \mathbf{R}^{n}, with

$$
\begin{array}{rll}
g_{i}(p)=\frac{\partial h_{0}}{\partial p_{i}}(p) & \text { if } & p \in O\left(E, \delta_{0}\right) \\
g_{i}(p)=0 & \text { if } & \left|h_{0}(p)\right|>M_{0}
\end{array}
$$

Let \hat{A} the formally symmetric operator defined on $L^{2}\left(\mathbf{R}^{n}, d^{n} p\right)$ by

$$
\hat{A}=\sum_{i=1}^{n} g_{i}(p) i \frac{\partial}{\partial p_{i}}+\frac{i}{2} \frac{\partial g_{i}}{\partial p_{i}}(p)=\frac{1}{2} \sum_{i}\left(g_{i} x_{i}+x_{i} g_{i}\right)
$$

By the commutator theorem [4] it is easily seen that \hat{A} is essentially self-adjoint on the domain of $x^{2}=\sum_{i=1}^{n} x_{i}^{2}$.

Let A be the self-adjoint extension so obtained. Since $D\left(x^{2}\right) \cap D\left(h_{0}\right)$ is a core for $h_{0}, D(A) \cap D\left(h_{0}\right)$ is a core for h_{0}. One can easily see (cf. Appendix A.1) that the unitary group $e^{+i A \alpha}$ is actually the group of unitary transformations on $L^{2}\left(\mathbf{R}^{n}, d^{n} p\right)$ associated with the group of diffeomorphisms $\Gamma_{\alpha}: \mathbf{R}^{n} \mapsto \mathbf{R}^{n}$ determined by the differential equation:

$$
\begin{aligned}
\frac{d}{d \alpha} \Gamma_{\alpha}^{i}(p) & =g_{i}\left(\Gamma_{\alpha}(p)\right) \\
\Gamma_{0}(p) & =p
\end{aligned}
$$

It follows that $e^{+i A \alpha}$ leaves invariant the functions $\Psi(p)$ with support contained in $\left\{p \in \mathbf{R}^{n}| | h_{0}(p) \mid>M_{0}\right\}$, and hence $e^{i A \alpha}$ leaves $D\left(h_{0}\right)$ invariant. Conditions (c) and (d) are satisfied because of the regularity assumptions (2) and (3) on V. (These hypotheses can be easily verified for a class of long range potentials with sufficient regularity at infinity.)

Let us verify property (e). By hypothesis there exist $\alpha>0, \delta_{0}>0$ such that

$$
P_{h_{0}}\left(E, \delta_{0}\right) i\left[h_{0}, A\right]^{0} P_{h_{0}}\left(E, \delta_{0}\right) \geqq \alpha P_{h_{0}}\left(E, \delta_{0}\right)
$$

For any smooth function \tilde{P} such that $\tilde{P}=1$ on $(E-\delta, E+\delta) \delta<\delta_{0}$ and $\tilde{P}=0$ on $\mathbf{R} /\left(E-\delta_{0}, E+\delta_{0}\right)$, we have:

$$
\tilde{P}_{h_{0}} i\left[h_{0}, A\right]^{0} \tilde{P}_{h_{0}} \geqq \alpha \tilde{P}_{h_{0}}^{2} \quad \text { and } \quad P(E, \delta)=P(E, \delta) \tilde{P}
$$

Note that $\tilde{P}_{H}-\tilde{P}_{h_{0}}$ is a compact operator since V is h_{0} compact and $\tilde{P}(\lambda)$ is a smooth function of compact support.

Then:

$$
\begin{aligned}
& P_{H}(E, \delta) i\left[h_{0}, A\right]^{0} P_{H}(E, \delta) \\
& \quad=P_{H}(E, \delta) \tilde{P}_{H} \sum_{i} g_{i}^{2}(p) \tilde{P}_{H} P_{H}(E, \delta) \\
& \quad=P_{H}(E, \delta) \tilde{P}_{h_{0}} \sum_{i} g_{i}^{2}(p) \tilde{P}_{h_{0}} P_{H}(E, \delta)+P_{H}(E, \delta) K^{\prime} P_{H}(E, \delta) \\
& \quad \geqq \alpha P_{H}(E, \delta) \tilde{P}_{h_{0}}^{2} P_{H}(E, \delta)+P_{H}(E, \delta) K^{\prime} P_{H}(E, \delta) \\
& \quad \geqq \alpha P_{H}^{2}(E, \delta)+P_{H}(E, \delta) K^{\prime \prime} P_{H}(E, \delta)
\end{aligned}
$$

By hypothesis (2) $[V, A]$ is h_{0} compact, hence there exist numbers $\alpha, \delta>0$ and a compact operator K so that condition (e) holds. This proves Theorem I.2. The Corollary I. 3 follows from Theorem I. 2 and the abstract theorem since $D(A)$ contains $D(|x|)$, and hence $A(1+|x|)^{-1}$ is a bounded operator.

4. Three-Body Schrödinger Operators

Let x_{i}, m_{i} be the coordinates and mass of the i-th particle where $x_{i} \in \mathbf{R}^{n}, i \in\{1,2,3\}$. For each pair of particles $(i, j)=\alpha$ (such pairs are always denoted by Greek letters), we will denote

$$
\begin{gathered}
x_{\alpha}=x_{i}-x_{j} ; \quad y_{\alpha}=x_{k}-\frac{m_{i} x_{i}+m_{j} x_{j}}{m_{i}+m_{j}} \quad k \notin \alpha \\
m_{\alpha}^{-1}=m_{i}^{-1}+m_{j}^{-1} \\
n_{\alpha}^{-1}=m_{k}^{-1}+\left(m_{i}+m_{j}\right)^{-1}
\end{gathered}
$$

when one removes the center of mass of the system, the Hilbert space is then

$$
\mathscr{H}=L^{2}\left(\mathbf{R}^{2 n}, d^{n} x_{\alpha} d^{n} y_{\alpha}\right) \quad \forall \alpha .
$$

k_{α} and p_{α} will denote $-i \nabla_{x_{\alpha}}$ and $-i \nabla_{y_{\alpha}}$.
In \mathscr{H}, the Hamiltonian of the system is written

$$
\begin{gathered}
H=H_{0}+V \\
H_{0}=\frac{1}{2 m_{\alpha}} k_{\alpha}^{2}+\frac{1}{2 n_{\alpha}} p_{\alpha}^{2} \quad \forall \alpha .
\end{gathered}
$$

The dilation group acts in the same way independently of the representation $L^{2}\left(d^{n} x_{\alpha}, d^{n} y_{\alpha}\right)$ of \mathscr{H}. Let A be its generator normalized so that $i\left[H_{0}, A\right]=H_{0}$. We
have $A=A_{\alpha}^{1}+A_{\alpha}^{2}$ where A_{α}^{1} and A_{α}^{2} are the generators of the dilation group on $L^{2}\left(d^{n} x_{\alpha}\right)$ and $L^{2}\left(d^{n} y_{\alpha}\right)$, respectively.

Hypotheses on the potential V
Suppose that $V=\sum_{\alpha} v_{\alpha}$ where, for each α, v_{α} is an operator acting on $L^{2}\left(d^{n} x_{\alpha}\right)$ and satisfying hypotheses (i)-(iii) of Example 2.

We will further denote:

$$
H_{\alpha}=H_{0}+v_{\alpha}=h_{\alpha}+\frac{p_{\alpha}^{2}}{2 n_{\alpha}} ; \quad h_{\alpha}=\frac{k_{\alpha}^{2}}{2 m_{\alpha}}+v_{\alpha} .
$$

By Theorem I.1, the eigenvalues of h_{α} have finite multiplicity and can only accumulate at 0 .

Theorem I.3. Let $H=H_{0}+V$ on $L^{2}\left(d^{n} x_{\alpha}, d^{n} y_{\alpha}\right)$ where V is a symmetric operator satisfying the above hypotheses. Then $A=A_{\alpha}^{1}+A_{\alpha}^{2}$ is a conjugate operator for H at all $E \in \mathbf{R}$ with

$$
E \notin \bigcup_{\alpha} \sigma_{p}\left(h_{\alpha}\right) \cup\{0\}
$$

Corollary I.4. 1 . The point spectrum of $H=H_{0}+\sum_{\alpha} v_{\alpha}$ can accumulate only at 0 or at eigenvalues of subsystems.
2. For all intervals $[a, b] \subset \mathbf{R} \backslash\left\{\sigma_{p}(H) \bigcup_{\alpha} \sigma_{p}\left(h_{\alpha}\right) \cup\{0\}\right\}$, there is a c_{0} so that

$$
\sup _{\substack{\operatorname{Revefa,b]} \\ \operatorname{Im} z \neq 0}}\left\|(1+|x|)^{-1}(H-z)^{-1}(1+|x|)^{-1}\right\| \leqq c_{0} .
$$

Under the hypotheses made on the two-body potential v_{α}, conditions (a)-(d) are satisfied in the same way that they were in the two-body problem. Let us now prove that condition (e) holds.

Proposition 4.1. Let $E \in \mathbf{R}$, and let c_{α} be an h_{α}-compact operator in $L^{2}\left(\mathbf{R}^{n}, d^{n} x_{\alpha}\right)$. Then for every $\varepsilon>0$ there is $\delta_{0}>0$, a finite rank spectral projection $e_{\alpha}^{N_{0}}$ for h_{α} and an operator K compact in $\mathscr{H}=L^{2}\left(\mathbf{R}^{2 n}, d^{n} x_{\alpha} d^{n} y_{\alpha}\right)$ so that

$$
P_{H} c_{\alpha} P_{H}=P_{H} E_{\alpha}^{N} c_{\alpha} E_{\alpha}^{N} P_{H}+P_{H} K P_{H}+o(\varepsilon)
$$

where:
(i) $E_{\alpha}^{N}=e_{\alpha}^{N} \otimes \mathbb{1} y_{\alpha}$ where e_{α}^{N} is a finite rank spectral projection for h_{α} that contains $e_{\alpha}^{N_{0}}$,
(ii) P_{H} is any spectral projection for H onto any Borel set contained in $\left(E-\delta_{0}, E+\delta_{0}\right)$;
(iii) $\|o(\varepsilon)\| \leqq \frac{\varepsilon}{6}$.

Proof. Since c_{α} is an h_{α}-compact operator, we can find $e_{\alpha}^{N_{0}}$ so that

$$
\left\|e_{\alpha}^{N_{0}} c_{\alpha} e_{\alpha}^{N_{0}}-P_{h_{\alpha}}^{p} c_{\alpha} P_{h_{\alpha}}^{p}\right\| \leqq \frac{\varepsilon}{12} .
$$

Furthermore, from general properties of the continuous spectrum, one can find a $\delta_{0}>0$ and a smooth function \tilde{P} with $\tilde{P}=1$ on $\left(E-\delta_{0}, E+\delta_{0}\right)$ and 0 on $\mathbf{R} \backslash\left(E-2 \delta_{0}, E+2 \delta_{0}\right)$ so that

$$
\left\|\tilde{P}_{H_{\alpha}}\left\{c_{\alpha}-P_{h_{\alpha}}^{p} c_{\alpha} P_{h_{\alpha}}^{p}\right\} \tilde{P}_{H_{\alpha}}\right\| \leqq \frac{\varepsilon}{12} .
$$

Hence for all $\delta \leqq \delta_{0}$ and all spectral projections P_{H} on $(E-\delta, E+\delta)$ we have

$$
P_{H} c_{\alpha} P_{H}=P_{H} E_{\alpha}^{N} c_{\alpha} E_{\alpha}^{N} P_{H}+P_{H}\left\{c_{\alpha}-P_{h_{\alpha}}^{p} c_{\alpha} P_{h_{\alpha}}^{p}\right\} P_{H}+o_{1}(\varepsilon)
$$

with $\left\|o_{1}(\varepsilon)\right\| \leqq \frac{\varepsilon}{12}$.
On the other hand $P_{H}=P_{H} \tilde{P}_{H}$ and thus

$$
\begin{aligned}
P_{H}\left\{c_{\alpha}-P_{h_{\alpha}}^{p} c_{\alpha} P_{h_{\alpha}}^{p}\right\} P_{H}= & P_{H}\left(\tilde{P}_{H}-\tilde{P}_{H_{\alpha}}\right)\left\{c_{\alpha}-P_{h_{\alpha}}^{p} c_{\alpha} P_{h_{\alpha}}^{p}\right\} P_{H} \\
& +P_{H} \tilde{P}_{H_{\alpha}}\left\{c_{\alpha}-P_{h_{\alpha}}^{p} c_{\alpha} P_{h_{\alpha}}^{p}\right\}\left(\tilde{P}_{H}-\tilde{P}_{H_{\alpha}}\right) P_{H} \\
& +P_{H} \tilde{P}_{H_{\alpha}}\left\{c_{\alpha}-P_{h_{\alpha}}^{p} c_{\alpha} P_{h_{\alpha}}^{p}\right\} \tilde{P}_{H_{\alpha}} P_{H},
\end{aligned}
$$

where the first two terms on the right hand side are compact operators in \mathscr{H} and the last has norm less than $\frac{\varepsilon}{12}$.

Proposition 4.2. For all $\varepsilon>0$, we can find $\delta_{0}>0, E_{\alpha}^{N_{0}}=e_{\alpha}^{N_{0}} \otimes \mathbb{1}_{y_{\alpha},}$, and a compact operator K so that:

$$
\begin{aligned}
P_{H} i\left[H_{0}+\sum_{\alpha} v_{\alpha}, A\right] P_{H}= & P_{H}\left(1-\sum_{\alpha} E_{\alpha}^{N_{0}}\right) H_{0}\left(1-\sum_{\alpha} E_{\alpha}^{N_{0}}\right) P_{H} \\
& +\sum_{\alpha} P_{H} E_{\alpha}^{N_{0}}\left\{H_{0}+i\left[v_{\alpha}, A_{\alpha}^{1}\right]\right\} E_{\alpha}^{N_{0}} P_{H} \\
& +o(\varepsilon)+P_{H} K P_{H}
\end{aligned}
$$

with $\|o(\varepsilon)\|<\varepsilon$, for any spectral projection P_{H} onto an interval contained in $\left(E-\delta_{0}, E+\delta_{0}\right)$.

Proof. We have

$$
\begin{aligned}
H_{0}= & \left(1-\sum_{\alpha} E_{\alpha}^{N}\right) H_{0}\left(1-\sum_{\alpha} E_{\alpha}^{N}\right)+\sum_{\alpha} E_{\alpha}^{N} H_{0} E_{\alpha}^{N} \\
& +\sum_{\alpha}\left\{E_{\alpha}^{N} H_{0}\left(1-E_{\alpha}^{N}\right)+\left(1-E_{\alpha}^{N}\right) H_{0} E_{\alpha}^{N}\right\} \\
& -\sum_{\alpha \neq \beta} \sum_{\alpha} E_{\alpha}^{N} H_{0} E_{\beta}^{N} .
\end{aligned}
$$

The terms in the last sum are all compact operators in \mathscr{H} and $E_{\alpha}^{N} H_{0}\left(1-E_{\alpha}^{N}\right)$ $=-E_{\alpha}^{N} v_{\alpha}\left(1-E_{\alpha}^{N}\right)$ since E_{α}^{N} commutes with $H_{\alpha}=H_{0}+v_{\alpha}$. We consider spectral projections e_{α}^{N} for h_{α} so that

$$
\sum_{\beta} E_{\beta}^{N} H_{0}\left(1-E_{\beta}^{N}\right)=\sum_{\beta} P_{h_{\beta}}^{p}\left(-v_{\beta}\right) P_{h_{\beta}}^{c}+o(\varepsilon)
$$

with $\|o(\varepsilon)\|<\frac{\varepsilon}{2}$.

Next, we apply Proposition 4.1 to each of the operators

$$
c_{\alpha}=i\left[v_{\alpha}, A_{\alpha}^{1}\right]-P_{h_{\alpha}}^{p} v_{\alpha} P_{h_{\alpha}}^{c}-P_{h_{\alpha}}^{c} v_{\alpha} P_{h_{\alpha}}^{p} .
$$

By Proposition 4.1, we can find $E_{\alpha}^{N_{0}}$ and $\delta_{0}>0$ satisfying Proposition 4.2.
Proposition 4.3. Let $\alpha_{0}=\operatorname{dist}\left(E,\{0\} \bigcup_{\alpha} \sigma_{p}\left(h_{\alpha}\right)\right)$. We can find δ_{0} so that

$$
\sum_{\alpha} P_{H} E_{\alpha}^{N}\left\{H_{0}+i\left[v_{\alpha}, A_{\alpha}^{1}\right]\right\} E_{\alpha}^{N} P_{H} \geqq \sum_{\alpha} \frac{\alpha_{0}}{2} P_{H} E_{\alpha}^{N} P_{H}+P_{H} K P_{H} ; P_{H}=P_{H}\left(E, \delta_{0}\right)
$$

Proof. If we choose δ_{0} so that

$$
\begin{aligned}
& \delta_{0} \leqq \frac{1}{4} \inf _{\alpha} \inf _{i \neq j}\left|\lambda_{\alpha}^{i}-\lambda_{\alpha}^{j}\right| \\
& \delta_{0} \leqq \frac{\alpha_{0}}{4} .
\end{aligned}
$$

λ_{α}^{i}, being the eigenvalues of $h_{\alpha} e_{\dot{\sim}}^{N}$.
If we pick a function \tilde{P} equal to 1 on $\left(E-\delta_{0}, E+\delta_{0}\right)$ and 0 on $\mathbf{R} \backslash\left(E-2 \delta_{0}, E+2 \delta_{0}\right)$,

$$
\tilde{P}_{H_{\alpha}} E_{\alpha}^{i}\left\{H_{0}+i\left[v_{\alpha}, A_{\alpha}^{1}\right]\right\} E_{\alpha}^{j} \tilde{P}_{H_{\alpha}}=0 \quad \text { if } \quad i \neq j
$$

since $E_{\alpha}^{j} \tilde{P}_{H_{\alpha}}$ and $E_{\alpha}^{i} \tilde{P}_{H_{\alpha}}$ viewed as functions of p_{α}^{2} have support in disjoint intervals $\left(E_{\alpha}^{i} \tilde{P}\left(H_{\alpha}\right)=\tilde{P}\left(\lambda_{\alpha}^{i}+\frac{p_{\alpha}^{2}}{2 n_{\alpha}}\right) E_{\alpha}^{i}\right)$. Furthermore, by the Virial Theorem,

$$
\begin{aligned}
& \tilde{P}_{H_{\alpha}} E_{\alpha}^{N}\left\{H_{0}+i\left[v_{\alpha}, A_{\alpha}^{1}\right]\right\} E_{\alpha}^{N} \tilde{P}_{H_{\alpha}} \\
& =\sum_{i} \tilde{P}_{H_{\alpha}} E_{\alpha}^{i} i\left[h_{\alpha}, A_{\alpha}^{1}\right] E_{\alpha}^{i} \tilde{P}_{H_{\alpha}} \\
& \quad+\sum_{i} \tilde{P}_{H_{\alpha}} E_{\alpha}^{i} \frac{p_{\alpha}^{2}}{2 n_{\alpha}} E_{\alpha}^{i} \tilde{P}_{H_{\alpha}} \\
& =\sum_{i} \tilde{P}_{H_{\alpha}} E_{\alpha}^{i} \frac{p_{\alpha}^{2}}{2 n_{\alpha}} E_{\alpha}^{i} \tilde{P}_{H_{\alpha}} \\
& \geqq \frac{\alpha_{0}}{2} \tilde{P}_{H_{\alpha}} E_{\alpha}^{N} \tilde{P}_{H_{\alpha}} .
\end{aligned}
$$

Propositions 4.2 and 4.3 enable us to find, for all $\varepsilon>0,\left(e_{\alpha}^{N}\right)$ and $\delta_{0}>0$ so that $P_{H}(E, \delta) i[H, A]^{0} P_{H}(E, \delta)$

$$
\begin{aligned}
\geqq & P_{H}\left(1-\sum_{\alpha} E_{\alpha}^{N}\right) H_{0}\left(1-\sum_{\alpha} E_{\alpha}^{N}\right) P_{H} \\
& +\frac{\alpha_{0}}{2} \sum_{\alpha} P_{H} E_{\alpha}^{N} P_{H} \\
& +P_{H} K P_{H}+P_{H} o(\varepsilon) P_{H}
\end{aligned}
$$

where $\|o(\varepsilon)\|<\varepsilon$, for all $\delta<\delta_{0}$.

To verify condition (e), since $\varepsilon>0$ is arbitrary, it now suffices to show that there is a finite constant c_{0} so that

$$
P_{H} \leqq c_{0}\left\{P_{H}\left(1-\sum_{\alpha} E_{\alpha}^{N}\right) H_{0}\left(1-\sum_{\alpha} E_{\alpha}^{N}\right) P_{H}+\sum_{\alpha} P_{H} E_{\alpha}^{N} P_{H}\right\}
$$

which is immediate if $E \neq 0$; the constant c_{0} evidently does not depend on N and δ.

II. Proof of Theorem I

We start the proof of the abstract theorem by the following proposition which is useful in applications to verify the hypothesis (c) when $D(A) \cap D(H)$ is not explicitly known.

Proposition II.1. Let H and A be self-adjoint operators that satisfy conditions (a), (b) and the following conditions (c ').
(c') There is a set $\mathscr{S} \subset D(A) \cap D(H)$ such that
i) $e^{+i A \alpha} \mathscr{S} \subset \mathscr{S}$,
ii) \mathscr{S} is a core for H,
iii) the form $i[H, A]$ on \mathscr{S} is bounded below and closeable, and the associated self-adjoint operator $i[H, A]_{\mathscr{\varphi}}^{0}$ satisfies

$$
D\left(i[H, A]_{\mathscr{S}}^{0}\right) \supset D(H)
$$

then for all $\Phi, \Psi \in D(A) \cap D(H)$

$$
(\Phi \mid i[H, A] \Psi)=\left(\Phi \mid i[H, A]_{\mathscr{S}}^{0} \Psi\right)
$$

and hence the form $i[H, A]$ on $D(A) \cap D(H)$ is closeable and the associated selfadjoint operator satisfies:

$$
i[H, A]^{0}=i[H, A]_{\mathscr{S}}^{0}
$$

Proof. It suffices to check that for each $\Phi, \Psi \in D(A) \cap D(H)$

$$
(\Phi \mid i[H, A] \Psi)=\left(\Phi \mid i[H, A]_{\mathscr{S}}^{0} \Psi\right)
$$

By hypothesis (b), the operators $H e^{+i A \alpha}(H+i)^{-1}$ are closed and everywhere defined, hence bounded by the closed graph theorem. For each $\Psi \in \mathscr{H}$, by (b) sup $\left\|H e^{+i A \alpha}(H+i)^{-1} \Psi\right\|<\infty$ and by the principle of uniform boundedness in $\alpha \in[-1,+1]$
Banach spaces, this family of operators is uniformly bounded: there is a $c_{0}<\infty$ such that:

$$
\begin{equation*}
\sup _{\alpha \in[-1,+1]}\left\|H e^{+i A \alpha}(H+i)^{-1}\right\| \leqq c_{0} \tag{II.1}
\end{equation*}
$$

Consequently, for each $\Phi, \Psi \in D(A) \cap D(H),\left(H(\alpha)=e^{-i A \alpha} H e^{+i A \alpha}\right)$,

$$
\begin{aligned}
& \lim _{\alpha \rightarrow 0} \frac{1}{\alpha}(\Phi \mid(H(\alpha)-H) \Psi) \\
& \quad=\lim _{\alpha \rightarrow 0} \frac{1}{\alpha}\left(\Phi \mid\left(e^{-i A \alpha}-1\right) H e^{+i A \alpha} \Psi\right)+\frac{1}{\alpha}\left(\Phi \mid H\left(e^{+i A \alpha}-1\right) \Psi\right) \\
& \quad=(\Phi \mid i[H, A] \Psi)
\end{aligned}
$$

Since $H e^{+i A \alpha} \Psi$ is uniformly bounded in α, this family of vectors converges weakly to $H \Psi$ when $\alpha \rightarrow 0$.

For each $\Phi, \Psi \in D(H)$ there are sequences u_{n} and v_{n} such that

$$
\left\|(H+i)\left(u_{n}-\Phi\right)\right\| \rightarrow 0, \quad\left\|(H+i)\left(v_{n}-\Psi\right)\right\| \rightarrow 0
$$

with $u_{n}, v_{n} \in \mathscr{S}$. Thus:

$$
\frac{1}{\alpha}(\Phi \mid(H(\alpha)-H) \Psi)=\lim _{n \rightarrow \infty} \frac{1}{\alpha}\left(u_{n} \mid(H(\alpha)-H) v_{n}\right)
$$

By hypothesis (c^{\prime}), the derivative

$$
\frac{d}{d \alpha}\left(u_{n} \mid H(\alpha) v_{n}\right)=\left(u_{n} \mid e^{-i A \alpha} i[H, A]_{\mathscr{P}}^{0} e^{+i A \alpha} v_{n}\right)
$$

is a continuous function: one can then use the mean value theorem to obtain:

$$
\frac{1}{\alpha}(\Phi \mid(H(\alpha)-H) \Psi)=\lim _{n \rightarrow \infty}\left(u_{n} \mid e^{-i A \alpha_{n} i}[H, A]_{\mathscr{S}}^{0} e^{+i A \alpha_{n}} v_{n}\right)
$$

where $\alpha_{n} \in[0, \alpha]$. Since $D\left(i[H, A]_{\mathscr{C}}^{0}\right) \supset D(H)$, (II.1) assures that as $n \rightarrow \infty, \alpha \rightarrow 0$

$$
\begin{aligned}
(\Phi \mid i[H, A] \Psi) & =\lim _{\alpha \rightarrow 0} \frac{1}{\alpha}(\Phi \mid(H(\alpha)-H) \Psi) \\
& =\left(\Phi \mid i[H, A]_{\mathscr{Y}}^{0} \Psi\right)
\end{aligned}
$$

Proposition II.2. Suppose that the two self-adjoint operators H and A satisfy conditions (a)-(c). Then $(H-z)^{-1}$ leaves $D(A)$ invariant for all $z \notin \sigma(H)$.
Proof. Since A is self-adjoint, it suffices to show that the family of operators

$$
e^{-i A \alpha}(H-z)^{-1}(A+i)^{-1}=(H(\alpha)-z)^{-1} e^{-i A \alpha}(A+i)^{-1}
$$

is strongly differentiable; it suffices to show that the family $H(\alpha)(H-z)^{-1}$ is strongly differentiable, or equivalently to show that for each $\Psi \in D(H)$

$$
\lim _{\alpha \rightarrow 0}\left\|\frac{H(\alpha)-H}{\alpha} \Psi-i[H, A]^{0} \Psi\right\|=0
$$

Let $\Psi_{n} \in D(A) \cap D(H)$ so that $\left\|(H+i)\left(\Psi_{n}-\Psi\right)\right\| \rightarrow 0$. Then

$$
\frac{H(\alpha)-H}{\alpha} \Psi-i[H, A]^{0} \Psi=\lim _{n \rightarrow \infty} \frac{H(\alpha)-H}{\alpha} \Psi_{n}-i[H, A]^{0} \Psi_{n}
$$

exactly as in Proposition II.1. Since $e^{+i A \alpha}$ leaves $D(A) \cap D(H)$ invariant for each $\Phi \in D(A) \cap D(H),\|\Phi\|=1$, there exist $\alpha_{n, \Phi} \in[0, \alpha]$ so that

$$
\left(\Phi \left\lvert\, \frac{H(\alpha)-H}{\alpha} \Psi_{n}\right.\right)=\left(\Phi \mid e^{-i A \alpha_{n}} \varphi i[H, A]^{0} e^{+i A \alpha_{n, \Phi}} \Psi_{n}\right)
$$

Bound (II.1) and the hypothesis that $D(H) \subset D\left(i[H, A]^{\circ}\right)$, together imply

$$
\begin{equation*}
\|(H(\alpha)-H) \Psi\| \leqq \alpha c_{0}\|(H+i) \Psi\| \tag{II.2}
\end{equation*}
$$

for all $\Psi \in D(H)$. Furthermore,

$$
\begin{aligned}
& \left|\left(\Phi \left\lvert\, \frac{H(\alpha)-H}{\alpha} \Psi_{n}\right.\right)-\left(\Phi \mid i[H, A]^{0} \Psi_{n}\right)\right| \\
& \quad \leqq c\left\|(H+i)\left(\Psi_{n}-\Psi\right)\right\|+\left\|\left(\Phi \mid\left\{e^{-i A \alpha_{n, \Phi} i} i[H, A]^{0} e^{+i A \alpha_{n, \Phi}}-i[H, A]^{0}\right\} \Psi\right)\right\| \\
& \quad \leqq o\left(\frac{1}{n}\right)+\sup _{\alpha^{\prime} \in[0, \alpha]}\left\|\left\{e^{-i A \alpha^{\prime}} i[H, A]^{0} e^{+i A \alpha^{\prime}}-i[H, A]^{0}\right\} \Psi\right\| \\
& \quad \leqq\left(\frac{1}{n}\right)+\sup _{\alpha^{\prime} \in[0, \alpha]}\left\|i[H, A]^{0}\left(e^{+i A \alpha^{\prime}}-\mathbb{1}\right) \Psi\right\|+\left\|\left(e^{-i A \alpha^{\prime}}-\mathbb{1}\right) i[H, A]^{0} \Psi\right\| \\
& \quad \leqq o\left(\frac{1}{n}\right)+o(\alpha)+\sup _{\alpha^{\prime} \in[0, \alpha]} c_{0}\left\|H\left(e^{+i A \alpha^{\prime}}-1\right) \Psi\right\| .
\end{aligned}
$$

But finally

$$
\begin{aligned}
\left\|H\left(e^{+i A \alpha^{\prime}}-1\right) \Psi\right\| & =\left\|\left(H\left(\alpha^{\prime}\right)-e^{-i A \alpha^{\prime}} H\right) \Psi\right\| \\
& \leqq\left\|\left(H\left(\alpha^{\prime}\right)-H\right) \Psi\right\|+\left\|\left(1-e^{-i A \alpha^{\prime}}\right) H \Psi\right\|
\end{aligned}
$$

which goes to zero as $\alpha \rightarrow 0$ by (II.2).
Proposition II.3. If the operators H, A satisfy conditions (a)-(c), then $(A \pm i \lambda)^{-1}$ leaves $D(H)$ invariant for sufficiently large λ. Further $(H+i) i \lambda(A+i \lambda)^{-1}(H+i)^{-1}$ converges strongly to 1 as $|\lambda| \rightarrow \infty$.

Proof. By Proposition II.2, we have in the operator sense

$$
\begin{aligned}
& (A+i \lambda)^{-1}(H+i)^{-1}-(H+i)^{-1}(A+i \lambda)^{-1} \\
& \quad=(A+i \lambda)^{-1}\left\{(H+i)^{-1} A-A(H+i)^{-1}\right\}(A+i \lambda)^{-1} \\
& \quad=(A+i \lambda)^{-1}(H+i)^{-1}[A, H](H+i)^{-1}(A+i \lambda)^{-1},
\end{aligned}
$$

where the last equality holds in the sense of quadratic form on \mathscr{H}. By condition (c), there is a bounded operator $B(\lambda)=[A, H]^{0}(H+i)^{-1}(A+i \lambda)^{-1}$ with $\|B(\lambda)\| \rightarrow 0$ as $|\lambda| \rightarrow \infty$ such that

$$
(A+i \lambda)^{-1}(H+i)^{-1}(1-B(\lambda))=(H+i)^{-1}(A+i \lambda)^{-1} .
$$

This proves Proposition II. 3 since when $|\lambda|$ is sufficiently large, $1-B(\lambda)$ is invertible and $i \lambda(A+i \lambda)^{-1}(1-B(\lambda))^{-1}$ converges strongly to $\mathbb{1}$ as $|\lambda| \rightarrow \infty$.

Proposition II. 4 (The Virial Theorem). Let H and A be two self-adjoint operators satisfying conditions (a)-(c). Then

1. For all $\Psi \in D(H)$

$$
[H, A]^{0} \Psi=\lim _{|\lambda| \rightarrow \infty}\left[H, A i \lambda(A+i \lambda)^{-1}\right] \Psi .
$$

2. If Ψ is an eigenvector of H, we have

$$
\left(\Psi \mid[H, A]^{0} \Psi\right)=0
$$

Proof. Let $\Psi \in D(H), \Phi \in D(A) \cap D(H)$. By Propositions II. 2 and II.3, for sufficiently large $|\lambda|$,

$$
\begin{align*}
&\left(\Phi \mid\left[H, A i \lambda(A+i \lambda)^{-1}\right] \Psi\right) \\
&=\left(\Phi \mid\left\{H A i \lambda(A+i \lambda)^{-1}-A i \lambda(A+i \lambda)^{-1} H\right\} \Psi\right) \\
&=\left(\Phi \mid(H A-A H) i \lambda(A+i \lambda)^{-1} \Psi\right) \\
&+\left(A \Phi \mid\left\{H i \lambda(A+i \lambda)^{-1}-i \lambda(A+i \lambda)^{-1} H\right\} \Psi\right) \\
&=\left(\Phi \mid[H, A]^{0} i \lambda(A+i \lambda)^{-1} \Psi\right) \\
&+\left(\Phi \mid A(A+i \lambda)^{-1}[H, A]^{0} i \lambda(A+i \lambda)^{-1} \Psi\right) \tag{II.3}
\end{align*}
$$

Since $[A, H]^{0} i \lambda(A+i \lambda)^{-1} \Psi \rightarrow[A, H]^{0} \Psi$ by Proposition II. 3 and condition (c), and since $A(A+i \lambda)^{-1} \xrightarrow{s} 0$, Proposition II. 3 implies that

$$
\lim _{|\lambda| \rightarrow \infty}\left[H, A i \lambda(A+i \lambda)^{-1}\right] \Psi=[H, A]^{0} \Psi
$$

Proving (1). Finally, if Ψ is an eigenvector for $H, \Psi \in D(H)$ and $H \Psi=E \Psi$, so that

$$
\left(\Psi \mid[H, A]^{0} \Psi\right)=\lim _{|\lambda| \rightarrow \infty}\left(\Psi \mid\left[H, A i \lambda(A+i \lambda)^{-1}\right] \Psi\right)=0
$$

Proof of Part (1) of Theorem 1

If one supposes that the self-adjoint operators H, A satisfy conditions (a)-(c), and if furthermore they satisfy condition (e) at $E \in \mathbf{R}$ then the point spectrum in $(E-\delta, E+\delta)$ is finite. Suppose not. Then there is a sequence Ψ_{n} of orthonormal eigenvectors $H \Psi_{n}=E_{n} \Psi_{n}$. By Proposition II. 4

$$
\begin{aligned}
0 & =\left(\Psi_{n} \mid i[H, A]^{0} \Psi_{n}\right)=\left(\Psi_{n} \mid P_{H}(E, \delta) i[H, A]^{0} P_{H}(E, \delta) \Psi_{n}\right) \\
& \geqq \alpha\left\|\Psi_{n}\right\|^{2}+\left(\Psi_{n} \mid K \Psi_{n}\right) .
\end{aligned}
$$

Since the Ψ_{n} are orthonormal, $\Psi_{n} \xrightarrow{w} 0$ in \mathscr{H} and since K is compact $\lim _{n \rightarrow \infty}\left(\Psi_{n} \mid i[H, A]^{0} \Psi_{n}\right) \geqq \alpha$ which is impossible.

Proposition II. 5 (Quadratic Estimate). Let H be a self-adjoint operator with domain $D(H)$ and $B^{*} B$ a bounded positive operator on \mathscr{H}. Then

1. $H-z-i \varepsilon B^{*} B$ is invertible if $\operatorname{Im} z$ and ε have the same sign.
2. If $\operatorname{Im} z$ and ε have the same sign, let

$$
G_{z}(\varepsilon)=\left(H-z-i \varepsilon B^{*} B\right)^{-1} .
$$

Let B^{\prime} an operator with $B^{*} B^{\prime} \leqq B^{*} B$ and C any bounded self-adjoint operator on \mathscr{H}, then:

$$
\left\|B^{\prime} G_{z}(\varepsilon) C\right\| \leqq \frac{1}{\sqrt{\varepsilon}}\left\|C G_{z}(\varepsilon) C\right\|^{1 / 2}
$$

Proof. Since $B^{*} B$ is bounded $H-z-i \varepsilon B^{*} B$ is a closed operator on $D(H)$. When $\Psi \in D(H)$ and ε and $\operatorname{Im} z$ have the same sign, we have

$$
\begin{align*}
\left\|\left(H-z-i \varepsilon B^{*} B\right) \Psi\right\|^{2}= & \|(H-\operatorname{Re} z) \Psi\|^{2}+\left\|\left(\operatorname{Im} z+\varepsilon B^{*} B\right) \Psi\right\|^{2} \\
& -2 \operatorname{Im}\left((H-\operatorname{Re} z) \Psi \mid \varepsilon B^{*} B \Psi\right) \\
\geqq & (\operatorname{Im} z)^{2}\|\Psi\|^{2} . \tag{II.4}
\end{align*}
$$

From this inequality and the fact that $H-z-i \varepsilon B^{*} B$ is a closed operator, it follows that $H-z-i \varepsilon B^{*} B$ is injective with closed range in \mathscr{H}. By the open mapping theorem, its inverse exists as a bounded operator from Rang $\left(H-z-i \varepsilon B^{*} B\right)$ into \mathscr{H}_{+2}. But $\operatorname{Rang}\left(H-z-i \varepsilon B^{*} B\right)=\mathscr{H}$ since if $\Phi_{0} \in \mathscr{H}$ is orthogonal to this range, then $\Phi_{0} \in D(H)$ and $\left(H-\bar{z}+i \varepsilon B^{*} B\right) \Phi_{0}=0$ which by (II.4) implies $\Phi_{0}=0$. Finally:

$$
\begin{aligned}
\left\|B^{\prime} G_{z}(\varepsilon) C\right\|^{2} & =\left\|C G_{z}^{*}(\varepsilon) B^{\prime *} B^{\prime} G_{z}(\varepsilon) C\right\| \\
& \leqq \frac{1}{\varepsilon}\left\|C\left(H-\bar{z}+i \varepsilon B^{*} B\right)^{-1}\left(\operatorname{Im} z+\varepsilon B^{*} B\right)\left(H-z-i \varepsilon B^{*} B\right)^{-1} C\right\| \\
& \leqq \frac{1}{2 \varepsilon}\left\|C\left(G_{z}^{*}(\varepsilon)-G_{z}(\varepsilon)\right) C\right\| \\
& \leqq \frac{1}{\varepsilon}\left\|C G_{z}(\varepsilon) C\right\|=\frac{1}{\varepsilon}\left\|C G_{z}^{*}(\varepsilon) C\right\|
\end{aligned}
$$

Proof of Part (2) of Theorem 1

We will prove the following lemma which clearly implies statement (2) of Theorem 1.

Lemma. Let H be a self-adjoint operator with conjugate operator A in a neighborhood of E, i.e. suppose H, A, and E satisfy conditions (a)-(e). Then for any $E^{\prime} \in(E-\delta, E+\delta) \cap \sigma_{c}(H)$, there is a neighborhood (a, b) of E^{\prime} and a constant c_{0} so that

$$
\sup _{\substack{\operatorname{Rezef\in a,b]} \\ \operatorname{lm} z \neq 0}}\left\||A+i|^{-1}(H-z)^{-1}|A+i|^{-1}\right\| \leqq c_{0} .
$$

Proof. By hypothesis (e), there are numbers $\alpha, \delta>0$ and a compact operator K on \mathscr{H} such that

$$
P_{H}(E, \delta) i[H, A]^{0} P_{H}(E, \delta) \geqq \alpha P_{H}^{2}(E, \delta)+P_{H}(E, \delta) K P_{H}(E, \delta),
$$

where $P_{H}(E, \delta)$ is the spectral projector of H onto the interval $(E-\delta, E+\delta)$. By hypothesis $E^{\prime} \in \sigma_{c}(H)$, hence the spectral projector for H onto $\left(E^{\prime}-\varepsilon, E^{\prime}+\varepsilon\right)$ converges weakly to zero as $\varepsilon \rightarrow 0$. Hence one can find $\delta^{\prime}>0$ and a smooth function $P \leqq 1, P=1$ on $\left(E^{\prime}-\delta^{\prime}, E^{\prime}+\delta^{\prime}\right), P=0$ on $\mathbf{R} /(E-\delta, E+\delta)$ so that (denoting by P_{H} the operator associated to this P)

$$
\pm P_{H} K P_{H} \leqq \frac{\alpha}{2} P_{H}^{2}
$$

and hence

$$
P_{H} i[H, A]^{0} P_{H} \geqq \frac{\alpha}{2} P_{H}^{2}
$$

Let $B^{*} B=P_{H} i[H, A]^{0} P_{H}$.
By Proposition II.5, $G_{z}(\varepsilon)=\left(H-z-i \varepsilon B^{*} B\right)^{-1}$ exists if $\operatorname{Im} z$ and ε have the same sign. Let

$$
F_{z}(\varepsilon)=|A+i|^{-1} G_{z}(\varepsilon)|A+i|^{-1} .
$$

We have by Proposition II. 5

$$
\begin{equation*}
\left\|P_{H} G_{z}(\varepsilon)|A+i|^{-1}\right\| \leqq \frac{c}{\sqrt{\varepsilon}}\left\|F_{z}(\varepsilon)\right\|^{1 / 2} \tag{II.5}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
& \left\|\left(1-P_{H}\right) G_{z}(\varepsilon)|A+i|^{-1}\right\| \\
& \quad \leqq\left\|\left(1-P_{H}\right) G_{z}(0)\right\|\left\|\left(1-i \varepsilon B^{*} B G_{z}(\varepsilon)\right)|A+i|^{-1}\right\| \\
& \quad \leqq c\left\|\left(1-P_{H}\right) G_{z}(0)\right\| \tag{II.6}
\end{align*}
$$

Remark. (II.5) and (II.6) remain true if one replaces P_{H} and $\left(1-P_{H}\right)$ by $(H+i) P_{H}$ and $(H+i)\left(1-P_{H}\right)$. If we restrict $\operatorname{Re} z$ to a closed interval $[a, b]$ strictly contained in $\left(E^{\prime}-\delta^{\prime}, E^{\prime}+\delta^{\prime}\right),\left(1-P_{H}\right) G_{z}(0)$ is uniformly bounded, and there is a constant c so that:

$$
\begin{equation*}
\left\|F_{z}(\varepsilon)\right\| \leqq \frac{c}{\varepsilon} \quad \operatorname{Re} z \in[a, b] \tag{II.7}
\end{equation*}
$$

Furthermore

$$
\frac{d}{d \varepsilon} F_{z}(\varepsilon)=|A+i|^{-1} G_{z}(\varepsilon) P_{H} i[H, A]^{0} P_{H} G_{z}(\varepsilon)|A+i|^{-1}
$$

We can write

$$
\begin{aligned}
P_{H}[H, A]^{0} P_{H}= & {[H, A]^{0}-\left(1-P_{H}\right)[H, A]^{0} P_{H} } \\
& -P_{H}[H, A]^{0}\left(1-P_{H}\right)-\left(1-P_{H}\right)[H, A]^{0}\left(1-P_{H}\right)
\end{aligned}
$$

so that by Eqs. (II.5) and (II.6) and the remarks following them, there are constants c_{1}, c_{2} so that

$$
\begin{align*}
\left\|\frac{d}{d \varepsilon} F_{z}(\varepsilon)\right\| & \leqq\left\||A+i|^{-1} G_{z}(\varepsilon) i[H, A]^{0} G_{z}(\varepsilon)|A+i|^{-1}\right\| \\
& +c_{1}+c_{2} \frac{1}{\sqrt{\varepsilon}}\left\|F_{z}(\varepsilon)\right\|^{1 / 2} \tag{II.8}
\end{align*}
$$

By condition (d) and Proposition II. 6 (see the appendix), $G_{z}(\varepsilon): D(A) \rightarrow D(A) \cap D(H)$ and $\left[B^{*} B, A\right]$ is bounded as a map from \mathscr{H}_{+2} into \mathscr{H}_{-2}. Hence in (II.8), we can write $[H, A]^{0}$ as $\left[H-z-i \varepsilon B^{*} B, A\right]+i \varepsilon\left[B^{*} B, A\right]$. Substituting this relation into
(II.8), we find that

$$
\left\|\frac{d}{d \varepsilon} F_{z}(\varepsilon)\right\| \leqq \tilde{c}_{1}+\tilde{c}_{2} \frac{1}{\sqrt{\varepsilon}}\left\|F_{z}(\varepsilon)\right\|^{1 / 2}+\tilde{c}_{3}\left\|F_{z}(\varepsilon)\right\|
$$

for constants $\tilde{c}_{1}, \tilde{c}_{2}, \tilde{c}_{3}$ independent of ε and z such that $\operatorname{Re} z \in[a, b]$ and $\operatorname{Im} z$ and ε with the same sign.

This differential inequality together with the relation (II.7) shows that there exists a constant c_{0} so that

$$
\left\|F_{z}(\varepsilon)\right\| \leqq c_{0}
$$

for all z with $\operatorname{Re} z \in[a, b], \operatorname{Im} z \neq 0$ and $\operatorname{Im} z, \varepsilon$ having the same sign.

Appendix I

Let $\left\{g_{i}(p)\right\} i \in\{1, \ldots, n\}$ be a \mathscr{C}^{2} vector field, and let \hat{A} be the symmetric operator defined on $L^{2}\left(\mathbf{R}^{n}, d^{n} p\right)$ by

$$
\begin{aligned}
\hat{A} & =\sum_{i=1}^{n} g_{i}(p) i \frac{\partial}{\partial p_{i}}+\frac{i}{2} \frac{\partial g_{i}}{\partial p_{i}}(p) \\
& =\frac{1}{2} \sum_{i}\left(g_{i} x_{i}+x_{i} g_{i}\right)
\end{aligned}
$$

If each g_{i} is \mathscr{C}^{2} the quadratic form defined by \hat{A} admits a form domain containing the form domain of $x^{2}=\sum_{i=1}^{n} x_{i}^{2}$, the same holds for the quadratic form $\hat{A} x^{2}-x^{2} \hat{A}$. By the commutator theorem ([4, Vol. II]), \hat{A} defines a self-adjoint operator A which is essentially self-adjoint on any core for x^{2}. On the other hand, the system of differential equations

$$
\begin{aligned}
\frac{d}{d \alpha} \Gamma_{\alpha}^{i}(p) & =g_{i}\left(\Gamma_{\alpha}(p)\right) \\
\Gamma_{0}(p) & =p
\end{aligned}
$$

defines a group of homeomorphism $\Gamma_{\alpha}: \mathbf{R}^{n} \mapsto \mathbf{R}^{n}$ and the following group of unitary transformations on $L^{2}\left(\mathbf{R}^{n}, d^{n} p\right)$

$$
\left(U_{\alpha} \Psi\right)(p)=\left|\operatorname{det}\left(\frac{\partial \Gamma_{\alpha}^{i}}{\partial p_{j}}(p)\right)\right|^{1 / 2} \Psi\left(\Gamma_{\alpha}(p)\right)
$$

we then have

$$
\begin{aligned}
\frac{d}{d \alpha}\left(U_{\alpha} \Psi\right)_{\alpha=0}(p) & =\sum_{i} g_{i}(p) \frac{\partial \Psi}{\partial p_{i}}(p)+\frac{1}{2} \sum_{i=1}^{n} \frac{\partial g_{i}}{\partial p_{i}}(p) \cdot \Psi(P) \\
& =-i(A \Psi)(p)
\end{aligned}
$$

where A is the self-adjoint extension of \hat{A}.
Let us finally note that $D(A)$ contains $D(|x|)$.

Appendix II

Proposition II.6. Let H, A be operators that satisfy conditions (a) ...(d). Then:

1. Let g be any function with $t \hat{g}(t) \in L^{1}(\mathbf{R}, d t)$, then

$$
g(H): D(A) \cap D(H) \rightarrow D(A) .
$$

2. Let $B^{*} B=P_{H} i[H, A]^{0} P_{H}$ as defined in the lemma of Sect. II. Then $\left[B^{*} B, A\right]$ is a bounded map from \mathscr{H}_{+2} into \mathscr{H}_{-2}.
3. $G_{z}(\varepsilon): D(A) \rightarrow D(A) \cap D(H)$.

Proof. Let $\Psi \in D(A) \cap D(H), A(\lambda)=A i \lambda(A+i \lambda)^{-1}$ for some sufficiently large $|\lambda|$. Then

$$
\left\|\left\{A(\lambda) e^{-i H t}-e^{-i H t} A(\lambda)\right\} \Psi\right\| \leqq \sup _{\substack{\Phi \in D(H) \\\|\phi\|=1}}\left|\int_{0}^{t}\left(\Phi \mid e^{+i(s-t) H}[H, A(\lambda)] e^{-i s H} \Psi\right) d s\right| .
$$

Since $e^{-i H s}$ leaves $D(H)$, and also $A(\lambda)$ by Proposition II.3, we then have

$$
\left\|\left\{A(\lambda) e^{-i H t}-e^{-i H t} A(\lambda)\right\} \Psi\right\| \leqq|t| \sup _{||s| \leqq|t|} \sup _{\substack{\Phi^{\prime} \in(A, A) \cap D(H) \\\left\|\Phi^{\prime}\right\|=1}}\left|\left(\Phi^{\prime} \mid[H, A(\lambda)] e^{-i s H} \Psi\right)\right| .
$$

By Eq. (II.3) in Propositions II. 4 and II.3, one then sees that

$$
\begin{aligned}
\left\|A e^{-i H t} \Psi\right\| & \leqq \lim _{|\lambda| \rightarrow \infty}\left\|A(\lambda) e^{-i H t} \Psi\right\| \\
& \leqq c|t|\|(H+i) \Psi\|+\|A \Psi\| .
\end{aligned}
$$

It is now enough to use the identity $g(H)=\int_{-\infty}^{+\infty} \hat{g}(t) e^{-i H t} d t$ to see that

$$
g(H): D(A) \cap D(H) \rightarrow D(A) \quad \text { if } \quad|t| \hat{g}(t) \in L^{1}(\mathbf{R}, d t)
$$

and that

$$
\begin{equation*}
\|\{A g(H)-g(H) A\} \Psi\| \leqq c\|(H+i) \Psi\| \int_{-\infty}^{+\infty}|t||\hat{g}(t)| d t \tag{II.9}
\end{equation*}
$$

Let $B^{*} B=P_{H} i[H, A]^{0} P_{H}$. Since $P(\lambda)$ is smooth, its Fourier transform decays rapidly. Hence P_{H} takes $D(A) \cap D(H)$ into $D(A) \cap D(H)$ and so $\left[B^{*} B, A\right]$ in the sense of quadratic forms on $D(A) \cap D(H)$ can be written:

$$
\left[B^{*} B, A\right]=\left[P_{H}, A\right][H, A]^{0} P_{H}+P_{H}\left[[H, A]^{0}, A\right] P_{H}+P_{H}[H, A]^{0}\left[P_{H}, A\right]
$$

By hypothesis (d) and the relation (II.9), the form [$\left.B^{*} B, A\right]$ on $D(A) \cap D(H)$ is bounded as a map from \mathscr{H}_{+2} into \mathscr{H}_{-2} and in particular if

$$
\begin{aligned}
& \Psi \in D(H)\left\|\left[\left(H-z-i \varepsilon B^{*} B\right), A(\lambda)\right] \Psi\right\|_{-2} \\
& \quad \leqq \sup _{\substack{\Phi \in D(A)) D(H) \\
\|\Phi\|_{+2}=1}}\left\{\left|\left(\Phi \mid\left[H-z-i \varepsilon B^{*} B, A\right] i \lambda(A+i \lambda)^{-1} \Psi\right)\right|\right. \\
& \\
& \left.\quad+\left|\left(\Phi \mid A(A+i \lambda)^{-1}\left[H-z-i \varepsilon B^{*} B, A\right] i \lambda(A+i \lambda)^{-1} \Psi\right)\right|\right\} .
\end{aligned}
$$

By Proposition II.3, the operators $\lambda(A+i \lambda)^{-1}$ and $A(A+i \lambda)^{-1}=1-i \lambda(A+i \lambda)^{-1}$ are uniformly bounded from \mathscr{H}_{+2} into \mathscr{H}_{+2} for λ large enough. It follows that $\left[H-z-i \varepsilon B^{*} B, A(\lambda)\right]$ are uniformly bounded (in λ) from \mathscr{H}_{+2} into \mathscr{H}_{-2}. It follows that $G_{z}(\varepsilon)=\left(H-z-i \varepsilon B^{*} B\right)^{-1}$ preserves $D(A)$ and hence:

$$
G_{z}(\varepsilon): D(A) \rightarrow D(A) \cap D(H) .
$$

Acknowledgements. I am grateful to P. Perry for his careful reading of the French version of this work and for his translation, and to B. Simon for encouraging its publication.

References

1. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966
2. Agmon, S.: Ann. Scuola Norm. Sup. Pisa, Ser. 4, 2, 151-218 (1975)
3. Aguilar, J., Combes, J.M.: Commun. Math. Phys. 22, 269-279 (1971) Balslev, E., Combes, J.M.: Commun. Math. Phys. 22, 280-294 (1971)
4. Reed, M., Simon, B.: Methods of modern mathematical physics. Tomes II and III. New York: Academic Press 1979
5. Enss, V.: Commun. Math. Phys. 61, 285 (1978)
6. Simon, B. : Duke Math. J. 46, 119-168 (1979)

Communicated by B. Simon

Received March 19, 1980; in revised form July 21, 1980

