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Lattice Systems with a Continuous Symmetry
II. Decay of Correlations
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Abstract. We consider perturbations of a massless Gaussian lattice field

on Zd, d ̂  3, which preserves the continuous symmetry of the Hamiltonian,

e.g.,

It is known that for all T > 0 the correlation functions in this model do not
decay exponentially. We derive a power law upper bound for all (truncated)
correlation functions. Our method is based on a combination of the log
concavity inequalities of Brascamp and Lieb, reflection positivity and the
Fortuin, Kasteleyn and Ginibre (F.K.G.) inequalities.

I. Introduction

In this paper, we consider the same model of an anharmonic crystal as in [5]
(part I of this series):

-βH= Σ UΦx-Φ/ + τ(Φx-Φ/]
<λ,y>

where <x, j;> indicates that sum is over nearest neighbors in Zd. For T = 0, this
is a massless Gaussian model and it is known that the correlation functions
{φo,φχ} and \(Ve

oφVχφ}\ are not summable over the lattice (where Ve

xφ =
Φχ+e — Φx,eis Si uni t vector).

The question that we try to answer is: what is the decay of the correlations
w h e n T > 0 ?

Using the Brascamp and Lieb inequalities and some refinements of them,
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we obtain suitable bounds on the Fourier transforms of several correlation
functions in terms of the corresponding Gaussian ones (see Theorem 1).

Using the transfer matrix formalism for reflection positive (nearest neighbor)
interactions, this gives a power law upper bound on the decay of these correlation
functions (see Theorem 2). Correlation inequalities, when available, lead to
stronger results (see [15]).

Using ideas of Park [12], Frόhlich and Spencer [10], one shows, as a converse
to Theorem 2 that, {φoφx} and \{Ve

oφVe

xφ}\ are not summable over the lattice
for all T (see Remarks in Sect. IV).

In Theorem 3 we extend the bound of Theorem 2 to a larger class of correlation
functions. This follows from a kind of "domination" by the two-point function,
which uses only reflection positivity.

Finally in Sect. V, we bound all truncated correlation functions in terms of
the two point function, by a suitable modification of the arguments of [11, 14]
based on F.K.G. inequality [6].

II. The Model

Let, φχ,xeZd, be a real random variable. We consider the following Hamiltonian
with periodic boundary conditions on the parallelipiped A (c.f. [5]):

-βH= Σ (Φx~ Φyf + T Σ J{x- y)(φx - φ/ (1)
<.x,y}aΛ x,yeΛ

J(x — y) ^ 0 has finite range D. If D = 1 we call it a nearest neighbor interaction.
For d ^ 3, we let < > denote some limiting state defined on πxφ

n

x

x and obtained
by first adding a mass term m2 ]Γ φ2

χ to (1) and then letting A -> Zd and m->0.
xeΛ

For d — 1,2, the expectation values < > are defined only for products of gradiants
like Ve

xφ = Φx+e — φx. They are obtained by setting φXQ = 0 in (1) for some xoeZd

and letting A -> Zd. See [5] for more details.

Remark. All the results below will be valid for all T in (1). One may consider
also any convex polynomial instead of a quartic for the perturbation. Furthermore,
if the interaction is nearest-neighbor one may replace in Theorems 1, α, b and 2, α, b,
and in other results (φχ — φy)

4 by any polynomial in (φχ — φy) semi-bounded
from below (see [5], Sect. IV).

III. Bounds on the Fourier Transform

We use the shorthand notation: (A;B} = (AB}-(A}(B). We define the
following Fourier transforms:

xeZd

Σ <y%ΦVlΦ>eip

xeZd

Σ<Φ2

0;Φ
2

x>eipx
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S{Q\P) being the Fourier transforms for the harmonic crystal which are explicitly
computable.

Since the series above do not converge absolutely, we only know that the
definitions make sense because of the following Theorem (for more details see
the proof of Theorem 3.1 in [7]).

Theorem 1. For all T and all p φ 0,

a) Sψip) ^ S™ip) ford^3

b) S™{p) g S[2\p) for all d

c) Sψip)^Sf{p) ford^3

d) Sψ g S(

0

4)(p), bounded for all d.

Proof a) is simply the Brascamp-Lieb inequalities [2, 3,4] and b) follows from

a) because S^ip) - 2(1 - cos pJS^ip). c) and d) both follow from Theorem 2.3

of [4]. The proof is based on the application of the Brascamp-Lieb inequalities

to the distribution of the variables ψx = (φχ ± φ'χ)/^fl where the {φ'x} are 'dupli-

cate' independent variables with the same distribution as the {φx}.

Let/be a function on Zd of finite support. Then

KΨ;K >f(χ)f(y)

One first application of the Brascamp-Lieb inequalities gives

<Φ2(f)Φ2(f)> ύ Σcxyf
x,y

„ )- - Thismrresnwhere cxy = < φxφy}τ=0. This corresponds to choosing L = δχyf(x) in Theorem 2.3
of [4]. Using again Brascamp-Lieb, the Fourier transform of (φχφy} is bounded
by S$Xp). So

<Φ2(f);Φ2(f)> ύ ίl/(p)|2^(p)*^(p)^p.
The proof of d) is similar.

Remark. One may replace in c) φ\ by φzφz, and φx by φz+xφz,+x for any two
points z, z'eZd and the results still hold.

IV. Bounds on the Correlation Functions

In this section, we restrict ourselves to nearest-neighbor interactions. As was
noticed in [8,9], the model is then reflection positive with respect to planes
containing the sites (we take periodic boundary conditions). Using this we prove

Theorem 2. There exist a constant c such that, for all xe2.d,

for d = 3
1 ford^A

b) |<V e

0 ^ ' (/>> |^c |x | - 1 fordid.
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Proof. We start with a) for d = 3 the positivity follows from the F.K.G. inequalities
(see Sect. IV).

Define fL(x): by fL(x) - 1 if x = (2z1,0,0), - L ̂  zx S LJL{x) = 0 otherwise,
and write s(x — y) = < φxφy > By the Brascamp-Lieb inequalities [2,3,4],

ς J i = 1
L

where/L(p) = ]Γ e~ ι 2 3 φ l, pχ is the component along the e1 axis. Clearly,

(1 -cos2p 1 ) '

So we have

\r ί \r i \ ^ Λ%Ϊ (1 ~ c o s 2p.L)d
- )0/ L (X)/ L (J;) ^ 4 J ^ F l

(

The integral has three singularities: at pξ = OVξ, and at px = ± π.
Let us consider the singularity at 0 and restrict the integration from — ~π

to -f f π. Setting Lpξ = p'ξ the integral is bounded by

(l/2)πL 1 _ r n ς 9n/ Jdn/

4< i 1 c o s 2 P ^
-(l/2)πL ^ 1 ^

2
because 1 — cos x ;> —~ x2, XG[ — π, π]. In the (worst) case, d = 3, this is less than

71

-(l/2)πL ^1 -(l/2)πL ^2 ^ ^ 3

The integral in p\ is uniformly bounded in L and the one in p'2, p;

3 diverges as
lnL.

The singularities at ± π give a contribution bounded by CL. So,

Σs(x-y)fL(x)fL(y)^CL\nL. (4)

By reflection positivity, each term in (4) is positive. (We could also use F.K.G.
inequalities, see Sect. V, but this would not work for case b)). Moreover, using
the transfer matrix formalism [13]

< ^ 2 x > = < ^ 0 T 2 ^ 0 > (5)

when x is along a coordinate axis, say eλ and T is the transfer matrix associated
with the eι direction. T is known to be self-adjoint with respect to the scalar
product (A, B) = < Θ(A)B > and | | T | | ̂  1. By the spectral theorem, with dμ the
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spectral measure,

367

(6)
- 1

which shows that s(2x) is monotone decreasing in | x | ,x — (x l ; 0,0). Using (6)
one has,

L

and by (4),

Finally,

s(2x) ^ C In L.

v l y=0 ^ 1 I

This proves our Proposition for x along a coordinate axis with even coordinate.
If the coordinate xι is odd, we make a reflection through the plane perpendicular

to the axis e, at coordinate -LJJ . Then we have

In
S c -

If x does not lie on a coordinate axis, we suppose that x1 is the largest coordinate
of x. Then,

1

d
χ.\.

Making the same reflection as before, we obtain our result if we use also

lnx 1

For d ^ 4 the integral (3) is of order L and this finishes the proof of case a).
For case b) we first use reflections to reduce ourselves to the case where both

gradients Ve, Ve' are in the same direction, i.e., e = e. Then, using Theorem 1, b),
one shows that

(7)
ί = 1

To prove the monotonicity in x, along a coordinate axis, we write
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Using the spectral representation (6) we see that for | x | odd | < Ve

oφVe

xφ > | is mono-
tone decreasing in x I. Combining this with (7) we see that for | x | odd

In

If [ x I is even, then making a reflection through -— we get

which finishes case b); for x not on a coordinate axis, we do as in a). Case c) is
similar to a) for d^4.

Remarks, 1. Using a Mermin-Wagner type of argument, one shows [16,17]

that for all Γ:

>^(2+12T<(φo-φ1)
2»-

As noticed by Park [12] and Frδhlich and Spencer [10] this, combined with
Theorem 1 shows that for some constants cί,c2

1 — cosp e ( 1 ) . | 2 1 — cospe

2Σ(i~cosPξ)= τ 1Σ(1~cosPξy
ξ ξ

If we let p -* 0 (for d > 1) parallel to e or perpendicular to it we see that
Sψ(p)\l — eiPβ\2 is not continuous at p = 0. By the Riemann-Lebesgue lemma,
this implies that

ΣK^o^>l a n d Σ\<veoΦve

xφy\
X X

diverge which is, in a sense, a converse to Theorem 2.
2. Of course one would expect a better decay than the one given by Theorem 2.

We could obtain this if instead of summing over a line, we were summing over a
square or a cube. But then we need to know that {φoφx} reaches its minimum
for x in the corners of the cube. However, by using correlation inequalities, one
can show this for Ising and plane rotator models. This was noticed and used in
[15] to yield s{x) g C\x\2~d.

We have the following extension of Theorem 2, which is a simple application
of reflection positivity.

Theorem 3

a) For d^3 let f= Y\φn

x

x where x ^ O i f nx φ 0 and let y = (y, 0,... ,0), y ^ 0.

Then
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b) For all d, letf= f ] (φχ - φyf
xy where x1,yί^0ifnxyφ

z ^ 0; then

z\"1'2.

Proof. This follows immediately from the Schwartz inequality deduced from
reflection positivity [8] and the translation invariance of < >. We also use the
ordinary Schwartz inequality to bound </6*/>1/2 ^ < / 2 > 1 / 2 .

Remark. More generally, Theorem 2 shows that, for reflection positive models,
if (A;τxA} clusters then for any B, (B',τxA} clusters.

V. F.K.G. Inequalities

In [1] it was proven that the F.K.G. inequalities hold whenever

y

which is the case of (1).

We say that a function f({φj) is increasing if f({φx}) ^f{{φ'x}) whenever

φχ ^ φχ for all x.
Tf/and g are increasing, F.K.G. inequalities give

(10)

provided the expectation values are well defined.
Let, for λ ^ 0, σχ λ be defined by

φχ if \φχ\^λ

„ if \4

Given a function n = (nx) from Zd into N of finite support, we let

The following lemma simplifies the argument of [11] because we do not have
to use the gas variable. We drop the index λ in what follows.

Lemma
a) For any two functions n, mfrom 1d into N of finite support,

b) (σχσy)S
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Proof
a) is the statement that

But, since | σ j g 1, Σn ±σn are increasing for all n. Therefore (11) follows by
adding the two F.K.G. inequalities:

(< Σm > = 0 by symmetry here.)
b) follows from F.K.G. because φχ — σχ is increasing and we write

< ΦxΦy > = <(Φχ- Gχ)Φy > + < σχ(Φy ~ °y) > + < G χ° y >

The first two terms are positive (<</> > = <σχ> = 0) which proves b).

Theorem 4. Let d^3. For any α,beN, there exists a constant c{a,b) such that,
for all n,m with \n = a, m| = b.

y

\ yem

UΦ; f

(12)

Ffl?5(z) = (log z ) Ω + ^ 2 z .

Proof. For each factor φx in the expectation value of the l.h.s. of (12) we write
φx = (φχ — σχ) 4- σχ and expand the products over x and y into a sum. There is
one term in that sum of the form < σnσm > — < σn > < σm > that we bound via the

Lemma. All other terms are of the form ( Y\(φx - ^Jlχ\\Φ^y ) with at least
\ λ y I

one nx ^ 0. But the Brascamp-Lieb inequalities tell us that the distribution of
φx is of the form e~aφ2G(φχ) with G log concave and a ̂  0 (for d^ 3). Since
\ΦX —

 σ

x\ S ΦXX(\ΦX\ ̂  λ\ we have (using Schwartz's inequality) that each of
the terms with (φχ — σχ λ) is bounded by (Const) e~λ. We choose

λ= - log/max(φxφyy
\ xen
V yem

and this finishes the proof.
Using Proposition 2, we have

Corollary. Let the interaction be nearest-neighbor. For each k<\ and each α, fee N,
there exists a constant c(/c, α, b) such that for all n, m with \n = a,\m\ = b,
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