
Communications in
Commun. Math. Phys. 78, 117-135 (1980) Mathematical

Physics
© by Springer-Verlag 1980

Low Temperature Expansion
for Continuous-Spin Ising Models*

J. Bricmont1**, J. L. Lebowitz2, and C. E. Pfϊster3***

1 Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
2 Department of Mathematics and Physics, Rutgers University, New Brunswick, NJ 08903, USA
3 Departement de Mathematiques, Ecole Poly technique Federate, 61, Av. de Cour,

CH-1007 Lausanne, Switzerland

Abstract. We consider general ferromagnetic spin systems with finite range
interactions and an even single-spin distribution of compact support on 1R. It is
shown under mild assumptions on the single-spin distribution that a low
temperature expansion, in powers of T, for the free energy and the correlation
functions is asymptotic. We also prove exponential clustering in the pure phases
and analyticity of the free energy and of the correlation functions in the
reciprocal temperature β for Re β large.

I. Introduction

In this paper we develop a low temperature expansion for bounded spins on 1R
distributed with a continuous measure e.g. a uniform distribution on [ — !,+!]
and nearest neighbour interactions Jstsj9 J>0. As a consequence, we obtain
analyticity and exponential clustering of the correlation functions at low tempera-
tures. We also obtain asymptotic series in powers of T for various quantities.

The bounded continuous spin system is somewhat intermediate between the
Ising model and the Field Theory case studied respectively in [1, 2]. In the Ising
model the low temperature expansion is in terms of contours: to each con-
figuration one associates a family of connected contours i.e. lines separating + and
— regions. These are pairwise disconnected and summing over configurations
amounts to considering all possible arrangements of connected contours. In Field
Theory one deals with continuous variables and it is impossible to associate
uniquely configurations and contours. Instead, one first uses a contour expansion
in order to isolate regions of pure phases (separated by contours) where the field
sits in one of the "potential wells". It is then necessary to supplement this contour
expansion by an expansion in the pure phases (away from the contours) which is a
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weak coupling expansion (the cluster expansion) about the Gaussian near the
minimum of the appropriate well.

In the case we shall consider here, e.g. a uniform distribution on [— 1, + 1],
there is no Gaussian around which to perturb in the pure phases. What we do is
first define the contours in the usual way, separating sites where st is positive from

s'
sites where sί is negative. Then we perform a change of variables s^l -- — s

Rep
measures the deviation from the ground state, s = l, imposed by the boundary
conditions. After that, the interaction between the s' variables looks similar to a
high-temperature situation. This permits us to do, for the nearest neighbour pairs
outside the contours, a high-temperature Mayer expansion which provides an
exponential decoupling of distant regions. Once we have that, the estimates are
simple and we can use, for example, the algebraic formalism [3] to obtain the
usual consequences of the expansion.

We state our results for the simplest case in Sect. 2. Section 3 explains the
contour and the high-temperature expansion. Section 4 contains the proof of
Theorem 1 using the algebraic formalism. In Sect. 5 we extend our result to general
finite range ferromagnetic interactions and a large class of single-spin distri-
butions. This gives, using the results of [4] based on the inequalities of [5, 6] a
complete description of the set of periodic Gibbs states at low temperatures for
these systems.

II. The Main Result

We consider for definiteness a two dimensional square lattice (for extensions, see
Sect. V). At each ιΈ2£2 there is a spin variable sf, with the Lebesgue measure on
[—1, +1]. The interaction s s^ , J — 1, is nearest neighbour.

For β^T'1 large enough, this model has (at least) two extremal translation
invariant Gibbs states related by the sf<-> — sf symmetry [7]. These Gibbs states
can be obtained by taking a finite box Λc%2 with +( — ) boundary conditions
(b.c.)s~ +1, ieΛ.

The Gibbs measure for the + b.c. is

dμΛ = Z- 1 exp ίβ Σ Wj + Σ VA Π dst , (1)
ίedΛ ] ieΛ

ZA= exp//? £ Wj+ Σ VAΓK (2)
-1 \ <ΦCΛ iedΛ / ieΛ

<i/> means that ί and) are nearest neighbour, i.e. \\i-j\\ =1

dΛ = {ίeΛ\dist(ί,Λc)=l}

ht=Φ{jφΛ\\\i-j\\ = l}.

A multiplicity function (m.f.) is a function from Zd into N of finite support. We
write, for any m.f. A,

= {ί\A(ί)is odd}.
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We define the correlation functions with + boundary conditions as

+1

-1

One knows (see e.g. [8]) that, for all m.f. A, Iim2 (SA^A exists and defines the

correlation functions Q + (sA) of an extremal translation invariant Gibbs state. For β
large, ρ + (s0)Φθ [7] (spontaneous magnetization) and, by symmetry, we obtain,
with — b.c., a state ρ~ Φρ + .

The following limit also exists and defines (β times) the free energy per unit
volume:

1 ^ ~ (3)Λ^ \A\

Theorem I. I) There exists a complex domain

where ψ(β) and ρ+(sA) are analytic (for all As).
2) ψ(β) — 2β + \ogβ and Q + (sA) (all m.f.) have an asymptotic expansion in

powers of T = /?~1 around T=0.
3) For all m.f. A, B, there exists a constant c(A, B) and for all β large enough

there exists a m(β)>0 such that

0 g ρ + (sAτ\) - ρ + (s > + (SB) 5ί c(A, B) exp (- m(β)\j\)

for alljeZ2 \j\= max \ja\:τj,jeZ2, represents the natural action of the group Z2.
α= 1, 2

One may choose m(β) such that lim -—-=- = 1.y vp; β-+™ log(jS)

Remark. Part 1) together with the correlation inequalities of [5] imply that there
are exactly two extremal translation invariant Gibbs states for this model when

ee [4]).

III. The Expansion

We start with the partition function. Once we have expanded ZA we obtain the
expansion for the free energy and the correlation functions in a standard way
(Sect. 4).

A. The Contour Expansion

We write s^^r., σ.= ± I, ^£[0,1] and

rγ -̂l |* / β γ-1 _L V1 7/1

σ i = ± l -1 \ <ij>c/l ίedΛ

For each term in (4) we draw a unit line perpendicular to the pairs <z/) for
<ι/>n/lφ0 and σiσj= — 1, and we obtain the same sets of lines, indexing the terms
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in (4) as in the usual spin \ Ising model. We decompose these sets of lines into
connected components and we define a contour (in A) as a connected line occurring
in one of the terms in (4). An admissible set of contours Γ — (γl9 ...9γn) is a set of
contours such that y . and yj are disconnected if i φ;. Then, as in the Ising model,
there is a one-to-one correspondence between the terms in (4) and admissible
families of contours (in A). We write

where the sum is over all admissible families of contours (in A),

and

Γ= ί Π
-1 <ϊj>eΓ (ijyφΓ ίeΛ

where <//>eΓ means that <i/> is intersected by a contour in Γ.
For a contour y, let \γ\ be its length :

and let

\r\= Σ W

r = ( y i Y i .

B. The Expansion in the Pure Phases (High Temperature Expansion)

I γ' \We define new variables r\ by ri = 1 — ̂ -̂ ) or r\ = Reβ(l — r ).

For (ijyφΓ, we write

1 j (Rej?)2 Re^β Rej?

so that ZΓ becomes :
Zr=| Π exp(-|8(r(r,+ l)) Π expί-jS

<ίj>eΓ te5yl
σ f = - l

where the integral is over r;e[0, 1], ίeΓ, rj€[0, Reβ], i

l i - H = l and
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For (ijyφΓ, we write

and we expand the product over <ij>^Γ. We obtain a sum over sets X of nearest-
neighbour pairs contained in Γc={(ijyφΓ} :

ZΓ= ΣΦ(Γ,X) Π ί e x p - (7)
i^rux o

with X = {ieΛ|37, <(/>eX} and

H{ Π exp(-)?(r.r.+ l)) fl

( Π WRejJ), (8)
ieX\Γ

where the integral is as in (6).
So

ί exp - i kΛ (9)
o

X can be viewed as a set of Mayer (high-temperature) graphs.
We say that (Γ, X) is connected it any two points in ΓuX can be joined by a

path of nearest-neighbour points in ΓuX. We decompose ΓuX into connected
components and we notice that

a) the sum (9) runs over all admissible families (i.e. pairwise disconnected) of
connected (Γ,X).

b) φ(Γ,X) factorizes over the connected components of (Γ,X).
The term with Γ=X = 6 in (9) is g(β)\Λ\ with

We divide both sides of (9) by Qxp(βcΛ)g(β)lAl and we obtain

= Σ Π<KW, (11)
(Γ,X) i

where the sum is over all admissible families of (Γ,X) and the product is over the
connected components

ι/ Γ v^
Φ( }=

(11) is the expression used for our expansion. Now we state and prove the basic
estimate, which controls the factors φ(Γ,X] in (11).
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Lemma 1. There exist constants c, cr, and K such that for

(13)

Proof. We start by estimating the contribution of the contours in φ(Γ,X) (12).
Since r,>0.

Π
iedA

We also need a lower bound on g(β):

(14)

= exp
o

4ίlmβr\
~ τ>~o exp(-4r)dr

(15)

so that (RQβ)g(β)^ — for βe@, with c t a constant.
<Ί

Then using |XuΓ| ̂  |X| + |Γ| ̂  2(|X| + |Γ|),

^(Γ^JI^^Re^expί-

ί Π exp -1 (16)
ieX

[We have cancelled the factor (Re/?)|x| in the numerator and denominator of
)3 We estimate

expT^Γ^ -1

But,

and

with

L^(r'ί + r') if r;,

Σ ^ ieX
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Hence, taking —— ̂  |/l±c/2^f, we obtain a bound on the integral (16) of the

form

• ί Π( rOdlexp(--^|*i^(const)lχ |^(const)2lχl (17)
\ 3 / 0 ίeX \ 4 /

because c^l, d^4 and X^2\X\. Using (16) and (17), and c(Re/?)2exp(-Re/?)

' for Reβ large, finishes the proof.

IV. Proof of Theorem 1

A. The Algebraic Formalism

We first recall what we need from the algebraic formalism see [3] for details. Let
us call a polymer any connected component of ΓuX and let & be the set of all
possible such polymers contained in any A Q 2ζ2. We write p l 5 p2 ... for the elements
of &. Let 2F be the set of functions from & to N which are zero except on a finite
set. For Pe^ we write

ώ(P) = 0 if P(p) > 1 for some p
(18)

Φ(P)=flΦ(Pi) Π (ί+9(Pι,Pj))
i = l iJ=l

if P(p) = 0 or 1 for all p.
Calling p1? ... ,pn the elements of P for which P(p)= 1, we define </>(p) by (12)

and set

. . ί — 0 if p and p' are disconnected

= l otherwise.

This allows us to rewrite our modified partition function ZΛ as :

ZΛ= Σ Φ(P) (19)
PCΛ

where PC A means P(p) = 0 if p <£ /I.
We next define φτ(P) as the coefficients of the formal power series

, withX p = Y\XP

P

(P\ explicitly,

= Σ —— Σ;Π^(pi)' (2°)

P

where the sum ̂ ' runs over all P^ >-,Pn>
 sucn tnat î + ̂  and Σ Pi = P (tne

i = l

addition being defined pointwise). Thus, formally at least,

Z^exp X ψΓ(P). (21)
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Lemma 2 below gives an estimate on the φτ(P) which justifies (21). To prove
the lemma, we shall use two simple "entropy" estimates. Let i be a point in Z2, then

, (22)

n 2 , (23)

where Intp = (IntΓ)uX and the interior of a contour is the set of sites where
σ{ = — 1 in the configuration where this contour is the unique contour. The interior
of a family of contours is the union of their interiors.

Lemma 2. Let φ(P), φτ(P) be as defined in (18), (20) but with φ(p) any complex
number not necessarily of the form (12). Then

a) φτ(P) = 0 if P = P1+P2 with the property that for each p with P1(p)Φθ, and
each p' with P2(p')φO, p is disconnected from p'.

b) There exists a constant c such that, for all K>28 In2, if \φ(p)\^Gxp( —
then

Σ |0τ(P)|expff|P|)^c,IntP^ (J Intp and \P\=
IntPai \ 4 / P(P)*0

Proof. This is similar to the proof in [3] where contours play the role of polymers.
Part a) is explained in Eq. (4.21) of [3] and part b) is essentially Eq. (4.33) with the
following modifications : one defines

P')l exp |P| + |P'| N(P) + N(P) = m
P p' \ 2 4 /

instead of (4.20) in [3]. N(P) = ̂ P(p). The AP(P') satisfy recursion relations like

(4.25) and, for K large enough, one concludes as in [3] that Σ Im

 < °° uniformly
m=l

P'
in K. Now, φτ(p + P) = Ap(P}- — where p is to be identified with the function

δpp, (see (4.31) in [3]) and therefore

K.
e x p -

ielnt P ielnt p
P 1 / p:

ielnt

- T \P\) Σ lm < °° uniformly in K .

nt p
m=ι

ίeίnt

B. Proof of Theorem i

a) The free Energy. 1) It is clear that Lemma 2 is applicable to φ(p) defined in (12)
for β<Ξ@ because of Lemma 1 \_K may be taken of the order of log (Re/?)]. This
shows that (21) holds and hence we have

log ZΛ = βcΛ + M| log g(β) + Σ ΦT(P) - (24)
PCΛ
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From (24), (15), and Lemma 2, it is clear that — logZΛ is uniformly bounded

on compact subsets of Q). Then since ZΛ is analytic in β, Vitali's theorem implies
that ψ(β) is analytic in β [one may also prove the convergence in Q) directly using
(24) and Lemma 2].

2) Concerning the asymptotic expansion (point 2) we take β real it is clear
that g(β)~l/4β up to an exponentially small error [see (15)]. So we need only

bound the remainder of the asymptotic expansion of \Λ\~l Σ ΦT(P) uniformly in
PCΛ

A. By Lemma 1, we may take K in Lemma 2 of the order of log/? and therefore by
Lemma 2, we can disregard all terms with |P| >4n when considering the expansion
up to order n. Also, since φτ(P) is a sum of products of φ(P) all terms where
P(p)φO for some p = (Γ,X) with ΓΦ0 are exponentially small as T->0 [see (13)].
Thus, it is only necessary to expand φτ(P)'s which are linear combinations of
products of the form fjφ(p) with p = (Q,X):

Φ(P) = Φ(p)/d(β)W = 4 |x| ΓΊ exP - 1 Π exp ( - ̂ dr(
0 <ij>X \ \ P / / ieX

+ exponentially small terms .

/ ίr'r' \ \We do this simply by expanding exp -̂ - — 1 in a series up to the desired order.

By estimates similar to those used in the proof of Lemma 1, one shows that the
remainder is of higher order. We then let, in each term, the integration run from 0
to oo : this produces again an exponentially small error.

b) The Correlation Functions. We expand the numerator and the denominator of
(sAyΛ in the same way as we did the partition function i.e. for the denominator. We
obtain

PCA PC A

where

with

ίP)ί=° ίf P(P)>1 for some
λ '} = σA(Γ) Π ΦA(p) , if P(P] = 0 or 1 for all p

I P

•yeΓ i

-



126 J Bricmont, J. L. Lebowitz, and C. E. Pfister

/ r' \A(i}

where φA(p) is defined as φ(p) in (8) but with factors of f] rf (i) f] 1 — — -1— in
ier iφτ\ Rep/

the integrand of (8)
Reβ / i \A(i) I ARr'\ Aγ<

•*"- ί (l- e * - (26)

Formula (25) was first introduced, for Ising spin ^ systems, in [3].
The difference between φA(P) and φ(P) comes from the fact that the term with

Γ =X = 0 is different in the numerator and in the denominator. Note however that

φA(p) = φ(p) unless Intpnsupp,4Φ0

We also have the analogue of Lemma 1 for φA(P] :

Lemma 3. There exist constants c, c ', and K such that for

1 ml A,
I Hefl \

*'. (28)

We prove Lemma 3 after finishing the proof of Theorem 1.

By Lemma 3, we may define φA(P) which satisfy the same estimates as φτ(P)
(by Lemma 2). Moreover, by (27)

φτ

A(p) = φτ(p) unless Int Pnsupp A Φ 0 (29)

we therefore have

~ I (30)
ieA

and the exponent is bounded by

Σ
P:

IntPnsupp^Φ 0

uniformly in βe@ by Lemma 2.
This, and Vitali's theorem, proves analyticity for Q + (SA). The asymptotic

expansion is obtained in a similar way as for ψ(β).

c) Exponential Clustering. We know from (30) that (sAyΛ and (sByΛ are nonzero,
we may therefore consider the quantity

• -1 = exp / Σ ΦLB(P) ~ ΦT

A(P) - Φl(P) + ΦT(PΪ] ~ 1
<SA>A<SB>A \PCA

The terms in the exponent vanish unless

IntPnsupp,4Φ0 and IntPnsupp#φ0.
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IK \
Therefore, by Lemma 2, the exponent is of order exp — — dist (A, E) 1. Using

\ex — l|^|x|e'x' proves the exponential cluster property with m(/?)>0.

In order to show that lim - - -= 1 we use the F.K.G. inequalities as in [10] to
/^ oo log/?

reduce ourselves to the case of the two point correlation function, ρ + (s0si)
— (ρ+(s0))2. Since we take as metric |z| = max |zα|, it is enough by reflection positivity

α

to consider ί along one coordinate axis. Then we can compute the behaviour of
m(β) as β-»oo from (31) with SA = SO and sB = st; we look at the largest term in the
exponent of (31) and we find that it corresponds to a graph connecting 0 and i with
|i| nearest-neighbour pairs. This graph is of order T1'1. Using the estimates on φτ

that we have, we obtain a bound of the form T^c1*1 for the exponent in (31) and this
proves the behaviour of m(β) as β->oo.

Proof of Lemma 3. The proof is very similar to the proof of Lemma 1 except that
gt(β) in the denominator of φA(P) is more difficult to bound from below. We write
(26) as

RejB / „/ \ A ( i )

= 1-τ(Re 0)0,08) = j 1-τ^ exp(-4rί)
Re/?; ^ "'""'Λ R e / ? '

R e / ! / „/ \A(i}_ Ύ / rj V
~ J \ ^Re^j

A(i)

The second term is estimated by \eix—l\^ \x\e^ and is smaller than the first for

^ c' small enough. The first term goes to zero as A(ί) becomes large but after
]\.Q p

estim

we are left with a ratio of the form [see the l.h.s. of (17)]

estimating the product [~J exp 1J2 — 1 1 in the numerator as in Lemma 1,
(ReP)

Reίex

ί C \
We bound r'.dlexp — -jrj] ^ const exp ( — δrf^) for some <5>0 and we change

δrf.
variables in the numerator r" = —L. (32) is then bounded by

A H \A(i)
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The numerator in this last expression has the same form as the denominator
with (δ Re β/4) instead of Re β. Since the integral increases with Re β, the ratio is
bounded by one.

Remarks. 1. If we define m(β), the "true" exponential decay rate as

m(β) = - lim 1 log (ρ + (soS|) - ρ + (s0)
2) (33)

|i|-κ» \l\

with i along a coordinate axis, then one can use an argument similar to the one

used in [11] for the Ising model to show l im- - ̂ -=1. The argument is as
0->oologp

follows :
By reflection positivity, there exists a self adjoint transfer matrix and we can

write [11],

Then Holder's inequality shows that (33) exists and moreover that

0 g ρ + ( Vi) - (Q + M2 ̂  exp ( - m(β)\ί\) . (34)

From the proof of the Theorem, we know that lim - - - ^1. To get an upper
0-»oo logp

bound on m(β) it is enough, because of (34), to analyse the limit of ρ + (s0sί)
— (ρ + (s0))

2 as β-*co for fixed |i|. Since the largest contribution to that quantity is
of order T |ί! (see the proof of Theorem 1) we obtain the exact asymptotic
behaviour of m(β) as β-»oo.

It is worthwhile noting that in the Ising model, m(β) is of the order of β at low
temperature [11], because only contours (~exp ( — β)) contribute to the expansion
and that in the field theory case the mass gap tends to a finite value [2] (the
curvature of the potential at the minimum of the well) while in this case m(β)
behave "like" it would in the high-temperature limit, w(/?)~|log/?| as /?-»0.

2. One may ask : does our asymptotic expansion completely determine the free
energy and the correlation functions of our model at some fixed T? First, it is clear
that the coefficients of our expansion depend only on the behaviour of the single-
spin distribution around + 1 and — 1. That is, if instead of the Lebesgue measure
we had a single-spin distribution χa(si)dsi where χa is the characteristic function of
[— 1, — l + α]u[l — a, 1] for any β^l, we would obtain the same asymptotic
expansions. However, we do not know whether for some value of a (α = 0?) the free
energy and the correlation functions would be Borel summable.

V. General Ferromagnetic Systems

In this section we extend Theorem 1 to arbitrary finite range ferromagnetic
interactions on a lattice TLά and a large class of single-spin distributions. We state
our results for the free energy only, but in some cases the correlation functions can
also be treated (see the remarks).
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The Hamiltonian, in the notation used before, is

-HΛ=ΣJ(A)sAnλ, (35)
A

where the sum is over all multiplicity functions and

(AnΛ)(ί) = A(ϊ) if ieA

= 0 if iφA.

J is a real-valued function defined on m.f. which is translation invariant.
) = J(τίA)\ ferromagnetic, J(^4)^0; and with a finite fundamental family:

supp J = (A\J(A) Φ 0} contains a finite subset ̂ 0 such that every element of supp J
is the translate of exactly one element of ̂ 2. The Hamiltonian (35) corresponds to
+ b.c.

We put a somewhat technical restriction on the even single-spin distribution
v(si) which insures that it does not give too little weight to the neighbourhood of
the ground states -f 1 and — 1 : either

dv(s)
or there exist 77 >0, n, α<oo, foΦθ such that in [1, 1— w], — - — =/(s) exists and

as
satisfies

6S(Γ^S». (36)

Defining the free energy ψ(β) as in (3) we have

Theorem 2. For each H given by (34) and each v satisfying (36), there exists a
complex domain

such that ψ(β) is analytic in &.

dv
Moreover, if we assume that/(s)= — exists in a neighbourhood of 1, and has

as
an asymptotic expansion in powers of (1 — s) for which n is the order of the first
non-zero coefficient, then

ψ(β)-β Σ J(A) + (n+l)logβ
Ae@0

has an asymptotic expansion in powers of T.

Remarks. 1. In the case where v({l}) = v({ — 1})ΦO and is isolated from the rest of

the support of v, ψ(β) — βΣ J(A) ^s exponentially small as /?-> oo, as in the spin \
Ae@Q

Ising model.
2. Theorem 2 combined with the theorem of [4] gives the corollary of [4],

which leads to a description of all phases corresponding to H and v, for β large
enough.
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3. In the case where the system has the decomposition property [12] one may
extend the analyticity results to the correlation functions (in some neighbourhood
of the real axis for Re β large) and also obtain exponential decay of the correlation
functions as in Theorem 1.

4. Theorem 2 can be extended to a somewhat larger class of single-spin
/ c\

distributions requiring only that v([l — <5, l])^exp — — , all δ<δ0, for some α<|

and c< oo. The proof uses a contour expansion where [— 1, + 1] is split into three
regions (instead of two) which moreover are chosen in a β dependent way : as β
increases, one shrinks the neighbourhoods of the ground states -f- 1 and — 1 where
the spins are outside of the contours and where the high-temperature expansion is
made.

Proof of Theorem 2. a) The Contour Expansion. From the proof of Theorem 1, we
see that it is enough to be able to write a formula like (1 1) for the partition function
and to have on each term an estimate like Lemma 1, together with a entropy
estimate on the number of connected "polymers".

We write st = σfi9 with σi = ± 1, r-e [0, 1] and SB = σsrB where B = {ί\B(ί) is odd}.
Then

ίF({Sί})Γμφ;)= Σ SFfafMΠdW, (37)
ie/1 σi = ± 1 ΐeΛ

where v(r;) = v(ri)~2v({0}) We apply (37) to the partition function

ri>zΛtt. (38)
ieA

r = {rf}ίeyl; and ZΛ r is the partition function on an Ising spin % model with

interactions Jr(B) = £ J(A)rAΓίA.

/=*

We start by expanding ZΛr in contours in the usual way [12] : we define the
contour of a configuration σf as the set of B with B = A for some Ae supp J where
σB= — 1. Since our lattice is 2£d, the map between configurations and contours is
injective [13] and the sum over σt= + 1, ieΛ, is equivalent to a sum over all
possible contours in Λ. We deal first with the case where the Ising system has the
decomposition property [12]. One says that a contour is N-connected if any two
elements can be joined by a sequence of elements each of which is a distance less
than N from the next one. The decomposition property means that there exists a N
such that the set of contours is in one-to-one correspondence with the set of
admissible (i.e. pairwise ΛΓ-disconnected) families of AΓ-connected contours. Then
we may write :
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where the sum is over all such families and

ieA BeΓ \ A=B / B Φ Γ \ A=B

= exp ίβ Σ J(A)\ J Π dv^i) Π exp ί — β^
\ ,Λ:±* ίeΛ BeΓ \ A"

.. , Σ^)(^n^-l)V (39)
β^Γ \ A = B I

r'
b) The Mayer Graphs. Now we introduce the variables r't, rt = l 1-~. We define

Rep

yA^y rA — l=yA— ——- Σ r/i^(0 and, by AφΓ we mean AφΓ. Then
Rep j

Πexp/jβ Σ J(A)(rAnA-i)\
BέΓ A:

AφΓ

with

ci~ Σ ^(^M(0> if

then

Then we expand the product over AφΓ into Mayer graphs. This expansion is
similar to the one encountered in the proof of Theorem 1, except that the graphs
are made with more general bonds than nearest-neighbour ones. We write then

r,x

where φ(Γ9X) factorizes over connected pieces ofΓvX = {i€Λ\3BeΓvX,BBi}. We
define φ(Γ,X) by dividing φ(Γ,X) by the term with Γ=X = Θ i.e.

(r;.), (40)

where vβ(r'i) = v 1 -- ^ is the measure v(r .) with r . expressed as a function of rj.

This defines

cj Estimates. We have to obtain for φ(Γ,X) estimates similar to Lemma 1. The
part coming from the contours is the same because r^nyl + l^l. This gives an

exponentially small contribution exp — /Re β min J(^4)|Γ|V The denominator (40) is
I A I

bounded from below by (Re β) n using (36) as we shall see in the proof of Lemma 4
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below. For the Mayer graphs, we have to estimate the ratio

(41)
0 ieX AeX \ ^c P ieX

divided by
β I βr Γ'\ \\X\

exp _ ^_O_L dVβft) . (42)

For the numerator we use

|exp(z)-l|^|z|exp|z| (43)

with z = βJ(A)yAnΛ. Since r.^1,

On the other hand,

is positive: it is zero if all rj = 0 and its derivative with respect to any rj is positive.
So,

(44)
A

Choose d small enough so that

Re

for some k>0 and all Aeί%Q. Then (44) gives

(45)
\AeX ] \ieA

with

(46)
AeX

Inserting (43), (45), (46) in (41) gives a bound on (41):

I Π^ΠlM^J^Jexp/- _
0 ieX AeX \ ieX

const
Now, \βJ(A)yAnΛ is bounded by a sum of terms of the form t r'B with

So each term will give a contribution of the order (Re/?)~1, and the ratio of (41)
and (42) will be bounded by (KRe/?)"1*1 for some K if we prove the following
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Lemma 4. For β in 3)

^ const (fc, c0, v, B(i)).
Rεβ

The proof of Lemma 4 is at the end of this section.

Since J*0 is finite, there are only finitely many values of B(i) which may occur
and, for a given interaction, our bounds on \φ(Γ,X)\ are uniform, for βe&.

We may replace the entropy estimates (22), (23) used in the proof of Lemma 2
and Theorem 1 by more general ones which hold for general ferromagnetic
interactions and which are essentially in [12, Proposition 2.5].

Then, to prove analyticity of the free energy we apply the same procedure as in
Theorem 1 : we define φτ(Γ,X) and use Lemma 2 whose proof only depends on
entropy estimates and the estimates on \φ(Γ9X)\ that we just derived. For the
asymptotic expansion we proceed as follows : in all the φτ(Γ,X) we keep only the
integration from 0 to η Re β and neglect an exponentially small term. Then we

/ r\
expand / 1 — -M as powers of T, which is equivalent to the expansion of f(s)

\ β/
around s = 1.

d) Finally, let us consider the case where the system does not possess the
decomposition property then the contour expansion is somewhat more difficult :
we cannot write directly the sum analogous to (11) as a sum over all admissible
families of connected objects and this is an essential step in order to apply the
algebraic formalism. Indeed, unless we have a sum over connected objects, we do
not have the entropy estimates that are used in the algebraic formalism. We have
to use the theory of [12] and in particular Eq. (4.6) of [12], which reduces general
interactions to ones with the decomposition property. Let J' be an interaction for a
spin I Ising system without the decomposition property. Then there exists a set D

such that, for all B with J;(B)ΦO, σB = σDC = f] f| σi+j for some set C and if we
ieD jeC

define J(C} = J'(DC) then J has the decomposition property. Moreover the
partition functions for the two systems, with free b.c. (denoted by the subscript 0)
i.e. restricting the sum in (35) to AQΛ, satisfy:

where

Λf = \jΛ + i. (48)
iεD

To apply this, we take regions Λ' (instead of Λ) of the form (48) and use (47) in
(38)
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where Z'A, corresponds to our original interaction, Z'A r is a spin \ partition

function and ZΛτ also, but corresponds to the interaction J(C)= £ J(A}rA

F(Λ, A) = 2^1 - I

comes from the change of b.c. from free to + . F(A, A'} is bounded from above and
below by exp0(|cM|) and does not contribute to ψ(β) in the thermodynamic limit.

So, all we have to do is bound ——log J J~J dv(ri)ZA r uniformly in A and uniformly
|Λ I ieΛ'

on compact subsets of 3). But for this we can expand ZAr in contours in A (for the
reduced system i.e. with the decomposition property) and then do the Mayer
expansion in A D A. The rest of the proof is as before.

Proof of Lemma 4. For the denominator, we write

and we bound

expl -,Im/* , <\Imβ\( ,
= ~~teβ(C<r'

\lmβ\

We bound the denominator from below by

For ^ c' sufficiently small the second term will be less than say |, if we show

that the factor multiplying is finite. But this follows from the argument given

below which bounds
Reβ

Reβ

J ί/vA(r;
0

(49)

by a constant.
In order to do this, we restrict the integration in the denominator to [0, η Re/?]

where η comes from (36) and use the lower bounds in (36). For the numerator, we
split the integration into [0,7? Reβ] and [η Re/?, Reβ] and in the first integral we
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use the upper bound in (36). We obtain :

ηReβ

" f (rί

8Γ" ί (r;
o

Re/?

ηReβ
~n f ί i

J v ί
0

The first term is clearly uniformly bounded in Reβ n is fixed, depending on v,

supβ(z') depends only on the interaction].
1 \

For the second term, the numerator can be bounded by
/ k \

(const) exp —-(R.eβ)η\ and the denominator does not go to zero faster than

(Re/?)~M. This proves the Lemma because in the case where v({l})Φθ, the
denominator does not even go to zero as Re /?—>oo and the bound is trivial.
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