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Application of Dobrushin's Uniqueness Theorem to
TV-Vector Models

Steven L. Levin*
Department of Physics, Princeton University, Princeton, NJ 08544 USA

Abstract. We apply Dobrushin's uniqueness theorem to TV-Vector models
to derive an upper bound of the critical temperature for unique equilibrium.
In the case of isotropic ferromagnetic pair interactions this upper bound
is the mean field critical temperature multiplied by a numerical factor.

1. Introduction

Recently, Driessler, Landau and Perez [1], with subsequent improvement by
Simon [2], have established that N-Vector models with isotropic ferromagnetic
pair interactions do not exhibit spontaneous magnetization for temperatures
greater than the mean field critical temperature. In this paper we consider a
related problem: to establish an upper bound for the critical temperature above
which N-Vector models, with general interactions, exhibit a unique equilibrium
state. Applying Dobrushin's uniqueness theorem [3] we derive an upper bound
which, for isotropic ferromagnetic pair interactions, is the mean field critical

temperature multiplied by a numerical factor ofv/5. For N > 5 this result improves

a previous estimate of Simon [4] by a factor of^/5/N.

2. Statement of Main Result

We consider the lattice model on Zv with single spin space SN~1,N^.2. The
configuration space of the lattice is the space of all functions σ :/v -» SN~ \ denoted
by (SN~1Y'V. (5fjv~1)zv is a topological space with product topology inherited
from S*"1. For σe(SN~lfv, σa will denote the value of σ at lattice site α, and
σl

a the Ith component of σa (with respect to the natural basis{n 1 5ή 2,... ,nN} of
(RjV). The a priori measure μ0 is the invariant probability measure on SN~l.

To simplify the notation we presently consider only two-body and one-body
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interactions, of the form

N

Σ 4V>" and Σ^X>resPectiveIy,
i ,k=l,2, ,N i=l

where J|;k

b} and \ίa are real numbers. The general case is noted later (Remark 3.6).
Form the N x N matrix ( J[a b}) with ίkth entry

(4AS4V (2.1)

Viewing (J{α6j) as an operator on RN (with Euclidean norm), denote its operator
norm by |(J{α>fc))||op. Let

3 sup Σ K - l o (12)

The main result of this paper is contained in the following theorem.

Theorem 1. For temperatures T > T£, the N -Vector models defined above exhibit
at most one equilibrium state1.

Remark 2.1. For N > 5 this result improves a previous estimate of Simon [4]

by a factor oϊ^/5/N.

Remark 2.2. In the isotropic ferromagnetic case, i.e.

( W = W1 (2-3)

with J(a b} a non-negative real number, T£ is the mean field critical temperature

multiplied byλ/5.

Remark 2.3. It has been known for some time, from techniques different than
those employed in this paper, that the mean field temperature is an upper bound
of the critical temperature for unique equilibrium for the spin- 1/2 Ising model
(1-Vector model). The most general formulation of this result appears in [5].

3. Proof of Theorem 1

Let σe(SN' YV and αeZv. Define h«yj εUN by

W- Σ Σ4V" + ̂  (3-1)
beZΛία} fc=l

We denote the conditional Gibbs measure on SN~ * at site a, with external boundary
condition σ Zv\{Λ}, by μα( |σ). Observe we may write it as

1), (3.2)

"where Zh»,a= J exp(h«/ x)dμ0(x).

1 We assume T is finite.
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Definition. For two Borel probability measures μ, v on SN~ 1 define the Vaserstein
distance V(μ, v) between μ and v by

7(μ,v) = sup |μ(/)-v(/)|, (3.3)
I l / H z ^ i

the supremum being taken over all functions/, defined on S^"1, which have
Lipschitz norm 1, i.e.

sup -1. (3-4,

where ||2 denotes Euclidean norm on
For an ordered pair of lattice sites (a, b) form the quantity

Dab 5 sup σ ° = *' off {*} and σt + < . (3.5)

The proof of Theorem 1 is an application of Dobrushin's uniqueness theorem
for TV-Vector models.

Theorem 2. (Dobrushin's uniqueness theorem for N- Vector models). //
sup £ Dab < 1, ί/2£ N -Vector models defined above exhibit at most one equili-

brium state.

Remark 3.1. Theorem 2 is a special case of a uniqueness theorem by Dobrushin
[3]. We also remark the equivalence of the Vaserstein distance referred in [3]
to (3.3) is noted, for example, by Vershik [6] and also Rubinstein [7]. A more
general discussion is given in [13].

A direct proof of Theorem 2 is provided by slightly modifying an argument
of Gross, used to prove another special form of Dobrushin's uniqueness theorem
(see proof of Theorem 1 in [8] ). Referring directly to his paper, one makes the
following redefinitions

Λ * Ξ A * > for

and for /

δa(f) = sup " : σ = σ' off {a} and σ a ± . (3.7)
I \\σa~σa\\2 J

With these modified definitions, his argument can be applied to prove Theorem 2.
To apply Theorem 2, 1 use the following estimate.

Theorem3. For h, h'eRN, let μh,μh, be probability measures on SN~l given by

= ^reh'xdμ0(x) and dμh,(x) = — eh'"*dμQ(xl where Zh= J eh'xdμ0(x) and

Zh, Ξ J eh' *dμ0(x). Then,

N



68 S. L. Levin

We first give the proof of Theorem 1, followed by a proof of Theorem 3.

Proof of Theorem 1. For the Vaserstein distance appearing in (3.5) we obtain
from Theorem 3, (3.1) and (3.2)

V(μ«( \a), μT|σ')) \\ h- - h-' ||2 =

11 ( < » , « ) LpK-'X (3.9)
Combining (3.9) with (3.5) gives

Theorem 1 now follows from (3.10) and Theorem 2.
To prove Theorem 3, we essentially write the Vaserstein distance as the

variation of an expectation along an appropriate path in /z-space. We use two
lemmas to control separately variation parallel to the "magnetic field", and
perpendicular to the "magnetic field", respectively, and then combine these
two cases via geometric considerations to control a general variation.

Lemma 3.2. For heRN, let μh be a probability measure on SN~^ given by

dμh(x)^±-eh *dμQ(x), (3.11)
zh

where Zh= j* eh'*dμQ(x).

Also, let^feC(SN'l}:\\ f \\L = 1, and let eeS*-1 :e Ih. Then,

. (3.12)

Proof. There exists a rotation transforming {n1,62,...,ή j v} into an O.N. basis2

(e1?e2, ...,eN} with e^e. Denote x e. by xr Observing that μh is invariant
under the operation

\X j , ^2 ι ' •> XN/ * V -̂  i ? ̂ 2 ' ' ' ' ' ^N' '

we have

= 2^hLxι(f(χι •> X2 ' ' **) -/( ~ xι ' X2 ' ' xyv))l (3 13)

Thus, from (3.13),

(3.14)

2 In this paper, the symbols "_L", "||>5 and "O.N." will denote, respectively, "perpendicular to",
"parallel to" and "orthonormal".
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The last inequality uses the fact that || / ||L = 1 and Euclidean distance is invariant
under rotations.

To conclude the proof we use (3.14) and note that the inequality

has been established by Dyson, Lieb and Simon (see [9], Theorem D.2).

Lemma 3.3. Let the measure μh and the function f be given as in Lemma 3. 2. Let
ee5 ] V " 1 :e | |hαnJe h>0.
Then, with < x e >h = μh(x e),

. (3.16)

Proof. Again we note there exists a rotation transforming {ή1 ?ή2, ... ,ήN} into
O.N. basis {e 1 ?e 2,. . . ,e^} with e t = e. Denote x e. by xr Let (θί , Θ 2 , ... ,ΘN_1)
be the spherical coordinates for (xt ,x 2, ... ,xN)eSN~l with x1=cosθί, etc.
Write

,θ^...,θN_l). (3.17)

Now

Zh= J eh<x^μ0(x)- const Jί/ω(^ 2 ,θ 3 , . . . ,θ 7 V _ 1 ) jexp( I h | | 2 cos ^^sin^-^^θj
S N-1 0

= ωZi1), where Γ ω = Jdω(02, Θ 3, ... ,6^,^

Ξ (const) Jexp( || h | | 2 cos θ^sin"-^^. (3.18)
o

μh[(x έ-<χ e>h)/]

0

where

ί (X 1-<x 1> h)/(x)exp(| |h | 2x 1) ί//i 0(x) )from(3.18)

^}sin^-2θ 1^ 1(cosθ 1-<x 1>h)exp(| |h| |2cosθ 1)/(cosθ 1),

Thus,
μh[(x e - <x e>h)/] = Mh[(x, - <x, ̂ /(x,)]. (3.19)

For x 1 ,x /

1 e[— 1, 1] and x\ ^0 we have

\f(xJ-J(x\)\^\\f(θ\,θ2,...,θN_{}-f(θ^θ2,...,θN_λ)\dω. (3.20)

Invoking the invariance of Euclidean distance under rotation, and simple geometric
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considerations we obtain

Thus, from (3.20) and (3.21),

Now

and thus, from (3.19), (3.22) and (3.23) [note <x, >h ̂  0]

To conclude the proof we establish the following proposition.

Proposition 3.4.

v

/l-<x1"X ~ N '

To verify the proposition we use the elementary inequality

1

to obtain

We verify the inequality

(3.21)

(3.22)

(3-24)

as follows:
Dyson, Lieb and Simon have proven the identity (see [9], eqn. (D4))

/ . . \ \2~l 1 / / . . \ \2 \™ • * • / / _ . \

Explicit calculation shows

(3.25)

(3.26)

(3.27)

(3'28)

(3.29)

(3.30)

yv N
where IN/2 , lNI2_ ί are modified Bessel functions of order — - , — - 1, respectively.
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Combining (3.29) and (3.30) with some algebra shows (3.28) is equivalent
to the inequality

F(| |h | | 2)^0, (3.31)

where

Using the power series for the product of two Bessel functions [10] we write
F( || h || 2) as a power series in || h || 2 :

F( | |h | 2 )= Σar(N)(\\h\\2^
+N-2 (3.32)

where

ίΉ)Jr!Γ(r + N-l )
L V z / J

(N - l)(2r + N-1)

It is simple to verify

ar(N)^0; r = 0,l,2,... (3.33)

Relations (3.32) and (3.33) establish (3.31), which, combined with (3.27) proves
the proposition and hence, by (3.24), the lemma.

Proof of Theorem 3. We have

,μh,)Ξ sup |μh(/)-μh,(/)|. (3.34)

For ίe[0, 1] write

h(ί)-h + (h'-h)ί. (3.35)

Then, from (3.35)

(3-36)
o ai

It is a straightforward calculation to verify

^[/W/)] = II h/ - h ll2Nol> έ - <χ έ>h,t,)/] έ = \\h'~-l\ (137)

Combining (3.36) with (3.37) implies

;ce5w-1}. (3.38)
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We decompose c as

€ = € „ + € , _ , (3.39)

where c,, || g and c± _L g. Using (3.39) and the fact

<x c1>g = 0 (3.40)

we obtain

μj_(x c - <x c>,)/] = || c,, H^O e,, - <x c,, >,)/]

+ IKIWMJ/]> (3.41)

where

I l c ι ι l l 2 I l c ι l l 2
Thus, from (3.41) we have

/ίg[(x c-<x c>g)/]|^|c | | | |2 |μ8[(x c | | -<x c | |>g)/]|

(3.42)

Lemmas 3.2, 3.3 and (3.42) imply

= 1). (3.43)
IV " 1\

Combining the identity

with (3.43) gives

Combining (3.34), (3.38) and (3.45) gives (3.8), concluding the proof of Theorem 3.

Remark 3.5. Let d(v) be a semi-metric on Zv.
Define

/ \ /ς
(3.46)

Parallel to the discussion of Gross (see proof of Theorem 1 in [8]), one can prove
for temperatures T > T^, the truncated spin-spin correlation functions for
N-Vector models decay exponentially. More explicitly, if μ is the equilibrium
state (unique by Theorem 1 since T£ > T£) then

Iμ(σ i

a σ k

b ) - μ(σi

a)μ(σk

b)\ ^ Άe~d^b\ (3.47)

where η is a number independent of α, b.

Remark 3.6. Theorem 1 may be generalized to include many-body interactions
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of the form

Σ 4JI>!r> (3-48)
{ia=l,2, ,N;aeX} aeX

where X is a finite subset of Zv, and J{^a} are real numbers. One again applies
Theorems 2 and 3. The only relevant quantity which depends on the explicit
form of the interactions is || h^7 - h^' ||2. Leaving the details to the reader one
proves for temperatures

T> T* = I sup Σ (\ X \ — l)/x } -—, (3.49)

the N-Vector models exhibit at most one equilibrium state, where

/χ = sup I Σ J{χa} Y[ c
{σaeSN-l;aeX}\ {ia= 1,2, ,N;aeX} aeX

and \X\ = number of elements of X.

Remark 3.7. The result of Driessler, et. al. [1,2] mentioned in the introduction
suggests the following conjecture: For N-Vector models with general interactions,
the "mean field" critical temperature is an upper bound of the critical temperature

for unique equilibrium, i.e. the numerical factor of ̂ /5 appearing in Theorem 1
can be replaced by 1. In particular, it follows from the proof of Theorem 1 that
the conjecture is true if one shows

sup |μg[(x c-<x c> )/]|

attains its maximum value at g = 0.
The idea of computing, for certain classical lattice systems, an appropriate

Vaserstein distance in Dobrushin's uniqueness theorem to derive the "mean
field" temperature as an upper bound of the critical temperature for unique
equilibrium, originates from the work of Cassandro, et al. [11]. Estimating the
Vaserstein distance between certain probability measures on the real line (with
absolute value norm3), they proved the "mean field" temperature is an upper
bound of the critical temperature for lattice models with general one-component
spins interacting pairwise.

3 Using the formula of Vallender [12] for the Vaserstein distance between two Borel probability
measures on IR 1, they derive the basic estimate

K(μΛ, μ,,,) ^ 1 / 7 - h' sup μg\_(χ - <*>/],
^K 1

where

/i, Λ '6 R l μh = ehxdμ0(x)/ J Λ/μ0(x), μh, = eh'xdμ0(x)/ j e*'xdμ0(x)
(R1 R 1

and μ0 is an a priori probability measure on R1 with appropriate fall off at ± GO. We note that both
their estimate and the Vallender formula they use to derive it can be easily proven by exploiting the
dual "Lipschitz" definition of the Vaserstein distance and the method of the present paper.
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