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Abstract. We consider a nonlinear, elliptic, free-boundary problem involving
an initially unknown set 4 that represents, for example, the cross-section of a
steady vortex ring or of a confined plasma in equilibrium. The solutions are
characterized by a variational principle which allows us to describe their
behaviour under a limiting process such that the diameter of 4 tends to zero,
while the solutions degenerate to the solution of a related linear problem. This
limiting solution is the sum of the Green function of the linear operator and of
a smooth function satisfying the boundary conditions. Mathematically speak-
ing, this limiting process, that we call “nonlinear desingularization”, is a novel
kind of bifurcation phenomenon since the nonlinear effect here involves
smoothing the singularity of the associated linear problem.

“Nonlinear desingularization” is an interesting, hitherto little studied phenomenon
in nonlinear partial differential equations. By nonlinear desingularization we mean
that a linear boundary-value problem, whose solution possesses one or more
isolated singularities, is a degenerate form of a family of nonlinear problems whose
solutions are smooth and, moreover, converge to the solution of the linear system
upon degeneration. This phenomenon occurs, for example, in the study of vortex
motion in ideal fluids; there a circular vortex filament is used to approximate a
steady vortex ring of small cross-section. The Stokes stream function of the
filament is the Green function of an elliptic operator, and hence has an isolated
singularity, while the Stokes stream function for the vortex ring of small cross-
section satisfies a non-linear partial differential equation, and is smooth. In this
paper we study this situation from a global point of view that is independent of the
elaborate singular-perturbation techniques often used for such problems.
Nonlinear desingularization arises in problems of theoretical physics other
than the classical problem mentioned above. For example, it occurs in the onset of
flux penetration, as determined by the Ginzberg-Landau theory, in supercon-
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ductors of type II (see [1]). Adler [2] has discussed it in connection with new
classes of static, Euclidean, SU(2) Yang-Mills fields (monopoles) that are not
spherically symmetric and have unit Pontrjagin index. We hope to consider these
applications in a later paper.

1. Introduction

The basic ideas of this paper can be illustrated by means of a relatively simple
example in one dimension. Consider the problem of finding simultaneously a
function U and an open set AC(0, 1) such that

U = A in A4, (1.1a)

>0 in  (0,1\4, (1.1b)
Ul,,=0, U, continuous on 04, (1.1c,d)
U0)=—c, Ul)=-1-c, (1.1e)

where 4 and ¢ are given (strictly) positive parameters, and U, =dU/dx. Note that
(1.1a) and (1.1¢c) imply that U(x)>0in A. We can interpret y = U(x) as the equation
of a (static) string subject to an upward loading A (force/length) that is applied only
at points where U(x) >0, the ends of the string being fixed at the points (0, —c) and
(1,—1—c).

As it happens, (1.1) can be solved explicitly, but in this it is exceptional, and we
first ask : is there a linear problem that yields approximations to solutions (U, 4) of
(1.1)? The answer is Yes, but only for a limiting situation as A— co.

Assume that the set A tends to a point, say q, as the “loading” A— co ; then the
relevant linear problem is

—V.,.=hé(x—a) in (0,1), }

V0)=—c, V()=-1-c, (1.2)

where 6 denotes the Dirac distribution; the constants 4 and a are still to be
determined. The solution is

V(x)= {

—c+(h—ha—1)x, 0<x=Za,

—1—c+(ha+1)(1—x), a=x=Z1. (1.3)

The assumption A—{a} means that, in the limit, max V(x)=V(a)=0, which
determines h(a). In this particular case, the value a can then be determined from

1
the condition that it minimizes the elastic energy [ VZ2dx of the string.
0

Accordingly,
_ c+a g c
T al—a)’ P ES

Equation (1.3) can be written in a form that extends to other problems:
V(x)=hG(x,a)—q(x), qx)=c+x, (1.5)

where G is the Green function of the Dirichlet problem for the operator —d?/dx?,
and —q is the solution of —g,, =0 that satisfies the boundary conditions.

(1.4)
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How can we find the precise relationship between the solutions of a nonlinear
problem like (1.1) and the solution of a linear model like (1.2)? Two conceivable
ways are (a) to seek a solution of the full problem by adding small perturbations to
the solution of the linear problem, (b) to characterize and bound the solutions of
the nonlinear problem globally, and then to analyze their behaviour as A— 0. In
this paper we adopt the second method, which is in accord with our ideas on
bifurcation in [4], there called the “method of nonlinear descent”. For the partial
differential equations to be considered, we shall use an isoperimetric variational
principle for functions in a Sobolev space. However, for the simple problem above,
we can relate (1.5) to the explicit solutions of (1.1), which we now describe.

Since U, <01in A4, the set A4 is a single subinterval of (0, 1), and we let 4 =(a, b).
First we solve separately in the intervals [0, a), (a,b), and (b, 1]; then we impose
continuity of U and U, at x=a,b. It turns out that, for prescribed A, there is no
solution if A<A,=8(2c+1), and one solution if A=4,. For 1> 4, there are two
solutions U, and U, as in Fig. 1, with

l 1/2
4,0, = ——— 1+ [(1="22 respectively
pR= 550 U T3 :

1/2
r{(?ac-l— DF(c+1) (1 — /170) } respectively .

Uz(x)

Fig. 1. The solutions U, and U, of (1.1) for prescribed
A>Jo. The case drawn is ¢c=1 (for which 1,=24) and
Mi,=14
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Writing
Ux)=ux)—qx) (i=12),

where ¢ is as in (1.5), we find that

c+a;
—Ix, 0Zx=Za,,
a; J
c+a;
uj(x)= a"x—%/%(x—aj)z, a;=x=<b;,
J
c+b;
L(1—-x), b,=xZ1.
[ (1=, bs¥s

From this it is clear that a,(4)—c/(2c+1), b;(A)—>c/(2c+1), and U,(x, 1) V(x) as
A— 0.

One important point remains. In the variational formulation we shall prescribe,
in place of A, a parameter u that in the present case is defined by

p= [ URdx;

then A(u) is calculated a posteriori, and nonlinear desingularization occurs as u—0.
Here, this has the additional advantage that (1.1) has exactly one solution for each
prescribed pe(0, 00); it is (U, ay,b;) for u=pue=2,/96, and (U,, a,, b,) for pu> u,.
A calculation shows that A(u) is defined (inversely) by

/1 A 1/2)3
e i (-2 o s

1/273
=i{1+(_’1_0> } for pzpy;

and

the situation is depicted in Figs. 2 and 3.

The primary reason for introducing u, however, is that u characterizes the set,
in a Sobolev space, over which we shall minimize the Dirichlet form of our
problem in order to obtain solutions. These are also solutions of an unconstrained
variational problem (that is, critical points of a certain functional considered on
the whole Sobolev space) but in that formulation they are saddle points rather
than extrema, making quantitative estimates much more elusive.

We shall obtain results of the foregoing kind, necessarily by less explicit
methods and therefore in less detail, for a general free-boundary problem
involving a semi-linear elliptic equation of order two, in a bounded domain Q CIR?.
Section 2 contains various formulations of this problem, and describes some
physical applications. In Sect. 3 we present a simple example in two space
dimensions, and state our objective and method more precisely. In Sect. 4 we solve
the variational form of the problem, and obtain the rather sharp estimates needed
for the limiting procedure; this leads to a demonstration, in Sect. 5, of the
nonlinear desingularization process for the problem at hand.
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Ao Fig. 2. Form of the function A(y)
for the problem (1.1). The case
| " drawn is c=1 (1, =24, uy=7)

2c+1 7}
alp) Fig. 3. Form of the functions a(u)
and b(y) defining the set 4 in (1.1).

u  The case drawn is c=1

2. Formulations of the Problem

2.1. The Free-Boundary Problem

Let Q be a bounded domain (a bounded open connected set) in the plane R?, and
let L be a formally self-adjoint, uniformly elliptic operator of the second order:

290 0
1=-y 2 a,..(x)—},
i,jz=1 5xi{ 7 ox;

where the matrix (a;(x)) is symmetric and positive definite on Q, and each
a;;€ C*(L). We consider the free-boundary problem

I M, %) in A, (2.1a)

10 in Q\4, (2.1b)
¥Y|,4=0, grad¥ continuous on 04, (2.1c, d)
Plog=—qo(x,x). (2.1e)

Here f :Q xR—[0, c0) and g, : 8Q x I-(0, c0) are given functions, specified more
precisely in Sect. 2.4 (ICR is an interval housing the parameter x); 1 is a real
positive parameter which, for the moment, we regard as prescribed; and the
boundary 04, of the open set 4, is “free” in that it cannot be chosen a priori, but
forms a part of the solution.

The set A may be visualized as the cross-section of a steady vortex ring [6, 8]
(see Appendix A for detailed comments), or of one member of a steady planar
vortex pair [9, 12]. The problem in which A represents the cross-section of a
confined plasma in equilibrium [9, 15] is only slightly different. In fact, if we set
u=—¥ in the problems on pp. 52 and 59 of [15], and choose to prescribe the
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boundary-value constant 7 there, and to compute the total current a posteriori,
then those problems assume the form (2.1). The total current in the plasma,
denoted by I in [15], corresponds to the circulation of a vortex ring, and to the
function & in (3.9) of the present paper ; the change of formulation just mentioned
for the plasma was adopted for vortex rings when passing from the perturbation
theory for rings of small cross-section [6] to the global theory [8].

We allow ¢, to depend on the parameter x because more interesting cases arise
as Al— oo if g, is allowed to vary than if g, is fixed. In fact, we shall see (after
Theorem 5.2) that, if g, is fixed, then the total-current or circulation function h
tends to zero.

2.2. The Associated Semi-Linear Dirichlet Problem

As in [8], the difficulty of the free boundary is removed by the following artifice.
The maximum principle implies that ¥(x)>0 in 4 and that ¥(x)<0 in Q\A.
Therefore we (a) re-define f, if necessary, so that f(x,¢)=0 for t<0, (b) confine
attention to Holder-continuous functions f. (In [8], the continuity of f is
ultimately relaxed, but in the present paper our result depends on the connected-
ness of the set 4, which we cannot prove without strong restrictions on f.) Then
the free-boundary problem (2.1) reduces to the semi-linear Dirichlet problem

LY=}f(x,¥) in Q, (2.2a)
¥lag=—4qo(x, K). (2.2b)

We now transform this problem into one with a homogeneous boundary
condition. The problem

Lq=0 inQ, glp=q,(xx), 2.3)
has a unique solution g(x, k), and we define
py=¥+q.
Then (2.2) becomes
Ly=Jf(x,p—q) in Q, (2.4a)
Plog=0. (2.4b)

The Sobolev space VOVP}(Q), 1<p< o0, may be defined as the completion of the
set C3(2) (of infinitely differentiable, real-valued functions having compact
support in ) in the norm

luly, ,= {!)quI”}”";

here the integration element dx =dx, dx, is implied, and an elementary calculation
shows that, if Q is contained between parallel lines distance / apart, then

{I Iull’}”" <3 Pl
Q
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For the case p=2 of a Hilbert space, we shall abbreviate W;(Q) toW,and ||, ,to
| -1 ; this norm may be called the Dirichlet norm. We introduce the bilinear form
corresponding to the operator L:

ou Ov

axi 071.9 B(u):BL(uﬂ M),

Bw= 3 [ay)

i,j=1

for all u and v in W. Then y is a generalized solution of (2.4a, b) if we W and
B¢ w)=A]df(x,w—q) forall peW. 2.5)
Q

2.3. A Variational Principle

In order to characterize the desired family of solutions, we now formulate an
isoperimetric  variational principle as follows. Define the functional
J: W x I-[0, o) by

t
Ju, k)= | F(x,u—q), where F(x,t0)= [ f(x,s)ds,
Q2 0
and where u— g=u(x)— q(x, ). Here the integral over Q need be taken only over
the set
A, = {xeQu(x)>q(x,x)},

which becomes the desired set A=A, in (2.1) when u=1; a similar remark applies
to (2.5). As we show below, (2.5) characterizes a critical point (or stationary point)

p of the restriction of the quadratic functional B to the set
a(p, k)= {ue W|J(u, k) =const=pu >0},

which may be regarded as a surface in W. However, we are not free to prescribe
both 4 and u; we choose to prescribe p and to compute A= A(u, k) a posteriori. If

wea(p, K) (that is, ye Wand J(yp, k)= j Fx,p—q)=u> 0) (2.4¢)
Q
and (2.5) holds, then the pair (p,A) will be called a generalized solution of (2.4).

Obviously (2.4) means (2.4a—c); we solve this problem by means of the variational
principle

min B(u); (2.6)
uea (i, x)
then (2.5), with ¢ =1, implies that
0 <A(p, x)=B(yp) / Jyf(x,p—q). 2.7
Q

The variational principle (2.6) is not precisely the analogue of that used in [8],
but in Appendix B we prove a certain equivalence of the reciprocal variational
principles

max J(u,k) and min B(u),
B(uy=n J(u,k)=u

the former being the analogue of that in [8].
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2.4. Precise Conditions on the Data

(i) The assumptions in Sect. 2.1 about the operator L imply the existence of
constants f#; and 8, such that 0<f, <f, and

By lul?<Bu)<B,|lul* forall ueW. (2.8)

Here ||| is the Dirichlet norm introduced after (2.4b).

(i) We assume that fe CY(Q xR), that f(x,t)=0 for t<0, that f(x,t)>0 for
t>0, and that f(x, -) is convex for each fixed xe Q. This implies, of course, that
f(x,t) is a strictly increasing function of ¢ for t =0. Moreover, we suppose that

M " S fx, ) SK,t+M,t™, 1<m;=m,, t=0, 2.9

where m;—1, M; (j=1,2) and K, are positive constants (independent of x and ?).
The requirements on the constant m, are needed for the validity of our estimates
but can be relaxed in special cases. (See Remark below.)

(iii) The boundary 0Q is taken to be of class C®. Regarding the boundary
values —q,(x, k) of ¥, we assume that g,(-,x)e C*(0Q) for each fixed x in the
interval ICR, and that

where 91(9) = 4o(%, 1) = 4,(1). } (2.102)

0<y;=q,(x) and q,(x)/q,(K)<7,,

y, and y, being independent of k. Thus g,(x, k) is bounded away from zero but not
from infinity, although its growth must be of the same order for all xedQ.
Applying the maximum principle to the Eqg. (2.3) determining g, we observe that

in (2.10a), g, may be replaced by q. (2.10b)
Remark. The particular, but important, function

fen={0 1=
T g0 t>0,  geCYQ), g(x)>0 on @,

is also admissible for the validity of our results, even though this f¢C(Q x R). This
function is important because it is a prototype in the context of planar vortex pairs
[9, 12] and of a confined plasma [9, 15]. It is admissible because (a) it allows a
proof that the set A is connected, (b) the estimates in Appendix C and Theorem 4.4
remain valid. Just as we adapt Theorem 3G of [8] to prove, in Theorem 4.3 below,
connectedness of A for functions f as in (ii), so we can adapt (and correct several
inaccuracies in) the proof of Theorem 3.5 in [12] to prove connectedness of 4 for
the function f in (2.11). Having noted this fact, we shall use the hypotheses in (ii)
henceforth.

(2.11)

3. Expected Behaviour of the Solution as u—0

The problem (2.4a,b) admits the trivial solution =0, but non-trivial solutions
must exceed the values g(x, x) =7y, >0 somewhere in © (on the set that we call 4);
hence they cannot be small in the space C(Q) and do not bifurcate from the trivial
solution in the traditional manner. Rather, the example (1.1) leads us to expect
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that solutions of the variational problem (2.6), which satisfy (2.4a—c), are related to
the solution of a linear problem involving the operator L by way of the Green
function G(x, y), defined for fixed ye Q as the solution of

LG=0(x—y) in Q, Gl 0=0. (3.1)

Here ¢ denotes the Dirac distribution ; the formal self-adjointness of L implies that
G(x,y)=G(y, x), and the maximum principle implies that G(x,y)>0 on Q x Q.

We now consider a second simple example, this time in two dimensions but
with spherical symmetry. This prepares the way for estimates that we make in
Sect. 4, and at the same time shows explicitly how the qualitative features observed
for (1.1) are repeated in two dimensions even though the Green function is now
quite different. (For spherically symmetric solutions, the same is true in higher
dimensions.)

Let 4 denote the unit ball {xeR?||x|=r<1}; we seek a spherically symmetric
solution (¥, 4, 1) of the following, in which 4 denotes the Laplace operator.

_ {/1 in A={x|?(x)>0}, (3.2a)
0in #\A4, (3.2b)
grad ¥ continuous on 04, ¥|,,= —q(x)<0, (3.2¢,d)
[P=u>0. (3.2¢)
A

Here f is a step function and violates the hypotheses in Sect. 2.4, but it can be
handled for the case of spherical symmetry. This symmetry and the maximum
principle imply that A must be a ball about the origin; let its radius be ¢.
Calculating as in Appendix C, we find that

L(0?—71? <r< .
Y(x)= HMo?—r%), 0=r=p, (3.3a)
rlo1 (3.3b)
A _qlog— logv, Qéréla
o/ o
oo 1
A=2q/o logé, (3.4
2nq? { 1 }
By)=v|?= 1+ , 3.5
W=Ivl™= g @'+ Toe o) )
1
u=%ﬂq02/10g5, (3.6)
s 1
h=Ang =2nq/log5, (3.7

where g = q(x) and =¥ +q. As before, we see from (3.4) that there exists a critical
value 1, such that, for given 4, we have no solution, one solution or two solutions
according as A <A1, A=1, or 1> 1,; while (3.6) shows that, for given ue(0, co0), we
have exactly one solution [see Lemma C.2, which gives bounds for g(u, x)]. We
also observe, from (3.3) and (3.7), that

Y(x)=hG(x,0)—q for ¢=rzl, (3.8
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and, from (3.6) and (3.4), that g(u, x)—0 and A(u, )— oo as u—0 [even if we allow x
to vary with p, since g(x)=7y, >0].
Returning to the variational problem (2.6) for the general case, we now make

the guess that, as u= | F(x,ip—¢q)—0, the set A tends to a point, say a, and that
A— 0. Then, formally:1 (2.4a) becomes

Ly =4 (x,p—q)~h(, K)6(x —a), (3.92)
where

h(u, k)= 2 £ Jy—q). (3.9b)

Accordingly, we expect that the solution y of (2.6) has the behaviour
(x5 k)~ h(, K)G(x,a) as u—0, x=*a,

although v will be bounded on A for each fixed g, in contrast to G(-,a). [In the
particular cases of Appendix C, we can even so choose k =x(u) and g that h(u, k) is
a positive constant, and p(x)=const G(x, 0) outside the shrinking set A.]

In Sects. 4 and 5 we shall confirm these conjectures, under the hypotheses in
Sect. 2. Once existence of solutions, and connectedness of the set 4, have been
proved, the principal step results from the bounds

diam Q
diam A4

2ajsioh ™ (G ) <cap (DS om0 (10)
for the electrostatic capacity of A relative to Q. [This is defined immediately before
(4.13).] The lower bound is derived in [7], for any connected compact set KCQ
having positive diameter, by means of Steiner symmetrization, successively about
two particular perpendicular lines, and recognition of the minimizing con-
figuration for given diameter ratio. The upper bound in (3.10), which follows from
the definition of capacity and the fact that y(x, u, ) = g, (k) on 4, is useful because
comparison with a spherically symmetric solution will give us a fairly sharp upper
bound for |y(-, i, x)|.

Higher-dimensional cases, Q CRY with N =3, elude our estimates, essentially
because the electrostatic capacity of a line segment is positive in two dimensions,
which allows us to bound the diameter of A4, but is zero in three or more
dimensions. Fortunately, the free-boundary problems that we have in mind are set
in R2,

4. Existence, and Some Properties, of the Variational Solution

In this section we show that the variational problem (2.6) has a solution 1y, which
we proceed to study in some detail. The set

A={xeQp(x)>q(x, x)} (4.1)

is of particular interest.
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Theorem 4.1. The variational problem m(in )B(u) has a solution v such that
ueo(p, k

(a) the pair (y, ) is a generalized solution of (2.4) when A is defined by (2.7),
(b) weC?2*4Q) for any Hilder exponent ae(0,1),
() w(x)>0in Q.

Proof. Since the variational competition is at a fixed value of the parameter x in g,
we omit display of « in this proof.

(i) First we show that, for any set of data as in Sect. 2, the set o(u) is not empty.
Take any function ve C3(Q) with v(x)>0 somewhere in Q; if ¢, denotes the
smallest value ¢ such that tv(x)=gq(x) somewhere in €, then J(tv) increases
continuously from 0 to co with t=t, [because F(x,s) so increases with s=0];
consequently there exists a unique value ¢, such that J(¢;,v)=p>0, and then

t,vea(p).
(i) Let b= in(f ) B(u)>0, and let {u,} be a sequence in o(y) such that B(u,)—b
ueo(n

as n—oo. This sequence is bounded in the Hilbert space W [given any ve o(u), we
may suppose that B(u,)<B(v)+1, and then use (2.8)]; hence there exist a
subsequence, say {y,}, and an element we W such that y,—»y weakly in W.
Sobolev embedding, and the upper bounding function for f in (2.9), ensure
that J is continuous with respect to weak convergence in W; therefore J(y)
=limJ(y,) =, and so peo(u) and B(y) 2 b. But, since B, satisfies the axioms of an
inner product, a familiar theorem on weak convergence states that B(y)
<liminfB(yp,)=b. Accordingly, B(yp)=>.

(iii) Since the functionals B and J are C* (in fact, they are smoother than this),
a standard result of the calculus of variations ([5], p. 123) ensures the existence of
numbers 4, and 4,, not both zero, such that

ilBL(¢,w)=/12!§)¢f(x,w—q) for all  ¢eW.

The choice ¢ =1 shows that 4,/4,+0and 1,/2, %0, and (2.5) follows, so that (a) is
proved.

(iv) Regularity theory for generalized solutions of elliptic equations [3], and
the fact that fe C*(Q x R), imply that the equivalence class 1 has a representative
pe C24(Q) for all ue(0, 1). Since Af(x,p —g) =0, the maximum principle ensures
that p(x)>0 in Q. (That y(x) =0 almost everywhere in Q is actually a consequence
of the variational characterization, and can be proved without regularity theory
and the maximum principle; cf. [8], p. 26.)

Lemma 4.2. Let E be a component of the set A in (4.1), and define

ou Ov

2
By gu,v)= LJZ:“I ,{“”’(X)a—xi 6_xj’ By(w)=B, gu,u).

Then, with ¥ =vy—q and  as in Theorem 4.1, we have
BL, E(Wv w):BE(']/), (4'2)
and

By(p)=By(¥)+ Bglq). (4.3)
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Proof. Since ¥|,;=0 and Lg=0,
B, (¥,q9)= [ ¥Lq=0,
E

which proves (4.2) because B; ,(¥,y)—By(¥)=B, ((¥,q), and proves (4.3)
because

By(y)=By(¥ +q)=Bg(¥)+2B, x(¥,q)+ Bgq).
Theorem 4.3. The set A is connected.

Proof. Suppose the contrary, that 4 has at least two components E, and E,. With
the notation f'(x,t)=0f(x,t)/0t and ¥ =y —q, we obtain a contradiction by
considering the second variation ([5], p. 125)

8?B(ip,v)=B()— 4 [ v*f'(x, V)
Q

of B, in the direction v along the surface a(u, x), for any ve WnC(Q) such that
B,(v,)=0 and |jv]>0.

[The condition ve C(Q) makes it easy to show that the remainder of the Taylor
series for J(y +tv+ ..., x) is o(t*).] The proof now proceeds as in [8], p. 31 ; but we
include the remaining steps because the present functionals look different, and for
the sake of completeness.

Define @; (j=1,2) by @(x)="Y(x) in E;, and ®(x)=0 elsewhere. Then &, W
([101, p. 50), and @;e C(Q) by the regularity of ¥ and the definition of E  Set
v=c, P, —c,P,; there exist positive constants ¢, and ¢, such that B,(v,)=0
because, by (4.2),

B (v, p)=c¢,B(P,¥)—c,B(P,, )=, B(P,)—,B(P,).

Also, @, and &, are orthogonal in W (since E, and E, are disjoint), so that |v| >0.
By (4.2) and the definition (2.5) of generalized solution,

B(<Pj)=BL(4’j,w)=isf2¢,~f(x, ‘P)=/1E§_ Yf(x, %),

whence

8%B(y,v)= i e {B(cpj)—/l f@3f(x, 'P)}

Jj=1
2

LY [ {Efx, W) - P (x, P)} .

j=1 " E,

The convexity of f implies that f(x, t)<tf"(x, t) for t >0; hence 6?B(y, v) <0, which
contradicts the minimizing property of .

Remarks. 1. Henceforth we set x=p, thus identifying the two parameters of the
variational problem (2.6). To have done so earlier would have given a misleading
impression of the level set o, now characterized by J(u, ) = 1 and denoted by o(u);
to keep two distinct parameters in what follows, would lead to unhelpful
complexity. Of course, we can still choose g(-, 1) to be independent of p.
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2. The estimates which follow are prompted by the spherically symmetric cases
in Appendix C, and involve the following notation. Let b be the radius of a ball (or
disk) # contained in Q (the larger b, the better the estimates). We shall make a
comparison with a spherically symmetric solution in the ball 4, and bo(u) will be
an estimate for the radius of the set A of that comparison solution. The functions ¢
and g which follow may be regarded as generalizations of the functions ¢ and
21q%/B(y) defined by (3.6) and (3.5) respectively [indeed, the present ¢ and g reduce
to those functions if, ignoring the restriction k> 1 in (4.4b), we set k=%, b=1 and

M, =1 there].
With the notation of Sect. 2.4 for bounding constants and functions, define
) =Cu'?q,( ™" (g, 27,>0), (4.42)
where
1[2\? (2k(Q2k+ 1)) /2
1 S i
k=5m,+1)>1, C b(k) { M, } . (4.4b)
Let o(u) be the unique solution in (0, 1) of the equation (cf. Lemma C.2)
1 —k
) (4.5)
and let
1 1"
o(p)=e(p){log— —kloglog—¢ (4.5b)
e(w) e(w)
1 k
20—l floe- o} (@50
e()

when p is so small that &(u)<1/e and o(u) <1, we have o(u)<¢<o(u). Finally,
define

| koL
o =tog / {1 N m} g, (W) (4.60)

and
gw)=g,(e(w) ; (4.6b)

we note that g, is a decreasing function, so that o(u) <@(u) implies g(u) > g(u).
3. An asymptotic approximation to g(u), for u—0, will help to clarify what
follows. By (4.6a) and (4.5b, ¢)

1 1
() ~1lo ~log— as u—0. 4.7
TG R “n
Moreover, if g,(u)~constyu™ ¢ or g,(u) ~const {log(1/u)}* for some constant a=0
(a supposition that we make only for the moment, to clarify the nature of g(u))
then, by (4.4a),

g(u)~constlog(1/u) as u—0. (4.8)
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Theorem 4.4. With the foregoing notation, the solution (y, A) of (2.6) and (2.7) has the
following bounds ; when  is so small that &(u) < 1/e and g(u) < 1, the implicitly defined
function g may be replaced by the explicitly defined g, given in(4.6b)above. Moreover

B(p) =27, q,(1)*/9(w) 4.9)
_ diam4 1 _ By

0= Gam@ sinh{cg@}’ " B2’ (4-10)

A<2mf,q,(w)>/ng(w) , (4.11)

1 1)1/2
7 <const52{1 +const<sinh_15) }{1 +const B(y)'}, [=3(m,—1)>0.(4.12)

Remark. Note the following implication of (4.6a) for the bounding function in
(4.10):

————— ~koo(p) as p—0, k,=2e2,
sinh{cgw)y 0" g 0

where (4.5) shows how o(u)—0. Also, in (4.12), 6*(sinh~*1/8)*/? is an increasing
function for all § >0, so that (4.10) may be used there.

Proof of Theorem 4.4. (i) Fixing p, we denote the variational problem (2.6) by
P(L, f,q,9Q), and the set of admissible functions [previously called o(u, k)] by
S(f,q,€); this allows us to indicate particular choices of L, f, ¢, and Q. We shall
compare solutions p and v, of the problems P(L, f,q,2) and P(— 4, f,,4,, %),
respectively, for the same value of 41; here 4 denotes the Laplace operator, f; the
lower bounding function in (2.9), g, the upper bounding function in (2.10), and % a
ball in Q.
Let y, be a solution of the problem P(L, f,q,, Q). Since g=<gq,, we have

gf)F(x,wz—q)é !}F(x,wz—qz)w;

hence ty,eS(f, g, £2) for some te(0,1], and so B(y)=B(ty,)<B(y,).

Let 1, be a solution of the problem P(— 4, f, q,, %). Extend it to Q by defining
3(x)=0 outside %. Then 1€ S(f.4,.2), and so B(y,) < B(yy) < f, 5.

Let 1, be a solution of the problem P(— 4, f,,q,,%). Since f = f,, we have

;F(x,quz)z ;Fl(w4—q2)=u;

hence 11, &S(/, ¢, ) for some te(0, 1], and 50 [y, 12 < [[t,| 2 < 1w, 1%
Combining these inequalities, we have B(y) <, [y, ]% and |y, ]? is bounded
by the estimate (C.10), in Appendix C, for spherically symmetrical cases; this
estimate differs only slightly from (3.5).
(i) For any closed set K C 2, we define the electrostatic capacity of K relative to
Q by

cap(K, Q)= Wmin [u]|?,

Julgz1 l
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where u|, =1 means that there exists a sequence {u,} in C3 () such that u,(x)=1
on K, and u,—u in W. The infimum is attained, in view of the lemma of projection
onto a closed, convex (non-empty) set in a Hilbert space; for further details, see
[14], p. 147. In the present case, we choose K = 4 and note that y/q, is admitted to
the capacity competition for 4 ; consequently,

cap(4, Q) < |yl*/q,(W)* < Bw)/B1q,(W)*. (4.13)

On the other hand, when K is connected there is a lower bound [7] for
cap(K, ) in terms of the ratio diam K/diamQ. In the present case, 4 is connected
because A4 is, and diam 4 =diam A4, so that

cap(A4, Q)>2n/sinh~ 1% (6 =diam A/diam Q). (4.14)

[A lower bound sharper than (4.14) is also given in [7], but (4.14) is simpler than
the sharp estimate, and is asymptotically equal to it as 6—0.]
Combining (4.13) and (4.14), we obtain
d<1/sinh {2np,q,(1)*/B(w)},

and, in view of (2.10) and (4.9), the estimate (4.10) follows.
(ii1) Recall that ¥ =y —gq and that

A= B(y) / [{ wfx¥); (4.15)

hence the upper bound (4.9) for B(yp), and a lower bound for the integral in the
denominator of (4.15), yield an upper bound for 4. Now f(x, t) is a non-decreasing
function of ¢, so that F(x, t) Ztf(x,t) for t 20; consequently, (4.11) follows from the
estimate

fwf, )= [ (P+a)f(x, ¥)> | F(x, ¥)=p.
(2] Q Q

(iv) We now seek an upper bound for the denominator in (4.15). By (2.9) and
(2.10),

!f)wf(x, ¥)= £(T+QZ)(K2W+M2W"IZ)

—K, | <lP2+q2¥/)(1+ %W), 4.16)
A KZ

where I=%(m,—1). Let d=diam 4 ; then A4 is contained in a square with sides of
length d. Modifying a calculation by Nirenberg ([11], p. 128; the context is
Sobolev embedding), we find that, since ¥|,,=0,
| Y’pgcpdz{leY’lz}"/z, 1<p<o,
A A
where ¢,=2"¥?if 1<p<2,and ¢,=273?pif p22.
Now, with ¥ (x)=max {¥(x),0}, we have ¥, e W ([10], p. 50) and hence

£|VT|2=§2|W+|2gﬁiB(W+>
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by (2.8). But, by (4.3), B(¥,)=B (¥)<B ()< B(y), so that
£ wr<k d’By)l?, k,=c,B;"?, 1=p<w,

and, by (4.16),
j wf(xa 1P)<K2d2
Q

M
'{sz(W)‘*‘ kﬂzB(W)l/z + K_z[kzuzB(lP)H Ytk 19, By) T 1/2]}-
2
Since k, /k,=p1'?, we obtain from (4.15)
1
I <constd?{1+ B12q,B(y)” *} {1 +const B(p)'} ;

finally, (4.13) and (4.14) imply that
1

s s . 1/2
i/ ‘hB(‘P)—l/ <V2(§;5mh_15> s

and this proves (4.12).

5. Nonlinear Desingularization: The Limiting Behaviour as u—0
We are now in a position to make good the heuristic ideas of Sect. 3.

Lemma 5.1. Let the Green function G be as in (3.1); then, for any points x and x,
in Q,

D 2
[1V.{G(z,x)— G(z, xo)}lpdzgconstlx—xolz"’(l +log ) ,
Q [x =Xl

where 1 <p<2, D=diamQ, and the constant depends only on L, Q and p.

Proof. (i) Suppose for the moment that Q is a bounded domain in RN with N =2,
the operator L and boundary 0f2 being restricted as before in all other respects. Let
|z— x|=r; the estimates

[V,G(z,x)|<constr " N*1 |V V. G(z,x)| <constr " (A)

are proved in [16] for N =3, under hypotheses on L and 022 that are weaker than
ours. These estimates are true also for N=2 when — L is the Laplace operator
[several references are given by Kato, T.: Arch. Ration. Mech. Anal. 25, 190
(1967)]. Professor Widman has kindly written to us that (A) holds also in the
present case (N =2, with smooth coefficients g;; in L, and smooth boundary 09),
but that the proof involves a “rather ugly argument”. If the proofs in [16] are
repeated for N =2, there results

D
[V,G(z, x)| <constr~! (1 +log —) ,
r

(B)

D
[V.V.G(z, x)lgconstr“z(l +log-r—>, ©)
and it is these estimates that we shall use here.
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(i) Let |z—x|=r, |z—x,|=r, and |x—x,|=0; abbreviate G(z,x) to G, and
G(z,x,) to G,. We may and shall assume that 36 <D.
For r <24, we use (B) and add the contributions of G and G,. If p=1, we have

20

| IIZ{G—GO}Idzgconst{j (1 +logg>dr+ 3jé<1 +logr2)dr0}
0 0

Qnir<26) 0

<consté <1 +10g—?),

while, if 1<p<?2,
[ I7AG—Gy}IPdz

Qn{r<24)
20 D 2 35 D 2
gconst{j rl“’(l -l-log—) dr+ | r(‘)‘l’(l +logﬂ> dro}
0 r 0 Yo
D 2
<consté?~”? (1 +logg) )
(iii) For =24, integration of second derivatives from x, to x gives

[V.{G—G,}| <constdr~? (1 +log§>,
Themifp:l’
A D
[ IWA{G—Gy}ldz<consts | r_1(1+log7)dr
26

Qn{r=20}
D D
constd ngé( +210g25>,

while, if 1<p<?2,

D D 2
[V.AG—Gy}Pdz<consts? | r*~2P|1+log—| dr
: o 26 r

Qn{r=20)
D 2
gconstéz‘p<1 +10g3) .
The lemma is proved.

Theorem 5.2. With y denoting the solution of the variational problem (2.6), and with
Y =yp—gq, define

h(#)=i£f(x, ¥), (5.1)
and let a(u) be any point of the set A(u)={x|¥(x, u)>0}. Then, as u—0,
U’( ) ,u) . )
TR —G(-,aW)=0 in WH(Q), 1=p<2, (5.2

and hence in L(Q), 1 <r<oo.
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Proof. The representation (in which dependence on y is now implied)
w(2)=1 | Gz, x)f(x, ¥)dx
A

follows from (2.5) in the usual way (for example, as in [8], p. 47) if we choose the
test function ¢ in (2.5) to be a smooth approximation to G and then pass to the
limit. Since

h( S ?)=1 (5.3)
by (5.1), we have
y(2)
h( ) —G(z,a h( B [ {G(z,x)— G(z,a)} f(x, P)dx.

We form the L, norm of the gradient of this function, and apply the Minkowski
inequality, to obtain
v
——G(+,a x, V)dx

j 1172{6(2, x)— G(z, a)}|Pdz|V?. (5.4)
2

Here x and a are both in 4; by Theorem 4.4 and the remark following it,
|x —a] <diam A <consto(u)*, ¢>0,

where o(u)—0 as u—0, as is shown by (4.5). Lemma 5.1 now shows that in (5.4) the
function in square brackets tends to zero uniformly over xe 4, and the remaining
expression is bounded, by (5.3). Convergence to zero in L, (1 =r < o) follows from
Sobolev embedding.

Remarks. 1. Since regularity theory shows that y(x, u)/h(u) is bounded pointwise at
fixed u, while G(-, a(u))e WI(Q) only for p<?2, the result is the best possible of its
kind.

2. An upper bound for h(p) is easily obtained. By (2.7), and since p(x)> g, (1) in

=/1/§1f(x, ¥)= B(w),£ S, Y’)/£ wf(x, ¥)<Bw)/q,(1) ;

A,

hence the bound (4.9) on B(yp) implies that

MW S c,q,(W/gw), ¢, =2np,y,. (5.5
It follows from (4.7) that, if
(. ﬂ)=0<logi> as 40, 56)

as is certainly the case when g, is fixed (is independent of ), then h(x)—0 and so
w(-,u)—01in Wl(Q) 1=p<?2. In that case (5.2) still shows  to be asymptotlcally
proportional to the Green function, but the result seems more interesting if g is
allowed to vary in such a way that h(u)-»0.

The condition (5.6) is sharp in the sense that, for the spherically symmetric
cases in Appendix C, the function h(u) tends to a positive limit when gq(u)
~constlog(1/u) as u»0.
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Theorem 5.3. As in (4.4), (4.10), and (4.12), define k=%(m;+1), I=4(m,—1) and
c=P,/B,y3 Assume that q,(1) < const ™", where r is any positive number if kc =1, or
O<r<ic(l—ke) ' if ke<l Then Au)— oo as u—0.

Proof. In view of the upper bound (4.12) for 1/4, the only question is whether
1 1/2
82 (sinh ! 5) B(yp)'—0.

Let A(u) be a generic symbol for functions that are O(Jlog u|?) for some real number
b, as u—0. By (4.10) and (4.4)—(4.6),

d <constg(u)° = u?q,(w) " A,
while
B(y) S q,(1)* A
by (4.9). Accordingly,

1/2
o2 sioh ™ 5] B a4,

which implies the result. [For the case kc =1, we recall that g,(u) =y, >0.]

Appendix A.
Comparison with the Theory of Steady Vortex Rings

The problem of steady vortex rings, in a form analogous to (2.2), may be stated as
follows. Let (r, 0, z) be cylindrical co-ordinates in R3, let IT = {(r, z)|r >0} denote a
meridional half-plane (f=const), and let QCII be a domain. We seek a Stokes
stream function ¥ (which means that the fluid velocity has components
—r~10W¥/0z, 0, r~10W/or in the directions r, 0, z increasing) such that

Jd(1d 1 02 .
LY =— {O_r(r 5) + " 8?} Y =lrfo(¥) in Q, (A.la)
P, o= —1Wi2—k, (A.1b)

where f,(t)=0 for =0, and f,(t)>0 for >0, while W>0 and k are prescribed
constants. We write x=(r, z).

In [8], Q is initially the rectangle D=(0,a)x (—b,b), and finally Q=1II is
admitted; f, is initially Holder continuous, and is finally allowed a simple
discontinuity at the origin; and k is merely non-negative. Thus the problem in [§]
violates every hypothesis in the present paper : the coefficients a;; are not in C ©(D),
since a,,(x)=a,,(x)=1/r; the boundary D has corners and hence is not of class
C?%; the domain 2 may be unbounded; f(x,t)=rf,(¢) is much less restricted than
here; and zero boundary values of ¥ are allowed on a part of 0Q.

However, if in (A.1) we take Q to be a bounded domain in which r > const >0,
and 0Q to be of class C®, if we restrict f(x,)=rf,(t) as in Sect. 2.4, and if we so
choose k that —3 W2 — k<0 on 9Q, then all the present hypotheses are satisfied,
and there remains a problem which is physically significant and quite general
enough for our main purpose here: to study the degeneration of a steady vortex
ring to a singular vortex circle.



168 M. S. Berger and L. E. Fraenkel

In the perturbation theory of steady vortex rings of small cross-section [6] one
prescribes 4, f, and the approximate area and location of the cross-section 4 in
such a way that (a) the velocity W and flux constant k have to be found a
posteriori, (b) the circulation h=A4 j rfo(¥) tends to a positive limit as

A
d=diam A—0. It turns out that W and k both tend to infinity like log(1/d), which is
consistent with the present results.

It has not yet been proved (as far as we are aware) that the steady vortex rings
constructed by the perturbation theory are solutions of the variational problem
formulated for the global theory. The present paper represents a useful step in this
direction because, starting with a variational principle equivalent to that in [8], we
have found properties of the solution that agree with those of solutions established
by the perturbation theory. In fact, if the sets A of the present approach could be
proved to be asymptotically circular, for the problem (A.1), then the local
uniqueness of the perturbation solutions could be used to identify the two types of
solution.

For the problem of steady planar vortex pairs [12], similar remarks apply,
except that the operator L is now the two-dimensional Laplacian, so that singular
coefficients do not occur.

Appendix B. Equivalence of two Variational Principles’

Let R, =[0, 00). In this appendix we consider the functions M :IR, x I-R_ and
m:R, x I-R, defined by
M(n, k)= max J(u,x) and m(u,x)= min B(u),
B(u)=n J(u,k)=p
it being understood that J(-,x) and B are defined on W. Our conclusions are for
each fixed value of «; therefore we abbreviate M(n, ) to M(y), and similarly for J
and m.

It is clear that M(0)=0, because B(u)=0 implies that u=0 in W, by (2.8), and
that m(0) =0. The existence of M(#) for > 0 follows from a proof precisely like that
of Theorem 3 A in [8], and the existence of m(u) for u> 0 follows from Theorem 4.1
of the present paper ; both functions are strictly positive on (0, 00).

In the present context, the function f need not be C! and convex in its second
argument. It is sufficient that f be Holder continuous; that f(x,¢)=0 for t<0 and
f(x,t)>0 for t>0; that f(x,t) be non-decreasing in t; and that f(x,t)=0(t"?) as
t— oo (for some m,>0) uniformly over xe Q.

We shall use repeatedly, without further comment, the fact that F(x,t) is a
strictly increasing function of ¢ for =0, so that u,(x)>u,(x) and J(u,;)>0 imply
that J(u,)>J(u,).

Theorem B.1. The functions M and m are inverses of each other:

n=mM)= min Bu), VneR,, (B.1)
u=Mmu)= max J@u), VueR,. (B.2)

Accordingly, M and m are surjective (onto R, ).

1 This appendix represents joint work with Grant Keady
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Remark. Note the following implication of (B.1): a maximizer, say ¢, of J(u) over
the set B(u)=# also minimizes B(u) over the set J(u)= M(n), since J(¢)= M(n) and
B(¢)=n. A similar remark applies to (B.2). Therefore, the solution sets

{¢pe W|3In =0 such that B(¢)=#n and J(¢)=M(n)}
and
{we W|3u=0 such that J(yp)=pu and B(yp)=m(u)}

of the two variational problems (all # =0 and u=0 being considered) are one and
the same, each being included in the other.

Proof of Theorem B.1. Because there exists a maximizer ¢ such that J(¢)=M(#)
and B(¢)=r, it is sufficient for (B.1) to prove that the minimum there is not less
than #. Suppose that #>0 [otherwise (B.1) is obvious] and that J(v)=M(n) and
B(v) <# for some ve W. Define ¢ = {/B(v)}'/?v; then B(d)=# and J(8) > J(v) = M(x),
which contradicts the definition of M.

Similarly, it is sufficient for (B.2) to prove that the maximum there is not
greater than p. Suppose that u>0 [otherwise (B.2) is obvious] and that B(w)=m(u)
and J(w)> u for some we W. Then for some te(0,1) we have J(tw)=pu and B(tw)
< B(w)=m(u), which contradicts the definition of m.

Finally, (B.1) shows that m is surjective, and (B.2) that M is.

Theorem B.2. The functions M and m are strictly increasing and continuous.

Proof. To prove that M is strictly increasing, let 0=<#, <#,. If #,=0, one
constructs a function v such that B(v)=#, and J(v) >0; hence M(y,)> M(n,)=0. If
7, >0, let ¢, be a maximizer of J(u) over the set B(u)=#,, and define
Uy =(”lz/’71)1/2¢1- Then B(v,)=n, and J(v,)>J(¢,)=M(n,); hence M(n,)>M(n,).

For the function m, and 0 < 1, <u,, we use a minimizer, say ,, of B(u) over the
set J(u)=p,, and consider typ, where te(0, 1) and is such that J(ty,)=p,.

The functions M and m are continuous because they are increasing and
surjective.

Appendix C. Some Spherically Symmetric Cases
C.1. Reduction of the Problem

Here we consider the following particular form of the problem (2.2): Q is the ball
(or disk) # of radius b about the origin, L= — 4 (where 4 denotes the Laplace
operator), g(x, k) =q(x) and f(x,t)=Mt" for t =0, with M >0 and m> 1. Then the
problem (2.2) certainly has spherically symmetric solutions, and symmetrization
with respect to a point ([13], p. 63) proves the same for the variational principle
(2.6).

In place of ¥(x), we use the notation V(x)=V(r), r=|x], for the present solution.
By Theorem 4.1, we have Ve C2*%(%), J(V+q)=u>0 and

1 .
V,+ ;V,= —Mu, k) MVY in (0,b),
(C.1)
V],—p=—4q(x)<0,
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where V,=0V/or and V, (r)=max{V(r),0}. By the maximum principle, the set
A= {x|V(x)>0} must be a ball about the origin (otherwise V would have an
interior local minimum); let its radius be a. Then for r=a

V(r)=—q(x)log£/log§, a<r<b. (C2)

If we make the transformation

P(s)=V(r)/V(0), s=V(0) > (AM)"?r, (C.3)
then Theorem 4.1 and (C.1) imply that

1
b+ §<I>S= —-o%, O<s<s(b),
(C4)

o0)=1, @(0)=0.
Conversely, we can infer results about V from (C.3) and (C.4). Let (C.4’) denote the
initial-value problem resulting from (C.4) when we remove the condition s<s(b),
and specify that the differential equation need not hold at a zero of @ (in fact, @ has
only one zero), but that &, must be continuous there. It is a matter of some length,
but little difficulty, to prove

Lemma C.1. The initial-value problem (C.4') has a unique solution @ on any interval
[0, N] not merely for m>1, but for m=0; and &< C*[0, N] if m>0, or is piecewise
C? (with a simple discontinuity of @ at the zero of @) if m=0.

C.2. Dependence on the Parameters

In view of Lemma C.1, we may regard @ as known; K; will denote positive
numbers depending only on @ (hence only on m), and we also write

e=o(u,x)=a/b, q=q(x).

Calculations based on (C.2), (C.3) and the continuity of V, at r=a, yield the
following.

1
V(0)=Kg/log e (C5)
1 5 5 1 m—1
i~k (amoer | ©s)
2ng* { K, }

V2=V 2= 1 R C.7
VIF=[V+q|*= fog(1/0) + fog(1/0) (C7)
- 1 m+1

=1 £W+1=K3szgz(q/log§) , (C.8)
h(p, k)=A | fﬁ”=27‘cq/logé. (C9)
B

To solve (C.8) for ¢(u, k), we use the elementary but useful
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Lemma C.2. The equation
1 —k
t(log?) =g, O<t<l, k>0, >0,

has a unique solution t,(¢). If e<1/e and e(loge™')*<1 then

k

1 1\ 1
& logg—kloglogg <t.e)<e logg .

Proof. Let t=1/x and ¢=1/y; the given equation becomes
d(x)=x(logx)=n, x>1, n>0.

Since ¢ is strictly increasing and has range (0, c0), this has a unique solution x,(#).
Let

x,=n(logn)™* and x,=n(logn—kloglogn)~*;
then, if # > e (so that loglogn >0) and x, > 1, we have ¢(x,) <#, which implies that
x; <x,(n), and ¢(x,)>#n, which implies that x, >x ().
Remarks. 1. We note that, by (C.2),

V) +alw)=g)log log =h(u G0, ar<b,

where h is as in (C.9), and G(x, y) is the Green function of — A in 4 ; also, the radius
a=bo(u, xk)—0 as u—0. It is this kind of result that we generalize in Theorem 5.2.
2. Setting k= u, we ask whether we can so choose g(u) that the function 4 in
(C.9) is a constant. It follows easily from (C.8) and (C.9) that h(u)=const if, and
only if,
c

a)= clog(etu™ 1), k=k(m+1),  K=(KMb)'2,

where c¢ is an arbitrary positive constant ; then h(y) =2nc¢/K. [Correspondingly, if
q(u) ~constlog(1/u) as u—0, then h(u) tends to a positive limit.] In the per-
turbation theory of steady vortex rings [6], one prescribes (in effect) a fixed value
of the circulation, which corresponds to the present h(u), and again finds that the
analogue of g(u) is asymptotically proportional to log(1/u) as u—0.

C.3. An Explicit Upper Bound for ||V||

Since the constants K,(m) and K,(m) in (C.7) and (C.8) are not known explicitly,
we bound || V|| by means of the trial function

2
1—— <
p( az)’ =

r b
—glog=/log— <r<
q oga/loga, as<r=b,

A

U=
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where p and a are now positive parameters which we choose as follows. First the
condition J(U + q) = p determines p = p(a), then we minimize || U| with respect to a.
There results

N ~ 2ng* { k } a
VI |U|?= 1+ ,  k=im+1), =—, (C.10
where ¢ =0(y, k) is now the solution of
1\ 7* 12—k 1/2\M2 (2k(2k+ 1)) 112

Note that (C.10) and (C.11) have precisely the same form as (C.7) and (C.8)
(possibly because the trial function U has the form of the exact solution for m=0);
only the constants differ.
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