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Abstract. We discuss bounded solutions of the equation

in the halfspace r > 0 . All solutions depending only on t/r are characterized
topologically. Then we prove the existence of infinite dimensional manifolds of
ί-periodic as well as nonperiodic solutions which are small in a suitable norm.

0. Introduction

It was shown recently by Glimm and Jaffe [1] that multimeron solutions to the
classical SU(2) Yang-Mills field equations in Euclidean space are characterized by
the following singular elliptic boundary value problem:

d2u d2u\ 3

dr2 dt2 '
(0.1)

hm u(r,t) = l9 w(0,i) = ( - l ) 1 for ^ ^ ^ " " Λ

where - ο ο = ί 0 < ί 1 < ... <t2n_1<t2n<t2n+1 = co.

Jonsson et al. proved in [2] that this boundary value problem has at least one
solution for every choice of the £.. In this paper we investigate some kinds of
bounded solutions to (0.1), which satisfy different boundary conditions.

We first prove (Sect. 1) that a bounded solution of (0.1) which has a continuous
extension to the ί-axis except for a countable number of points must satisfy \u\ ̂  1 in
the whole half-plane and cannot be positive everywhere, unless it is constant.

The special solutions which we discuss then are of two different types. In Sect. 2

we are concerned with solutions depending only the independent variable -, for
r

which (0.1) is reduced to an ordinary differential equation; in Sects. 3 and 4 we
discuss solutions which are "small" in a suitable norm.
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Solutions depending only on r or only on r/(r2 +12) have been considered by
Protogenov [5]. A second class of solutions for which (0.1) is reduced to an ODE
are those depending only on t/r = : τ. We prove in Sect. 2 that there exists a two
dimensional continuum of such solutions satisfying lim η(τ) = 0. By a limit

τ~> + οο

procedure we find that there exists one (unique) solution assuming the boundary
values lim "U(T)= — 1 and lim η(τ)=1. In addition we find a one dimensional

τ-> — οο τ—> οο

continuum of solutions approaching ± 1 only on one side and 0 on the other side.
Small solutions are discussed in Sect. 3 for the case of solutions that are

periodic in t with a given period and in Sect. 4 for a certain class of nonperiodic
solutions. In both cases we find a one-to-one correspondence between small
solutions and the nullspace of the linearization. This proves the existence of an
infinite-dimensional manifold of bounded solutions. All these solutions approach
0 as r->0.

1. A Priori Estimates for Bounded Solutions

Theorem 1.1. Let u be a bounded C2-solution of (0.1) in r>0 which can be
continuously extended to the axis r = 0 except at a countable number of points. Then
|w|;gl in the whole halfplane r>0.

Remark. The condition that u is C2 is not really a restriction. As proved in [2],
Theorem 3.1, every weak solution to (0.1) which is in U° is real analytic in r > 0 .

Proof, (i) Let (0, ί0) be a point on the ί-axis where u has a continuous limit. We are
going to prove that w(0, ί0) must take one of the values 0, + 1 . According to Green's
formula we have

u(r,t)=- J \4rl9ti)— f1' l άσ~ ί Au{rvt1)r{r,t,r1,t1)dr1dt1
dG O V G

dG G

Here Γ is Green's function for the bounded domain GcR2

+.
Assume w(0, ί ο )φθ, ± 1 and let U be a neighbourhood of (0,ί0), in which u

never takes the values 0, + 1 . Let now G be a square as shown in the next diagram.

Fig. 1.1
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The second integral in the formula above diverges as the left boundary of G is
shifted to the ί-axis (the integrand contains a factor r\2, and only one r1 is
compensated by the Green's function, since the normal derivative of Γ on a
smooth portion of the boundary does not vanish [6]). This contradicts the
boundedness of u.

(ii) The following argument modifies an idea of Glimm and Jaffe [1], Let F be
a C00-function R-+R with the following properties: F(u) = u for u^ 1 and F(u)<u
for w>l, F ^ l , F ' ^ 0 . Then

Hence u — F(u) is non-negative, subharmonic, bounded, and is equal to 0 on the
ί-axis except at a countable number of points. By inversion with respect to a circle
we can map the half-plane onto the interior of a circle. From u — F(u) we obtain
then a function, which is non-negative, subharmonic and bounded in the interior
of the cricle and vanishes on the boundary with at most countably many
exceptional points. From [3, p. 204] we conclude that u — F(u) is non-positive. This
proves wrg 1, and replacing u by — u we find u^ — 1.

Next we prove the non-existence of non-trivial positive solutions.

Theorem 1.2. Let u^.0 be a bounded solution to (0.1) which can be continuously
extended to the t-axis with at most countably many exceptional points. Then u= 1 or
w = 0.

Proof. Since u^Owe have Au :g0, and if the boundary value is 1 everywhere on the
f-axis, then Μ = 1. SO we may assume there exists a point (0, ί0) such that

lim w(r,i) = 0. Let ζ(ί) be a cut-off function supported by a sufficiently small
(r,t)-»(0,ί0)

interval containing t0.

Fig. 1.2

οο

We define v(r)= J C(t)u{r,t)dt. Then Eq. (0.1) implies
— οο

C{t)u3(r,t)dt-r2 j C(t)utt(r9t)o

00

C(t)u3(r,t)dt-r2 J Cttu(r,t)dt.
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If ζ is as shown in the diagram above, then ζη is either positive or its modulus is
less than some constant times ζ. Hence we can arrange that

f C(t)u\r,t)dt-r2 J Cttu(r9t)dtZev

for τ<δ(ε). Hence for ν<δ(ε) we find r2-—τ < — (1— ε)υ.
dr

If we substitute r = e\ this yields

ν — ν< —(1 — ε)ν. (1.1)

If u does not vanish identically, we may find a τ 0 such that υ(το)>Ο, ν(το)>0. The
following diagram shows the solution νν of νν —νν=—(1—ε)νν with the initial
condition νν(τ0) = υ{τ0), νν(τ0) = ύ(τ0).

( v ( r o ) , v ( r o ) )

Fig. 1.3

According to (1.1) for τ < τ 0 the phase plane curve for ν is above the curve for νν
and the two curves do not intersect again as long as ν > 0, ν > 0. This is indicated by
the dashed line in the diagram. In particular, we conclude from this that for τ < τ 0 ν
remains strictly positive as long as ν>0, and hence υ must change its sign for a
certain finite τ 1 < τ 0 . (It is a priori clear from the definition of υ that ν cannot
diverge to οο for finite τ.) This contradicts the positivity of υ. Hence ν = 0, i.e. u = 0
in a whole subdomain of JR+. Since u is real analytic, this implies that u vanishes
identically.

2. Solutions which Depend only on t/r

Substituting t/r= :sinhT, we obtain the ordinary differential equation

= u3 — u (2.1)

from which we conclude (after multiplication by u)

d I1 2 1 2 1
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The following diagram shows the lines of constant level for the function

Fig. 2.1

We see immediately that there exists a two dimensional continuum of bounded
solutions.

Lemma 2.1. Whenever (M(0),M(0)) is in Ω\{(1,0),(- 1,0)}, the solution of (2Λ) with
these initial conditions for τ = 0 is bounded and approaches the origin as τ—> ± οο.

We shall next prove

Theorem 2.2. Given any λ between — 1 and 0, there exists at least one solution of
(2.1) satisfying an initial condition ύ(0) > 0, u(0) — λ which approaches —1 as τ—• — οο
and 0 as τ—»οο. For λ = 0 there is a solution approaching 1 as τ—>οο and —1 as
τ-> — οο, and for each 0 < λ< 1 there is a solution approaching 1 as τ->οο and 0 as
τ-» — οο.

Proof We confine ourselves to the case λ < 0, the other cases are discussed in the
same way.

If u(0) = X and Μ(0) is sufficiently small, then (u,u) stays in Ω for every zeR.
On the other hand

f
άτ\2

Hence if Μ(0) = /I, we find

if τ > 0 and - 1 < W < 1 .

as long as — 15Ξ W(T) ̂  1.
We see from this that the solution leaves the strip — 1 ̂  u ̂  1 for τ > 0, provided

w(0) is large enough. Similarly, the solution leaves the strip for τ < 0, if ύ(0) is large
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enough. A continuity argument now shows that there exists C>0, such that the
solution u0 of (2.1) satisfying uo(0) = l9 uo(0) = C remains in the strip and
approaches 1 as τ-+οο or — 1 as τ-> — οο. We now derive estimates that make sure
that actually lim ηο(τ)= — l a n d 1ίηιι/0(τ) = 0.

τ—*• — οο χ-*- οο

Denoting wo( —τ) by νο(τ\ we obtain from (2.1)

(u0 + ν0)"+ tanh τ(η0 + υ0)'=u3

0 - u0 + ν3

0 - ν0

uo(0) = vo(0)<0, ύο(0)=-νο(0)>0.

For any τ > 0 we have — 1 < u0, ν0 < 1, and as long as (w0, w0), (u0J — ι)0)^Ω (which is
true for small τ) ύ0 > 0 and ν0 < 0.

The right side of (2.3) is positive for sufficiently small τ > 0 , i.e.

-j- Κ + νο)' + t a n h τ(^ο + υο)' > °

Since we have (wo + i;o)'=0 [whence (t/o + ̂ o)">0] at τ = 0, we may conclude from
(2.3) that (uo + vo)"2:0 for small enough τ, let us say for τ ^ τ 0 .

As long as (ΜΟ,ΜΟ), (U0, — νο)φΩ, the inequality (MO + I ; O ) ' > 0 implies
u^>i;g? which, together with (2.2), yields

ug + ^ _ U < ^ + ^ _ ̂ ^ _ Μ < ^ _ ^
^ΚΙ<ΦοΙ (2.4)

This proves that («ρ(το),«ο(το))€Ω o r e l s e ΙΜο(το)Ι<Ιι;ο(το)Ι I f τ 0 = οο or
(WO(TO), Μ0(τ0))€Ω, this implies the statement of the theorem. So we assume τ ο < οο
and (μο(το)9ύο(το))φΩ. Then |ΜΟ(ΤΟ)|<|^ο(το)Ι a n d

το) - ^ο(το) ̂  0.

This is only possible if 3ν% — 1 > 0.

Therefore, j-(ul-uo + vl-vo) = (3ul-l)uo + (3vl-l)vo<0 as long as

\uo\<\vo\ and ι ? ο ^ - ύ ο < 0 .
Therefore the right side of (2.3) is negative for τ > τ 0 , and it remains negative as

long as \uo\ < \νο\ and ν0 g — ύ0 <0. Since (u0 + νο)'= 0 at τ = τ 0, this and (2.3) imply
that (w0 + ϋ0)' is negative for τ > τ 0, as long as ν0 and ύ0 do not change their sign.
But this implies that ν0 cannot change its sign unless ύ0 does. Therefore either ύ0

has a change of sign for some τγ > τ 0 , which implies (wo(
Ti)> ̂ ο ( τ ι ) ) 6 ^ o r ^o + ̂ o ^s

negative for every τ > τ 0 , which implies that |uol"-lMol increases monotonically for
τ > τ 0 . This concludes the proof.

Remark. In the special case λ = 0, the solution given by the last theorem (which is
later proved to be unique) is the well known single meron solution given explicitly
by w = tanhi (cf. [4]).

Theorem 2.3. In Theorem 2.2 "at least one" may be replaced by "one and only one".

Proof, (i) If the solutions with the initial conditions w(0) = /l^0, u(0) = a,b resp.
approach 1 as τ->οο, then all the solutions with an initial condition η(0) = λ,
a < w(0) < b have the same behaviour.
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Fig. 2.2

It is obviously sufficient to prove that the solution u3 starting from (λ, c) never
crosses the two other solutions. Assume the contrary as indicated in the diagram,
i.e. 3τν τ 2 > 0 such that η3(τ1) = ηί(τ2), W3(T1) = W1(T2). Since

λ

we see that τ 1 < τ 2 . Hence (3.1) implies that

Μΐ(Τ2)

which is an apparent contradiction. The same argument shows that u3 and u2

cannot cross.
(ii) Given Τ > 0 large enough, there exists a neighbourhood U of (1.0) and "an

analytic curve C in U passing through the point (1,0), such that for (u(T),ii{T)) in
U the solution u of (2.1) with this initial condition approaches 1 as τ—>οο iff
{u(T\u(T))eC.

From (ii) the theorem follows easily, since the mapping (u(T),u(T))->(u(0),u(0))
is (locally) analytic and hence takes C to an analytic curve C. But an analytic curve
cannot contain an interval on the line u — λ.

So it remains to prove (ii). After the substitution u—l—v, (2.1) reads

ϋ+ ν - 2ν = ν3 + 3ν2 + (1 - tanh τ)ύ.

We rewrite this equation as an operator equation

Lv = Μ(ν) L, Μ: C&

2([7^ οο))-Cft([T, οο)). (2.5)

L has a one dimensional nullspace and full range, i.e. there exists a right inverse L
and we may rewrite (2.5) in the form

= LM(v) (2.6)

where/is in the nullspace of L. If Tis large enough, we conclude from the implicit
function theorem that locally (2.6) has a unique analytic resolution υ = v(f). Since
the projection ν-+(ν(Τ), ν(Τ)) is a continuous linear operator from C%([T, οο)) into
R2, this implies (ii).

3. Solutions which are Periodic in t

Substituting r = ex and denoting differerentiation w.r.t. χ by ', we obtain from (0.1)

u" — u' + e utt
(3.1)
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Using the Fourier expansion u = Σ uk(x)elkcot we find
keZ

ul-u'k-k2co2e2xuk + uk = (u\= £ «*-/(Φ/-Μ(ΦΜ(χ)- (3.2)
l,meZ

We are looking for small solutions of (3.2) in the space

Z1(Cb(R)): = \u\uk continuous, £ sup \uk(x)\< ool.
[ keZ xeR J

We see that (3.2) is of the form Qu — u3, and we shall prove that there exists an
operator Meif i/^Qi?)) such that QM = 1. (Μ has regularizing properties so that
Q is defined on the range of Μ) The equation

u-Mu3=f (3.3)

has a unique solution u = u(f) in a neighbourhood of 0, and this solution gives a
solution of (3.2) iff / is in the kernel of Q. Hence we obtain a one-to-one
correspondence between small solutions of (3.2) and members of the kernel Ν of
the linearization Q. We now construct Μ. Consider the problem

Κ - Κ + «* - k2co2e2xuk = t?k(x) K ) e / ^ ( Λ ) ) .

For k = 0 this has a unique solution uo = MovoeCb(R). So let now be /c =+= 0.
Substituting ζ = χ — xk, where x'k is defined by QXQ(2xk) = (kco)~2, we reduce the
problem to the equation

u" — u' + u — β2ζη = ν. (3.4)

So we have to construct a linear operator Μ in jSf(Cfc(î )), such that ι/ = Μυ solves
(3.4).

With τ = βζ (3.4) reads

Μ̂  — w + r~2u = r~2t;. (3.5)

If r 0 is sufficiently large, the term r~2u can be treated as a perturbation, and from
the characteristic exponents of urr — u = 0 we see that (3.5) has a unique bounded
solution for r^r0 which obeys the initial condition ur(r0) = 0. This solution depends
continuously on ν, i.e. there exists a constant C such that

sup |u(r)| ^ C sup \v(r)\.

Now continue this solution to the left side according to Eq. (3.4). This gives a
solution u in any interval — ζο^ζ< οο, which depends continuously on ν:

sup M0I^C(C0)supK0|.

If we choose ζ0 large enough, β2ζ becomes arbitrarily small for ζ < — £0, so that
now the term e2^u can be treated as a perturbation, and from the characteristic
exponents of u" — M' + M = 0 we see that on (— οο, —Co) the Eq. (3.4) defines u as a
continuous function of ν, u( — ζ0) and u'( — ζ0). So taking everything together we
have found a solution u of (3.4) depending continuously on ν:
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The solution u constructed in this manner is defined as Μν, which completes the
construction of Μ. The elements of Ν are obtained by the same construction as
above, if we take ν = 0 and replace the condition ur(r0) = 0 by ur(ro) = c, c4=0. This
shows that for every fe Φ 0 we find a one-dimensional nullspace. We thus have an
infinite dimensional nullspace and hence an infinite dimensional manifold of
nontrivial solutions of (3.1).

The condition lim ufc(x) = 0, feeZ defines a closed subspace Y of ll{Ch{R)),
χ-> — οο

which is mapped into itself by Μ. Since the members of the kernel of Q belong to Υ9

we see from (3.3) that our solutions are in Υ as well.
We have thus proved

Theorem 3.1. For any given period Τthere exists an infinite dimensional manifold of
solutions to (0.1) which are T-periodic w.r.t. t and obey the boundary condition
limt/(r,i) = 0 uniformly in t.

4. Nonperiodic Solutions

In the argument above we replace Fourier expansion by the Fourier integral, i.e.

00

u{x,k) = j u(x,t)e~iktdt

L1{Cb(R)) = \u(x,k)\u measurable, u(',k)eCb{R) for almost every

and we replace the space ^(C^R)) by

fe, J sup |Μ(Χ, k)\dk < οο\.
X J

The operator Μ is constructed exactly as above, however, we have to discuss some
technical details. First we make sure that the definition of Lx(Cb(.R)) makes sense:

Lemma 4.1. Ifu is measurable and u{ , k)eCb(R)for almost every fe, then sup u(x, fe)
X

is measurable.

Proof <fc|supw(x,fc)>K>= IJ {k|u(x, k)>K} modulo a null set.
{ x J xeQ

Lemma 4.2. ^(C^R)) (with natural norm) is a Banach space.

Proof Let {um}meN be a Cauchy sequence in ^(C^R)). Since after passing to a
subsequence L1-convergence implies convergence a.e.,

lim sup\un{x,k)-uJx,k)\=O
m,n~* οο χ

for almost every fe; hence um converges to a function u uniformly in χ for a.e. fe.
Since u — lim um except for a null set, u is measurable, and clearly u( , fc)e Cb(R) for

m-ί οο

a.e. fe. It remains to be shown that

M(x, k) — wm(x, k)\dk-*O as m->oo
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vn(k) = s\xp\un(x,k) — um(x,k)\ is a Cauchy sequence in L1 and hence convergent to
X

sup\u(x,k) — um(x,k)\. Therefore we find
X

j sup \u(x, k) — um(x, k)\dk ̂  lim sup J sup \un(x, k) — um(x, k)\dk
x η-* οο χ

which implies the lemma.

Lemma 4.3. Μ (constructed as before) maps L1(Cb(R)) into itself.

Proof. Clearly the only difficult step is to show that Mu is measurable. Since the
transformation (x9k)-*(C + x'k,k) transforms measurable functions to measurable
functions, it is sufficient to prove that Mu is measurable. But L1(Cb(R))C C^L 1 ^))
[the space of all bounded continuous functions K-^L 1 ^)] , and one easily
concludes from the construction of Μ that Μ maps C^L 1 ^)) into itself. [To see
this, we only have to reinterpret u and ν in (4.4) as elements of L1(R).'] Since all
elements of Cb(L1(R)) are measurable functions, the lemma is proved.

From Lemmas 4.1 to 4.3 we conclude that we may now perform the same
construction as in Sect. 3 and obtain an infinite dimensional manifold of nonper-
iodic solutions.

The condition lim J sup |Μ(£ k)\dk = 0 defines a closed subspace of L1(Cb(i^))5
χ-> — οο ζ^Χ

which is mapped into itself by Μ, and as before we conclude from this fact that the
solutions we have constructed vanish in the limit χ-» — οο.

Altogether we have proved:

Theorem 4.4. There exists an infinite dimensional manifold of solutions to (0.1),
which are nonpen

with respect to t.

which are nonperiodic in t and obey the boundary condition lim u(r, ί) = 0 uniformly
ΐ — • ( )

5. Some Remarks on the Physical Significance of our Solutions

Equation (0.1) has been derived [1] from the SU(2) Yang-Mills equations by the
special ansatz Α=άθ, φ = (9(0, u\ where Θ is the matrix

^ / cos0 sin9\
Ky =

\ — sin θ cos θ)

If θ has no singularities, this leads to a vanishing charge density. Therefore, all the
solutions having continuous boundary values (particularly u = 0) on the ί-axis may
be interpreted as solutions of the Yang-Mills equations with zero charge. The
physically more interesting solutions are those assuming the boundary values + 1
on the ί-axis. The solutions considered in [1] are of this type, and there the
singularities on the ί-axis are compensated by singularities of θ in such a way that
φ is constant on the ί-axis. These singularities in θ lead to point charges [1]
located on the ί-axis. We have seen in Sect. 2 that a special solution with boundary
values + 1 can be obtained as a limiting case of solutions with boundary value 0.
We suspect that in a similar way solutions with boundary values ± 1 can be found
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on the boundary of the manifolds, the existence of which we have established in
Sects. 3 and 4.
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