On Bounded Solutions of a Classical Yang-Mills Equation

Michael Renardy

Institut für theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-7000 Stuttgart 80, Federal Republic of Germany

Abstract. We discuss bounded solutions of the equation

$$r^{2}\left(\frac{\partial^{2}u}{\partial r^{2}} + \frac{\partial^{2}u}{\partial t^{2}}\right) = u^{3} - u$$

in the halfspace r > 0. All solutions depending only on t/r are characterized topologically. Then we prove the existence of infinite dimensional manifolds of *t*-periodic as well as nonperiodic solutions which are small in a suitable norm.

0. Introduction

It was shown recently by Glimm and Jaffe [1] that multimeron solutions to the classical SU(2) Yang-Mills field equations in Euclidean space are characterized by the following singular elliptic boundary value problem:

$$r^{2} \left(\frac{\partial^{2} u}{\partial r^{2}} + \frac{\partial^{2} u}{\partial t^{2}} \right) = u^{3} - u \quad t \in \mathbb{R}, \quad r > 0,$$

$$\lim_{t, t \to \infty} u(r, t) = 1, \quad u(0, t) = (-1)^{i} \quad \text{for} \quad t_{i} < t < t_{i+1} (i = 0, 1, ..., 2n), \tag{0.1}$$

where $-\infty = t_0 < t_1 < \ldots < t_{2n-1} < t_{2n} < t_{2n+1} = \infty$.

Jonsson et al. proved in [2] that this boundary value problem has at least one solution for every choice of the t_i . In this paper we investigate some kinds of bounded solutions to (0.1), which satisfy different boundary conditions.

We first prove (Sect. 1) that a bounded solution of (0.1) which has a continuous extension to the *t*-axis except for a countable number of points must satisfy $|u| \leq 1$ in the whole half-plane and cannot be positive everywhere, unless it is constant.

The special solutions which we discuss then are of two different types. In Sect. 2 we are concerned with solutions depending only the independent variable $\frac{t}{r}$, for which (0.1) is reduced to an ordinary differential equation; in Sects. 3 and 4 we discuss solutions which are "small" in a suitable norm.

Solutions depending only on r or only on $r/(r^2 + t^2)$ have been considered by Protogenov [5]. A second class of solutions for which (0.1) is reduced to an ODE are those depending only on $t/r = :\tau$. We prove in Sect. 2 that there exists a two dimensional continuum of such solutions satisfying $\lim_{\substack{\tau \to \pm \infty \\ \tau \to -\infty}} u(\tau) = -1$ and $\lim_{\substack{\tau \to \infty \\ \tau \to \infty}} u(\tau) = 1$. In addition we find a one dimensional continuum of solutions approaching ± 1 only on one side and 0 on the other side.

Small solutions are discussed in Sect. 3 for the case of solutions that are periodic in t with a given period and in Sect. 4 for a certain class of nonperiodic solutions. In both cases we find a one-to-one correspondence between small solutions and the nullspace of the linearization. This proves the existence of an infinite-dimensional manifold of bounded solutions. All these solutions approach 0 as $r \rightarrow 0$.

1. A Priori Estimates for Bounded Solutions

Theorem 1.1. Let u be a bounded C^2 -solution of (0.1) in r > 0 which can be continuously extended to the axis r = 0 except at a countable number of points. Then $|u| \leq 1$ in the whole halfplane r > 0.

Remark. The condition that u is C^2 is not really a restriction. As proved in [2], Theorem 3.1, every weak solution to (0.1) which is in L^{∞} is real analytic in r > 0.

Proof. (i) Let $(0, t_0)$ be a point on the *t*-axis where *u* has a continuous limit. We are going to prove that $u(0, t_0)$ must take one of the values $0, \pm 1$. According to Green's formula we have

$$\begin{split} u(r,t) &= -\int_{\partial G} u(r_1,t_1) \frac{\partial \Gamma(r,t,r_1,t_1)}{\partial \nu} d\sigma - \int_G \Delta u(r_1,t_1) \Gamma(r,t,r_1,t_1) dr_1 dt_1 \\ &= -\int_{\partial G} \dots - \int_G r_1^{-2} (u^3(r_1,t_1) - u(r_1,t_1)) \Gamma(r,t,r_1,t_1) dr_1 dt_1 \,. \end{split}$$

Here Γ is Green's function for the bounded domain $G \in \mathbb{R}^2_+$.

Assume $u(0, t_0) \neq 0, \pm 1$ and let U be a neighbourhood of $(0, t_0)$, in which u never takes the values $0, \pm 1$. Let now G be a square as shown in the next diagram.

A Classical Yang-Mills Equation

The second integral in the formula above diverges as the left boundary of G is shifted to the *t*-axis (the integrand contains a factor r_1^{-2} , and only one r_1 is compensated by the Green's function, since the normal derivative of Γ on a smooth portion of the boundary does not vanish [6]). This contradicts the boundedness of *u*.

(ii) The following argument modifies an idea of Glimm and Jaffe [1]. Let F be a C^{∞} -function $R \rightarrow R$ with the following properties: F(u) = u for $u \leq 1$ and F(u) < ufor u > 1, $F' \leq 1$, $F'' \leq 0$. Then

$$\Delta F(u) = F' \Delta u + F'' (\nabla u)^2 \leq F' \Delta u \leq \Delta u.$$

Hence u - F(u) is non-negative, subharmonic, bounded, and is equal to 0 on the t-axis except at a countable number of points. By inversion with respect to a circle we can map the half-plane onto the interior of a circle. From u - F(u) we obtain then a function, which is non-negative, subharmonic and bounded in the interior of the cricle and vanishes on the boundary with at most countably many exceptional points. From [3, p. 204] we conclude that u - F(u) is non-positive. This proves $u \leq 1$, and replacing u by -u we find $u \geq -1$.

Next we prove the non-existence of non-trivial positive solutions.

Theorem 1.2. Let $u \ge 0$ be a bounded solution to (0.1) which can be continuously extended to the t-axis with at most countably many exceptional points. Then u = 1 or u = 0.

Proof. Since $u \ge 0$ we have $\Delta u \le 0$, and if the boundary value is 1 everywhere on the *t*-axis, then u=1. So we may assume there exists a point $(0, t_0)$ such that lim u(r, t) = 0. Let $\zeta(t)$ be a cut-off function supported by a sufficiently small $(r,t) \rightarrow (0,t_0)$

interval containing t_0 .

We define $v(r) = \int_{-\infty}^{\infty} \zeta(t)u(r, t)dt$. Then Eq. (0.1) implies $r^{2}\frac{d^{2}v}{dr^{2}} = -v + \int_{-\infty}^{\infty} \zeta(t)u^{3}(r,t)dt - r^{2}\int_{-\infty}^{\infty} \zeta(t)u_{tt}(r,t)dt$ $= -v + \int_{-\infty}^{\infty} \zeta(t) u^3(r,t) dt - r^2 \int_{-\infty}^{\infty} \zeta_{tt} u(r,t) dt.$

If ζ is as shown in the diagram above, then ζ_{tt} is either positive or its modulus is less than some constant times ζ . Hence we can arrange that

$$\int_{-\infty}^{\infty} \zeta(t) u^3(r,t) dt - r^2 \int_{-\infty}^{\infty} \zeta_{tt} u(r,t) dt \leq \varepsilon v$$

for $r < \delta(\varepsilon)$. Hence for $r < \delta(\varepsilon)$ we find $r^2 \frac{d^2 v}{dr^2} < -(1-\varepsilon)v$.

If we substitute $r = e^{\tau}$, this yields

$$\ddot{v} - \dot{v} < -(1 - \varepsilon)v. \tag{1.1}$$

If *u* does not vanish identically, we may find a τ_0 such that $v(\tau_0) > 0$, $\dot{v}(\tau_0) > 0$. The following diagram shows the solution *w* of $\ddot{w} - \dot{w} = -(1-\varepsilon)w$ with the initial condition $w(\tau_0) = v(\tau_0)$, $\dot{w}(\tau_0) = \dot{v}(\tau_0)$.

According to (1.1) for $\tau \leq \tau_0$ the phase plane curve for v is above the curve for w and the two curves do not intersect again as long as v > 0, $\dot{v} > 0$. This is indicated by the dashed line in the diagram. In particular, we conclude from this that for $\tau < \tau_0 \dot{v}$ remains strictly positive as long as v > 0, and hence v must change its sign for a certain finite $\tau_1 < \tau_0$. (It is a priori clear from the definition of v that \dot{v} cannot diverge to ∞ for finite τ .) This contradicts the positivity of v. Hence v=0, i.e. u=0 in a whole subdomain of R^2_+ . Since u is real analytic, this implies that u vanishes identically.

2. Solutions which Depend only on t/r

Substituting $t/r = :\sinh \tau$, we obtain the ordinary differential equation

$$\ddot{u} + \tanh \tau \dot{u} = u^3 - u \tag{2.1}$$

from which we conclude (after multiplication by \dot{u})

$$\frac{d}{d\tau} \left(\frac{1}{2} \dot{u}^2 + \frac{1}{2} u^2 - \frac{1}{4} u^4 \right) = -\tanh \tau \dot{u}^2 \,.$$

The following diagram shows the lines of constant level for the function $\frac{1}{2}\dot{u}^2 + \frac{1}{2}u^2 - \frac{1}{4}u^4$.

Fig. 2.1

We see immediately that there exists a two dimensional continuum of bounded solutions.

Lemma 2.1. Whenever $(u(0), \dot{u}(0))$ is in $\overline{\Omega} \setminus \{(1, 0), (-1, 0)\}$, the solution of (2.1) with these initial conditions for $\tau = 0$ is bounded and approaches the origin as $\tau \to \pm \infty$.

We shall next prove

Theorem 2.2. Given any λ between -1 and 0, there exists at least one solution of (2.1) satisfying an initial condition $\dot{u}(0) > 0$, $u(0) = \lambda$ which approaches -1 as $\tau \to -\infty$ and 0 as $\tau \to \infty$. For $\lambda = 0$ there is a solution approaching 1 as $\tau \to \infty$ and -1 as $\tau \to -\infty$, and for each $0 < \lambda < 1$ there is a solution approaching 1 as $\tau \to \infty$ and 0 as $\tau \to -\infty$.

Proof. We confine ourselves to the case $\lambda < 0$, the other cases are discussed in the same way.

If $u(0) = \lambda$ and $\dot{u}(0)$ is sufficiently small, then (u, \dot{u}) stays in Ω for every $\tau \in R$. On the other hand

$$\frac{d}{d\tau} \left(\frac{1}{2} \dot{u}^2 + \frac{1}{2} u^2 - \frac{1}{4} u^4 \right) = -\tanh \tau \left(\dot{u}^2 + u^2 - \frac{1}{2} u^4 \right) + \tanh \tau \left(u^2 - \frac{1}{2} u^4 \right)$$
$$\geq -\left(\dot{u}^2 + u^2 - \frac{1}{2} u^4 \right) \quad \text{if} \quad \tau > 0 \quad \text{and} \quad -1 \leq u \leq 1.$$

Hence if $u(0) = \lambda$, we find

$$\dot{u}^{2}(\tau) \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) + \frac{1}{2}u^{4} - u^{2} \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) - \frac{1}{2}u^{4} - u^{2} \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) - \frac{1}{2}u^{4} - u^{2} \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) - \frac{1}{2}u^{4} - u^{2} \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) - \frac{1}{2}u^{4} - u^{2} \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) - \frac{1}{2}u^{4} - u^{2} \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) - \frac{1}{2}u^{4} - u^{2} \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) - \frac{1}{2}u^{4} - u^{2} \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) - \frac{1}{2}u^{4} - u^{2} \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) - \frac{1}{2}u^{4} - u^{2} \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) - \frac{1}{2}u^{4} - u^{2} \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) - \frac{1}{2}u^{4} - u^{2} \ge e^{-2\tau} (\dot{u}^{2}(0) + \lambda^{2} - \frac{1}{2}\lambda^{4}) - \frac{1}{2}u^{4} - \frac{1$$

as long as $-1 \leq u(\tau) \leq 1$.

We see from this that the solution leaves the strip $-1 \le u \le 1$ for $\tau > 0$, provided $\dot{u}(0)$ is large enough. Similarly, the solution leaves the strip for $\tau < 0$, if $\dot{u}(0)$ is large

enough. A continuity argument now shows that there exists C > 0, such that the solution u_0 of (2.1) satisfying $u_0(0) = \lambda$, $\dot{u}_0(0) = C$ remains in the strip and approaches 1 as $\tau \to \infty$ or -1 as $\tau \to -\infty$. We now derive estimates that make sure that actually $\lim_{\tau \to -\infty} u_0(\tau) = -1$ and $\lim_{\tau \to \infty} u_0(\tau) = 0$.

Denoting
$$u_0(-\tau)$$
 by $v_0(\tau)$, we obtain from (2.1)
 $(u_0 + v_0)$ + tanh $\tau(u_0 + v_0) = u_0^3 - u_0 + v_0^3 - v_0$
 $u_0(0) = v_0(0) < 0$, $\dot{u}_0(0) = -\dot{v}_0(0) > 0$.
(2.3)

For any $\tau > 0$ we have $-1 < u_0$, $v_0 < 1$, and as long as (u_0, \dot{u}_0) , $(v_0, -\dot{v}_0) \notin \Omega$ (which is true for small τ) $\dot{u}_0 > 0$ and $\dot{v}_0 < 0$.

The right side of (2.3) is positive for sufficiently small $\tau > 0$, i.e.

$$\frac{d}{d\tau}(u_0 + v_0)' + \tanh \tau(u_0 + v_0)' > 0.$$

Since we have $(u_0 + v_0) = 0$ [whence $(u_0 + v_0) > 0$] at $\tau = 0$, we may conclude from (2.3) that $(u_0 + v_0) \ge 0$ for small enough τ , let us say for $\tau \le \tau_0$.

As long as (u_0, \dot{u}_0) , $(v_0, -\dot{v}_0) \notin \Omega$, the inequality $(u_0 + v_0) > 0$ implies $\dot{u}_0 > -\dot{v}_0 \Rightarrow \dot{u}_0^2 > \dot{v}_0^2$, which, together with (2.2), yields

$$\frac{1}{2}\dot{u}_{0}^{2} + \frac{1}{2}u_{0}^{2} - \frac{1}{4}u_{0}^{4} < \frac{1}{2}\dot{v}_{0}^{2} + \frac{1}{2}v_{0}^{2} - \frac{1}{4}v_{0}^{4} \Rightarrow \frac{1}{2}u_{0}^{2} - \frac{1}{4}u_{0}^{4} < \frac{1}{2}v_{0}^{2} - \frac{1}{4}v_{0}^{4} \Rightarrow |u_{0}| < |v_{0}|.$$
(2.4)

This proves that $(u_0(\tau_0), \dot{u}_0(\tau_0)) \in \Omega$ or else $|u_0(\tau_0)| < |v_0(\tau_0)|$. If $\tau_0 = \infty$ or $(u_0(\tau_0), \dot{u}_0(\tau_0)) \in \Omega$, this implies the statement of the theorem. So we assume $\tau_0 < \infty$ and $(u_0(\tau_0), \dot{u}_0(\tau_0)) \notin \Omega$. Then $|u_0(\tau_0)| < |v_0(\tau_0)|$ and

$$u_0^3(\tau_0) - u_0(\tau_0) + v_0^3(\tau_0) - v_0(\tau_0) \leq 0.$$

This is only possible if $3v_0^2 - 1 > 0$.

Therefore, $\frac{d}{d\tau}(u_0^3 - u_0 + v_0^3 - v_0) = (3u_0^2 - 1)\dot{u}_0 + (3v_0^2 - 1)\dot{v}_0 < 0$ as long as $|u_0| < |v_0|$ and $\dot{v}_0 \le -\dot{u}_0 < 0$.

Therefore the right side of (2.3) is negative for $\tau \gtrsim \tau_0$, and it remains negative as long as $|u_0| < |v_0|$ and $\dot{v}_0 \le -\dot{u}_0 < 0$. Since $(u_0 + v_0) = 0$ at $\tau = \tau_0$, this and (2.3) imply that $(u_0 + v_0)$ is negative for $\tau > \tau_0$, as long as \dot{v}_0 and \dot{u}_0 do not change their sign. But this implies that \dot{v}_0 cannot change its sign unless \dot{u}_0 does. Therefore either \dot{u}_0 has a change of sign for some $\tau_1 > \tau_0$, which implies $(u_0(\tau_1), \dot{u}_0(\tau_1)) \in \Omega$, or $\dot{u}_0 + \dot{v}_0$ is negative for every $\tau > \tau_0$, which implies that $|v_0| - |u_0|$ increases monotonically for $\tau > \tau_0$. This concludes the proof.

Remark. In the special case $\lambda = 0$, the solution given by the last theorem (which is later proved to be unique) is the well known single meron solution given explicitly by $u = \tanh \tau$ (cf. [4]).

Theorem 2.3. In Theorem 2.2 "at least one" may be replaced by "one and only one".

Proof. (i) If the solutions with the initial conditions $u(0) = \lambda \ge 0$, $\dot{u}(0) = a, b$ resp. approach 1 as $\tau \to \infty$, then all the solutions with an initial condition $u(0) = \lambda$, $a < \dot{u}(0) < b$ have the same behaviour.

Fig. 2.2

It is obviously sufficient to prove that the solution u_3 starting from (λ, c) never crosses the two other solutions. Assume the contrary as indicated in the diagram, i.e. $\exists \tau_1, \tau_2 > 0$ such that $u_3(\tau_1) = u_1(\tau_2)$, $\dot{u}_3(\tau_1) = \dot{u}_1(\tau_2)$. Since

$$\tau_1 = \int_{\lambda}^{u_3(\tau_1)} (\dot{u}_3)^{-1} du_3, \qquad \tau_2 = \int_{\lambda}^{u_1(\tau_2)} (\dot{u}_1)^{-1} du_1,$$

we see that $\tau_1 < \tau_2$. Hence (3.1) implies that

$$\ddot{u}_{3}(\tau_{1}) = -\tanh \tau_{1} \cdot \dot{u}_{3}(\tau_{1}) + u_{3}^{3}(\tau_{1}) - u_{3}(\tau_{1}) > \ddot{u}_{1}(\tau_{2}),$$

which is an apparent contradiction. The same argument shows that u_3 and u_2 cannot cross.

(ii) Given T > 0 large enough, there exists a neighbourhood U of (1.0) and an analytic curve C in U passing through the point (1,0), such that for $(u(T), \dot{u}(T))$ in U the solution u of (2.1) with this initial condition approaches 1 as $\tau \to \infty$ iff $(u(T), \dot{u}(T)) \in C$.

From (ii) the theorem follows easily, since the mapping $(u(T), \dot{u}(T)) \rightarrow (u(0), \dot{u}(0))$ is (locally) analytic and hence takes C to an analytic curve \tilde{C} . But an analytic curve cannot contain an interval on the line $u = \lambda$.

So it remains to prove (ii). After the substitution u-1=v, (2.1) reads

$$\ddot{v} + \dot{v} - 2v = v^3 + 3v^2 + (1 - \tanh \tau)\dot{v}$$
.

We rewrite this equation as an operator equation

$$Lv = M(v)$$
 $L, M: C_b^2([T, \infty)) \to C_b([T, \infty)).$ (2.5)

L has a one dimensional nullspace and full range, i.e. there exists a right inverse \hat{L} and we may rewrite (2.5) in the form

$$v = \hat{L}M(v) + f, \tag{2.6}$$

where f is in the nullspace of L. If T is large enough, we conclude from the implicit function theorem that locally (2.6) has a unique analytic resolution v = v(f). Since the projection $v \to (v(T), \dot{v}(T))$ is a continuous linear operator from $C_b^2([T, \infty))$ into R^2 , this implies (ii).

3. Solutions which are Periodic in t

Substituting $r = e^x$ and denoting differentiation w.r.t. x by ', we obtain from (0.1)

$$u'' - u' + e^{2x}u_{tt} + u = u^3. aga{3.1}$$

M. Renardy

Using the Fourier expansion $u = \sum_{k \in \mathbb{Z}} u_k(x)e^{ik\omega t}$ we find

$$u_k'' - u_k' - k^2 \omega^2 e^{2x} u_k + u_k = (u^3)_k = \sum_{l, m \in Z} u_{k-l}(x) u_{l-m}(x) u_m(x) .$$
(3.2)

We are looking for small solutions of (3.2) in the space

$$l^{1}(C_{b}(R)) := \left\{ u | u_{k} \text{ continuous, } \sum_{k \in \mathbb{Z}} \sup_{x \in R} |u_{k}(x)| < \infty \right\}.$$

We see that (3.2) is of the form $Qu = u^3$, and we shall prove that there exists an operator $M \in \mathcal{L}(l^1(C_b(R)))$ such that QM = 1. (*M* has regularizing properties so that Q is defined on the range of *M*.) The equation

$$u - Mu^3 = f \tag{3.3}$$

has a unique solution u = u(f) in a neighbourhood of 0, and this solution gives a solution of (3.2) iff f is in the kernel of Q. Hence we obtain a one-to-one correspondence between small solutions of (3.2) and members of the kernel N of the linearization Q. We now construct M. Consider the problem

$$u_{k}'' - u_{k}' + u_{k} - k^{2} \omega^{2} e^{2x} u_{k} = v_{k}(x) \qquad (v_{k}) \in l^{1}(C_{b}(R)).$$

For k=0 this has a unique solution $u_0 = M_0 v_0 \in C_b(R)$. So let now be $k \neq 0$. Substituting $\zeta = x - x'_k$, where x'_k is defined by $\exp(2x'_k) = (k\omega)^{-2}$, we reduce the problem to the equation

$$u'' - u' + u - e^{2\zeta}u = v. ag{3.4}$$

So we have to construct a linear operator \tilde{M} in $\mathscr{L}(C_b(R))$, such that $u = \tilde{M}v$ solves (3.4).

With $r = e^{\zeta}$ (3.4) reads

$$u_{rr} - u + r^{-2}u = r^{-2}v. ag{3.5}$$

If r_0 is sufficiently large, the term $r^{-2}u$ can be treated as a perturbation, and from the characteristic exponents of $u_{rr} - u = 0$ we see that (3.5) has a unique bounded solution for $r \ge r_0$ which obeys the initial condition $u_r(r_0) = 0$. This solution depends continuously on v, i.e. there exists a constant C such that

$$\sup_{r\geq r_0} |\mathbf{u}(\mathbf{r})| \leq C \sup_{r\geq r_0} |v(r)|.$$

Now continue this solution to the left side according to Eq. (3.4). This gives a solution u in any interval $-\zeta_0 \leq \zeta < \infty$, which depends continuously on v:

$$\sup_{\zeta \ge -\zeta_0} |u(\zeta)| \le C(\zeta_0) \sup_{\zeta \ge \zeta_0} |v(\zeta)|.$$

If we choose ζ_0 large enough, $e^{2\zeta}$ becomes arbitrarily small for $\zeta < -\zeta_0$, so that now the term $e^{2\zeta}u$ can be treated as a perturbation, and from the characteristic exponents of u'' - u' + u = 0 we see that on $(-\infty, -\zeta_0)$ the Eq. (3.4) defines u as a continuous function of v, $u(-\zeta_0)$ and $u'(-\zeta_0)$. So taking everything together we have found a solution u of (3.4) depending continuously on v:

$$\sup_{\zeta \in R} |u(\zeta)| \leq C' \sup_{\zeta \in R} |v(\zeta)|.$$

284

A Classical Yang-Mills Equation

The solution u constructed in this manner is defined as $\tilde{M}v$, which completes the construction of M. The elements of N are obtained by the same construction as above, if we take v=0 and replace the condition $u_r(r_0)=0$ by $u_r(r_0)=c$, $c \neq 0$. This shows that for every $k \neq 0$ we find a one-dimensional nullspace. We thus have an infinite dimensional nullspace and hence an infinite dimensional manifold of nontrivial solutions of (3.1).

The condition $\lim_{x \to -\infty} u_k(x) = 0$, $k \in \mathbb{Z}$ defines a closed subspace Y of $l^1(C_b(R))$, which is mapped into itself by M. Since the members of the kernel of Q belong to Y, we see from (3.3) that our solutions are in Y as well.

We have thus proved

Theorem 3.1. For any given period T there exists an infinite dimensional manifold of solutions to (0.1) which are T-periodic w.r.t. t and obey the boundary condition $\lim_{r\to 0} u(r,t)=0$ uniformly in t.

4. Nonperiodic Solutions

In the argument above we replace Fourier expansion by the Fourier integral, i.e.

$$u(x,k) = \int_{-\infty}^{\infty} u(x,t)e^{-ikt}dt$$

and we replace the space $l^1(C_b(R))$ by

$$L^{1}(C_{b}(R)) = \left\{ u(x,k) | u \text{ measurable, } u(\cdot,k) \in C_{b}(R) \text{ for almost every} \\ k, \int \sup_{x} |u(x,k)| dk < \infty \right\}.$$

The operator M is constructed exactly as above, however, we have to discuss some technical details. First we make sure that the definition of $L^1(C_b(R))$ makes sense:

Lemma 4.1. If u is measurable and $u(\cdot, k) \in C_b(R)$ for almost every k, then $\sup_x u(x, k)$ is measurable

is measurable.

Proof.
$$\left\{k | \sup_{x} u(x,k) > K\right\} = \bigcup_{x \in Q} \left\{k | u(x,k) > K\right\} \text{ modulo a null set.}$$

Lemma 4.2. $L^1(C_h(R))$ (with natural norm) is a Banach space.

Proof. Let $\{u_m\}_{m \in \mathbb{N}}$ be a Cauchy sequence in $L^1(C_b(R))$. Since after passing to a subsequence L^1 -convergence implies convergence a.e.,

$$\lim_{m,n\to\infty}\sup_{x}|u_n(x,k)-u_m(x,k)|=0$$

for almost every k; hence u_m converges to a function u uniformly in x for a.e. k. Since $u = \lim_{m \to \infty} u_m$ except for a null set, u is measurable, and clearly $u(\cdot, k) \in C_b(R)$ for a.e. k. It remains to be shown that

$$\int \sup_{x} |u(x,k) - u_m(x,k)| dk \to 0 \quad \text{as} \quad m \to \infty$$

 $v_n(k) = \sup_x |u_n(x,k) - u_m(x,k)|$ is a Cauchy sequence in L^1 and hence convergent to $\sup_x |u(x,k) - u_m(x,k)|$. Therefore we find

$$\int \sup_{x} |u(x,k) - u_m(x,k)| dk \leq \limsup_{n \to \infty} \int \sup_{x} |u_n(x,k) - u_m(x,k)| dk$$

which implies the lemma.

Lemma 4.3. M (constructed as before) maps $L^1(C_b(R))$ into itself.

Proof. Clearly the only difficult step is to show that Mu is measurable. Since the transformation $(x, k) \rightarrow (\zeta + x'_k, k)$ transforms measurable functions to measurable functions, it is sufficient to prove that $\tilde{M}u$ is measurable. But $L^1(C_b(R)) \subset C_b(L^1(R))$ [the space of all bounded continuous functions $R \rightarrow L^1(R)$], and one easily concludes from the construction of \tilde{M} that \tilde{M} maps $C_b(L^1(R))$ into itself. [To see this, we only have to reinterpret u and v in (4.4) as elements of $L^1(R)$.] Since all elements of $C_b(L^1(R))$ are measurable functions, the lemma is proved.

From Lemmas 4.1 to 4.3 we conclude that we may now perform the same construction as in Sect. 3 and obtain an infinite dimensional manifold of nonperiodic solutions.

The condition $\lim_{x \to -\infty} \int \sup_{\zeta \le x} |u(\zeta, k)| dk = 0$ defines a closed subspace of $L^1(C_b(R))$, which is mapped into itself by M, and as before we conclude from this fact that the solutions we have constructed vanish in the limit $x \to -\infty$.

Altogether we have proved:

Theorem 4.4. There exists an infinite dimensional manifold of solutions to (0.1), which are nonperiodic in t and obey the boundary condition $\lim_{r \to 0} u(r, t) = 0$ uniformly with respect to t.

5. Some Remarks on the Physical Significance of our Solutions

Equation (0.1) has been derived [1] from the SU(2) Yang-Mills equations by the special ansatz $A = d\theta$, $\phi = \Theta(0, u)$, where Θ is the matrix

$$\Theta = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}.$$

If θ has no singularities, this leads to a vanishing charge density. Therefore, all the solutions having continuous boundary values (particularly u=0) on the *t*-axis may be interpreted as solutions of the Yang-Mills equations with zero charge. The physically more interesting solutions are those assuming the boundary values ± 1 on the *t*-axis. The solutions considered in [1] are of this type, and there the singularities on the *t*-axis are compensated by singularities of θ in such a way that ϕ is constant on the *t*-axis. These singularities in θ lead to point charges [1] located on the *t*-axis. We have seen in Sect. 2 that a special solution with boundary values ± 1 can be obtained as a limiting case of solutions with boundary value 0. We suspect that in a similar way solutions with boundary values ± 1 can be found

A Classical Yang-Mills Equation

on the boundary of the manifolds, the existence of which we have established in Sects. 3 and 4.

Acknowledgements. I thank Professor K. Kirchgässner, who encouraged me to write this paper, and I thank my colleague W. Häffner for a valuable discussion on the physical aspects of the problem. Finally, I thank Professor H. Haken, in whose institute I did this work, and I thank the Volkswagen Foundation for financial support within the project of Synergetics.

References

- 1. Glimm, J., Jaffe, A.: Multiple meron solutions of the classical Yang-Mills equation. Phys. Lett. **73B**, 167–170 (1978)
- 2. Jonsson T. et al.: An existence theorem for multimeron solutions to classical Yang-Mills field equations. Commun. Math. Phys. **68**, 259–273 (1979)
- 3. Dinghas, A.: Vorlesungen über Funktionentheorie. Berlin, Göttingen, Heidelberg: Springer 1961
- 4. Alfaro, V. de, Fubini, S., Furlan, G.: Phys. Lett. 65B, 163 (1976)
- 5. Protogenov, A.P.: Bag and multimeron solutions of the classical Yang-Mills equations. Phys. Lett 87B, 80-82 (1979)
- 6. Protter, M., Weinberger, H.: Maximum principles in differential equations. Englewood Cliffs: Prentice Hall 1967

Communicated by A. Jaffe

Received January 17, 1980