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Abstract. The ί/n expansion is considered for the π-component non-linear σ-
model (classical Heisenberg model) on a lattice of arbitrary dimensions. We
show that the expansion for correlation functions and free energy is asymp-
totic, for all temperatures above the spherical model critical temperature.
Furthermore, the existence of a mass gap is established for these temperatures
and n sufficiently large.

1. Introduction

It was noted by Stanley in 1967 [1] that certain lattice spin systems exhibit
considerable simplification as n, the number of spin components, becomes large. In
fact formally, as n->oo, these models become the so-called spherical model,
introduced and solved by Berlin and Kac in 1952 [2]. Their work should in fact be
considered the origin of the studies of large n behaviour of multicomponent
systems it also provided motivation for Stanley's work.

In 1973 Wilson [3] in the context of quantum field theory and Abe [4] and
Brezin-Wallace [5], in the context of spin systems, found that there is a systematic
way to expand in powers of ί/n. Subsequently these "ί/n expansions" were used to
compute a variety of objects of interest, such as critical temperatures and
exponents.

Soon several other theories came into the realm of ί/n expansion. 1974 't Hooft
[6] gave the solution of 2-dimensional QCD with SU(JV) gauge group, as 7V->oo,
and Gross and Neveu [7] studied the ί/N expansion for 2-dimensional four-
fermion interactions (these had already been touched in Wilson's work). More
recently the ί/n expansion has been applied ([8,9]) to CP" and related σ-models
and it has been also suggested to be useful in 4-dimensional QCD [10].

There are several reasons why the ί/n expansion has aroused such an interest. It
is a non-perturbative expansion, typically each term being a (formal) sum of
infinitely many orders of ordinary perturbation theory. Already the zeroth order
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reveals non-trivial structure, e.g. in the case of the non-linear σ-model the formal
π-»oo limit is the spherical model, which exhibits a phase transition. In scale
invariant theories, such as QCD with zero fermion masses and various σ-models,
there is no natural parameter in which to perturb and so the ί/n expansion is the
only expansion available. Finally ί/n expansion is expected to be' valid near the
critical point, providing thus among other things a computational tool alternative
to the ε-expansion.

Very little has been rigorously proved about the ί/n expansion. The only result
known to this author is by Kac and Thompson [11], who proved that the limit of
the free energy of spin systems with spins of fixed length is that of the spherical
model as n-» oo. However, their method does not generalize to higher orders in ί/n,
nor does one get any information about the critical temperature, fall-off of
correlations etc.

In this paper, we will be considering the ί/n expansion for n-component non-
linear σ-models on a d-dimensional lattice with d^.2 near the critical point. As
mentioned above, the formal n-+co limit of these models is the spherical model,
which has non-zero critical temperature Ts in more than two dimensions and in
d = 2,.Ts = Q. We will study the ί/n expansion for Tabove 7^ and show that it is an
asymptotic expansion for correlation functions arbitrary near.Ts. This is achieved
by obtaining an explicit expression for the remainder to k orders of the expansion,
which we show to have a bound proportional to n~k~1 (Sect. 6). Moreover, spatial
behaviour of the remainder can be studied, and we will establish exponential falloff
in the odd sector and certain parts of the even sector. This proves the existence of a
massgap (in these sectors) for all temperatures T above Ts as n>n(T) (Sect. 5).

We note, that it has been previously shown using infrared bounds [12], that
the critical temperature T(n) for spontaneous magnetization satisfies T(π)Ξ>Ts in
dimensions d ̂  3. If we define T^ to be the smallest temperature above which
there is massgap, our results imply that (to be precise, only in the above mentioned
sectors) T^} ^Ts + an~b where α, b >0. We also note, that the known upper bounds
for T(n} differ from Ts by a numerical factor [13].

By the Mermin-Wagner theorem, there is no long range order in two
dimensions for our models. It is a conjecture, that for n>2T" is zero. However no
rigorous results exist. Our results imply that T^rgαflogw)"'* α, β>0.

The proofs of our results rely on the use of a "dual" representation of the model
(Sect. 2), in which the ^-dependence is transparent. On the other hand most of the
estimates depend on the fact that in the original representation we can use
reflection positivity in the form of chessboard estimates. The interplay of the two
representations is the underlying philosophy of our approach.

In the dual representation the ί/n expansion turns out to be an expansion
about a saddle point of a certain infinite dimensional integral. The technical
problems with it are twofold. First of all, the integration measure is complex and
non-local. Secondly, local expectations in the original representation are non-local
in the dual representation. The second problem is solved using random walk ideas
of Brydges and Federbush [14] to reduce to local expectations. Their methods
play an important role in our work, allowing us to reduce the problem of proving
clustering to that of obtaining sharp pressure estimates. Due to the fact that the
measure is complex and non-local these are however nontrivial to prove. We
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control the behaviour in the neighborhood of the saddle point by using chessboard
estimates in the spin representation as a lower bound, which allows us to reduce to
finite volume in the dual representation. The integral away from the saddle point is
estimated using chessboard estimates in the dual representation (Sect. 7).

The main results can be found in Sect. 3.
Finally, we remark that results similar to those proved in this paper can be

proved for the (φ2)2 Euclidean Quantum Field Theory (continuum) in two
dimensions. This will be discussed in a separate publication (see also [20]).

2. The Model and the Formal Expansion

We will start by defining the model and giving a formal derivation of the
expansion.

Let A be a simple, cubic, ^-dimensional periodic lattice obtained from
(-/ + i / + i)dCZd+(i ...,|) by identifying points (i, . . . , / + i, ij+ί9...,id) and

(i1? ..., — / + 2 > * / + ι > •••Jz'd)j7 = ̂  -->&• We occasionally imagine A imbedded in the
(flat) torus TΛ obtained from [ — ί + ̂  , / + ̂ ]ClRd. The non-linear σ-model (the
classical Heisenberg model) is described by the random variables (spins) φ'.A^JR?
whose joint distribution is

(la)
ieΛ

where Z0(A, n, β), the partition function, is chosen so that μ0 is a probability
measure on Rπyί. β=T~^ is the inverse temperature. The normalization of φ2 can
be changed by scaling β n turns out to be natural since it leads to a nontrivial limit
as n-»oo. It is also convenient to rescale φ-+β~1/2φ, since in d = 2 we shall be
considering β^σo. Thus we will study the following measure

2 -nβ}dnφί. (Ib)
| i- j |=l ieΛ

We will usually suppress A in dμ(Λ} and other expressions since the Λ-*Zd limit
of Z(Λ) and correlation functions exists by standard arguments (see e.g. [15]) and
our bounds are uniform in \A\.

Let us study the characteristic functional S(g) of μ, i.e. S(g) = <exp(</>, g)yφ where

< >Φ=l dμ (2)

and (φ,g)= Σ Σ 0?^? After multiplying S(g) by l=AA'1 where
ieΛ α= 1

A = Qxp( — d — m2/2)nβ\A\ and using φ2 = nβ, we get

nβ)d"φί, (3)

where Zj is the integral with g = Q, A is the lattice Laplacean, i.e. Aίj=—2dδίj

+ Σ $ij + k> and ^2 is at the moment an arbitrary positive constant. We can
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write the numerator in (3) as

^

and a similar formula for the denominator. Now the gaussian integrals can be
performed and we end up with

where < >α is the normalized measure

(4)

Note, that the determinant in (4) doesn't have any zeroes since —A+m2 is a
positive definite operator and a is self-adjoint. We see from (4) that as n-^co one
could expect that the dominant contribution to this measure comes from the
vicinity of the critical points of F. The ί/n expansion is a formal loop expansion
about such a point.

Let us make a change of variables α— >αz where z = n~ίl2. Thus defining

f(a,z)=-T^trlog(l-2izCa)-iz-ίβtra9 (5)

(6)

we get

%)= $exp±(g,(-A+m2-2ίazΓ1g)dμ(a), (7)

where we cancelled the constant det( — A + m2)~n/2 and denoted ( — A +m2)~ l by C.
We will denote expectations in dμ, the dual measure, by < ).

The critical points are determined from df/dat = 0, i.e.

(-Δ+m2-2iza)ϊi

l=β for all ieΛ. (8)

Let us try to choose m2 such that α = 0 is a solution to (8), i.e.

(-Δ+m\ι=β (9a)

which in the Λ-*TLd limit can be written as

ί T Σ d - c o s ^ + m' =£. (9b)
[-π,π]d(Zπ) \ i=l /

Let mQ(β) be the solution of (9b) when it exists. We see, that in dimensions d ̂  3
there exists a βs < oo such that mQ(βs)

2 = 0, for β below βs mQ(β)2 > 0, and for β > βs

there is no solution m0(β)2^0. On the other hand in two dimensions as /?-» oo we
can always satisfy (9b) with some m 2>0 since the integral has a logarithmic
singularity at m2 = 0. (9b) is the equation for the massgap m0(β) of the spherical
model [2] and βs is the inverse critical temperature of that model so for d = 2

τs=β;1=o.
The 1/n expansion can thus be considered as an expansion around the

spherical model. We will be studying the region β<βsso that m0(β)2>0. We are in
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particular interested in T being close to Ts, i.e. m0(j8) close to 0. By a simple
computation one gets

\ime4πβm0(β)2<oo d = 2. (10)
β-* oo

In d = 3 one obtains that m0(β)~2(T-Ts) is bounded as T-+.TS.
The expansion for ^-expectations is now formally derived by performing the

dual transformation

and expanding G and e/ in powers of z. Since the Taylor series for / at a = 0 is

/(α, z) - - tr(αC)2 + \ £ (2i)* AT * zfc~ 2

one only has to compute gaussian integrals.
Let us consider e.g. the 2-point function which is

2ίaz)rj^^^Hijy (12)

by differentiating (7). Hence in this case

G(a,z)~
fc=0

and we have to compute integrals of the form

where dρ is the gaussian measure on Rl/l1 with inverse co variance defined by the
quadratic form

Thus e.g. the 0(l/n) terms are

- 4n~ 1 J (CaCaQtjdρfa) + 8(3n)~ 1 J (CαC)ί . tφC)3 dρ(a) . (13)

In general the k : th oder in 1/n expansion for the 2-point function can thus be
expressed graphically as follows. Consider connected graphs made out of various
rings (Fig. 1), with up to 2k +1 external legs, and one chain (Fig. 2) with up to 2k
legs, by joining the legs pairwise. A ring with n legs carries a factor ^(2i)nzn~2 and a
chain (2iz)n. Straight lines represent C£j and curly ones \B^, where (JEP1)^. — (Cί7 )

2.
Sum of such graphs with total power of z 2k and multiplied by numerical factors
constitutes the k : th order term in the expansion. The expansion has only even
orders of z. E.g. the expression (13) is represented by the graphs of Fig. 3. We take
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as the starting point of our analysis the dual measure dμ. The basic technical
properties of this measure are given in Sects. 4 and 7.

3. The Main Results

To state the results we need to introduce some notation. Let A be a finite set of
points in Zd, same point possibly occurring several times, and α :,4-»[l,2, ...,w].
Let (φy be the correlation function

ίeA

Recall, that m0(β) is the spherical model mass gap; let us denote μ0(β)
= cosh~1(l + 2mo(β)2}- Theorem 1 proves the existence of mass gap in the odd
sector for T arbitrarily near Ts - the spherical model critical temperature - as n is
sufficiently large.

Theorem 1. Let A = A1uA2 where A1 and A2 are odd. Let d(A1,A2) be the distance
between A1 and A2. Then there exist constants α1? a2 >0, depending on the dimension
d, such that for all β<βs and n>a1m0(β)~a2

where μ(β, τt)>0 and moreover μ(β,n)-+μ0(β) as n->oo.

We will show that a2 ̂  6(d + 2) +1 and also get an explicit bound for R (Sect. 5).
00

Let now ]Γ sm(A,a)n~m be the formal l/n expansion for <φ^>, derived in

Sect. 2. Theorem 2 gives a bound for the remainder of this expansion.

Theorem 2. Let β<βs and w>max(8r,α1m0(^)~fl2), where a1 and a2 are as in
Theorem ί. Then

r-l

'A/ Z-j m\ ' /
m = 0

Thus, in particular, the l/n expansion is an asymptotic expansion for cor-
relation functions (point-wise for T arbitrarily near the spherical model critical
temperature). We will get quite explicit bounds for R(r, β, A, α), in particular in the
odd sector R has exponential ϊalloΐϊe~μ(n'β)d(Aί'A2) (see Remark 1 after the proof of
Theorem 2).

Also, the free energy is shown to have an asymptotic expansion in powers of
l/n (Remark 3 in Sect. 6).

4. Reflection Positivity of dμ

We will now prove the basic technical property of dμ, reflection positivity. Since in
Sect. 7 will also need some related measures, we define in general a two parameter
family of complex measures on lR|y11

dμKit(a) = Z-t\e^χκ(a) f] h^da,, (14)
ieΛ
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where χκ(a) is the characteristic function of the cube \at\^K, ieΛ, and

. (15)

Zκ r is defined so that Jdμκ f = 1. The measures will be considered only for those
values of K, t when this is possible. We will later see, that this happens for t = 0,
K > 0 and for all t if K; > κ:(ί, /I). Expectation in dμκ >t is denoted by < )κ>f . Note that
dμoθ9θ = dμ. We prove, that dμκ>ί, although complex, is reflection positive for
z = (integer)" 1/2. We introduce some notation. Let A+ = {ieA\iίE[^J — ^']}9 and
let θ : A -> A be the reflection in the x 1 = 0 plane. Hence A = A + u ΘA + . For X C A let
A(X) denote the functions FeS(lR|x|) depending only on the variables {at}ieX. We
define τ\A(X)^A(X) by

We now extend θ:AQί)-+A(ΘX) by

(ΘF)(a) = (τF)(θa), (θa\ = aθi.

Then we have

Propositions. Let z = n~1/2, neN and ZMΦO. Then

(a) (FΘFyK}t^Q for FeA(Λ + ) ( Reflection positivity ).

(b) Letf^A^i}} satisfy τf^f^ Then

ieΛ\jeΛ / κ,t

(Chessboard estimates).

Proof, (a) We transform <FftF)κ t back to the ^-representation. Let

u«) Π ^(z-^da,,
Z/ ieyl +

where α f is defined to be zero for ieΛ_. Then

where < >0 is the normalized measure

ieΛ

We denote the standard reflection operator in ^-representation by θφ i.e.
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We get

(φ)=$e«a>*2-ne\τF)(θ-}χzκ(a) J] \(z^aμaj

\ zl jeθΛ +

W

-kκ(α) Π

F(θφφ)*

(ΘΦF)(Φ).

by Reflection positivity of < >0 and by assumption <ϊθφί>Φθ.
(b) Chessboard estimates are a consequence of (a) by the general theory of

reflection positivity [16]. Π

5. Mass Gap

In this section we will establish the existence of a mass gap in the odd sector for all
β<βsasn>n(β).

Let us consider the correlation functions <</>^> defined in Sect. 3. Let
y4 = α~1(f). We can transform <<^> to the dual representation by using (7).

<ΦaΛ>=flΦΆ = Σ Π Π Hj\ (16)

where ^(^4^) is the set of pairings of the elements of A{ and the right hand side of
(16) is defined to be zero if any A{ is odd. As in (12) H = ( — A+m^ — 2ίaz)~1.

As it turns out all estimates of correlation functions such as the ones occuring
on the r.h.s. of (16) can be reduced to pressure estimates, namely upper and lower
bounds for the partition functions Zκ , occuring in (14). In this section we will in
particular need bounds for

= Jim JjV(fl'z) f] h^daΛ11^. (17)
"*" L leΛ \

Let also ξ denote the formal z->0 limit of ξ(0\z):

ξ=

The proofs of the following basic results are deferred to Sect. 7. Recall that RP
implies that ξ(t
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Proposition 4. There exist constants yί and y2, depending only on d, such that for
n>γ1Λ1(β} and a^m^β

for all β<βs, where δ1 =m0α1(logn)2<i"1"3.

Propositions. There exist constants γ3 and γ4 such that for n>γ2<x.2(β) and

where ^2 = m0α2(logπ)2.

Remark. Note that the upper bound, Proposition 5 is much sharper than the lower
bound. The lower bound thus determines our bounds for critical temperature,
physical mass etc.

We will now bound the expectation in (16). The crucial idea is to expand H^
= ( — A + nΪQ — 2/zα) rr 1 in powers of the off-diagonal part K of — A — 2 d — K. Such
an expansion has been previously used by Brydges and Federbush [14]. Since
|| K I I = 2d and m0(β)2 > 0 for /? < βs, the expansion converges for all a. Using the fact
that K generates random walk we get

n(ω'k\ (18)
ω: i->j keΛ

where ω runs through the random walks on A from i to j and n(ω, fc) is the number
of times the walk ω visits the site k.

Let us denote

1. (19)

We can now prove

Proposition 6. There exists a constant γs, depending only on the dimension d, such
that for n>y5n(β)

:1 * V α= 1

where C(m2) = (—A + m2)~1 and the physical mass m2(β,ri)>0. Moreover

n ~* oo

Proo/ Using (17) and recalling (15) we get

IH,,\= Σ
α = l
keΛ

keΛ

where ί(ω, fc) = ^ ^(ωα' Ό
α = l
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Since τhm — hm we can apply chessboard estimates (Proposition 3b) to obtain
(we take the Λ^Zd limit)

Π HW,
.α=l

, z

£ Σ Π . (20)

Combining Propositions 4 and 5 we can find a γ5 >0 such that as n>γ5n(β)

for all ί, where m2(β,n)>0. We can choose Iimm2(β,n) = m0(β)2 since
H-+00

lim sup-THY—- <(2rf + mπ)~ ί. Thus

Π ffw.) ^ Σ Π^+m2)-1*""*^ Π cw.(«
2). π

= 1 / {ωα} fc,α α= 1

As a consequence of Proposition 6 we obtain the

Proo/ o/ Theorem 1. In (16) each term in the sum includes at least one Hjp such
and/e^2. Proposition 6 therefore implies the claim since C(m2} has the

desired exponential falloff. Π

We would in general expect that truncated correlations (φ^1 Φϊ2) decrease
exponentially in the distance d(Aί9A2), for β<βs and n>γ5n(β). Proposition 6
however will not permit us to perform the necessary cancellations required by the
truncation. We thus get exponential clustering only when the truncation is trivial,
i.e. also in certain parts of the even sector. However it is possible to extend this
result to certain non-trivial truncations using Ward identities as follows.

Let < >φ,ε be the expectation in the (normalized) measure e~1/2(φ'εφ}dμ(φ],
where ε ̂ ε^ y, ε^O, and < >ε in the corresponding dual measure. Of course
< )ψ ε = < )φ We thus get "Ward identities"

which by simple computation can be written in the form (//^^(H"1 +β)~1)

«;FΛ=o. (21)
kε

In particular let F = Htj so

= -HίkHkjdsk

and thus inserting in (21)

2
fck> ij ^ ik
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Hence

Hy> + 2<HftHjlk>

HΛHJlt> (22)

and we were able to perform explicitly the cancellations in this non-trivial
truncation. The right hand side of (22) can be bounded as before by

2(1 -- Cik(m2) Cjk(m2) and we get the desired exponential falloff.

In a similar way we can deal with the expectations /(φ(

h

1})2 \ Π ΦjΛ an<^ we Set

\ j I
exponential falloff.

6. The l/n Expansion and a Bound for the Remainder

We shall in this section derive the l/n expansion in a nonperturbative way and
bound the remainder.

The expansion is generated by "resolvent" expanding H's in (16) and integrating
factors of a by parts in the dual measure. We rewrite the / of (5) as

/(α, z) = - tr(αC)2 + g(a, z) = - (α, B~ la) + g(a9 z) (23)

thus defining g and B~l. We need the following elementary Lemma, whose proof is
given in the end of this section :

Lemma 7. B~ i defined in (23) is a strictly positive operator, whose inverse B obeys

with α and b constants and μ0 = cosh ~ l ( 1 4- -^- 1.

The integration by parts formula is (we denote d = d/Sa^

(24)

is easily computed from (5) :

(25)

where P. is the projection onto the j : th coordinate and we used the saddle point
condition Cu = β. dβ thus has an explicit z factor. Note that in perturbation theory
djg is 0(z). In (24) we may also encounter djH:

(26)

The "resolvent" formula for H is :

H = C + 2ίzCaH. (27)
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As an example of above let us derive the O(l/n) reminder for the two-point
function <H/7 >. We first expand <H> = C + 2z'zC<αfί> and then integrate the a by
parts to obtain

where

= 4 £ CPkBkl(H tr(PtCaHaQy

In the general case (16) we proceed in the same way. We first expand an H
using (27). In terms having α's we always integrate by parts. In terms having no α's
we expand an H. When no H are left we have generated a term in the expansion.
The remainder has an explicit n~k factor and involves products of C^ 's and Bkl's
contracted to expectations of the form

Γk Π Hk
ίel <k,iy

which we now bound.

Lemma 8. Lei n^.max(4I,y5n(β)). Then

k Π H . Λ ^T'^ΠQ^2),
α = l / Δ Λ

where b is a constant and m2 is as in Proposition 6.

Proof. Using (18) and recalling (15) we get

(28)

Σ
lεΛ

where we inserted a factor z*'1'. The summand is again of the form /J~| G^α^V and
\ i I

since Gz(α) is (ia)sht(a) for some 5 and t we have τGz = Gz. Using chessboard

estimates it is bounded by f| /Π^z(αr)\ 1/|yl | If ^ = 0 we can use Proposition 6.

Thus it suffices to consider sΦO. Then

The last factor equals

(28)
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Since C1/2αCαC1/2^c0C
1/2α2C1/2 where c0-infspecC = (2d + m2)-1 and since by

minimax principle, ifO^A^B, det^4^det5, we get

det(l+4z2C1/2αCαC1/2Γ"/"/2

ίeΛ

"

Since s^|/| ̂  - (28) is now by explicit computation bounded by - ! b{ where 61

= (2d + m2)b2 and fr2 is independent on β. We can now undo £ as in
{ω}

Proposition 6, and we get the claim since ]~] (l/2sk)!^ — ! and by
Σsk = m 2

Proposition 4 [jV]~1/yl is bounded by a constant (detJ3<oo even at β s ) . Π

We are now in a position to prove Theorem 2 :

Proof of Theorem 2. From Lemma 8 and the discussion preceeding it we see, that
the estimate for the remainder to k— 1 orders of the expansion of (16) is a sum of
terms of the form

~d(k,β) Σ A(lβj))U ft Cj&)W,+ 1), (29)
n (lj(kj)} 07 > fc./=0

p
where C(k>0 is either C(m§) or C(m2), {/.(ίc,.)} run through X^d and yl(/) is a graph

with P—^Pj external legs and lines Btj and Ctj with CC and CCB vertices, such
that each connected component of A contains a leg lj(kj). We defined //O) =7 and

/.(p. + !)=/. Since C and β have exponential falloff, sup^(/)<oo. The claim
(0

follows. Π

Remark 1. The r and β dependence of R(r, β, A, α) are easy to study. Note that if we
formally let z-»0 in our remainder, all JTs turn into C's and we are left with

expectations /|~] a\ in the gaussian measure with covariance |J5, which produce
\ίe/ /O

— terms. The remainder then turns into the corresponding term of the

expansion. Thus from Lemma 7

where i^1(r)^ft'1K3(r), K3 being the number of graphs in the r : th order term.

Remark 2. As for the β dependence, we use the fact that the remainder consists of
graphs of the expansion with some B lines removed. E.g. for the two-point function
the largest terms are those with maximal number of a factors, graphs such as in
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Fig. 4, where dots denote α's. These are proportional to

Γ + 1-mή2 ( 2 r + 1 )

by using Lemma 7. These claims can be established by an analysis similar to the
one sketched in Sect. 8.

Fig. 4

Remark 3. Theorem 2 allows us to prove that the expansion is asymptotic to the

free energy p = lim pΛ, where

ieΛ

and An is the area of n— 1 dimensional sphere of radius n. Namely

- n d φ W j (30)
o aP o P

and we can now expand the right hand side of (30) in powers of l/n. As /?->() (high
temperature) we only need to note that β~lmQ(β)2-* constant [from (9)] and that
the b in Lemma 8 is bounded byoq+o^m2). It is now easy to verify _that the
remainder to k— 1 orders is bounded by Rk(β)βn~k uniformly for βe [0, /?].

We now prove Lemma 7.

Proof of Lemma 7. Positivity of B~ ί follows from

since cfiCa is a positive operator by the positivity of C.
As for the exponential falloff, recall that

where

C(p)=(2 Σ (l
\ i = l

and /d = [ — π, π]d. Now (C*C)(/c) is periodic in Refe, and analytic in /ct for l
^μ0(β) because Re[C(p)C(p- /c)] is strictly positive there. Thus we can shift the kl

integration to [ — π, π] ± i(μ0 — ε) and hence obtain falloff in the 1 -direction and by
symmetry to all coordinate directions. Taking geometrical means and estimating
the overall constant gives the claim. Π



1/n Expansion 287

7. Bounds for the Dual Measure

This section proves the basic pressure estimates, Propositions 4 and 5.
For large n (small z) we expect our measures dμκft to get their main

contribution from the vicinity of a = Q, the critical point. Thus we expect Zκjt to
depend very little on K as the following lemma shows.

Lemma 9. Let ξKtt(Λ,z) = ZKιt(Λ9z)ίM. Then

4κ2 -n/4

n(2d + m%Y

Proof. Let K be such that ξκ>f φ 0 (if ξκ^ = 0 for all /c we are done however, e.g. ξ^ t

>0 since in the ^-representation the corresponding single spin measure is
positive). Recall that £κ>ί^0 by Proposition 3.

Defining

we compute

where we used translation in variance in the second step. Since τδ+=δ
Proposition 3 gives (by a limiting argument)

leΛ

:g2 sup
tti=±K

i / M I (31)

where in the second step we cancelled ξκ>t and in the third step noticed that there is
no integration left. Recalling that

we get

and using minimax principle as in Lemma 8

det(l +4z2Cl/2aCaC1/2Γnl2^ f l + -
-n\A\l2

(32)

since a2 = κ2. Inserting (32) to (31) we get the claim for £ κ < f φ O since \ht(at)

0)~t. By continuity the claim holds for all K. Q
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Lemma 9 enables us to reduce the study of ξ(t) in Propositions 4 and 5 to the
study of the cutoff partition functions Zκ t

ZJΛz)=K<*'z>χκ(α)Π«^.
leΛ

We wish to bound ZKtt(A,z) in terms of \imZκt(A,z). Let us define for

τce[0, oo ]

ξκ(Λ9z) = ZKt0(Λ,z)UM, (33a)

ξκ(z)=lίmdξκ(A,z), (33b)

ξκ(Λ)= lim UΛ^Mί e-«^>2χ>0<fo)1/MI, (33c)

ξκ=Tάmdξκ(Λ). (33d)

In (33c) we denoted explicitly the A dependence of CΛ = (— ΔΛ-\-m0(β,A)2)~1,
where we recall that m^ is also A dependent since it is a solution of the saddle point
condition (C^it = β (9a).

Proposition 5 is now rather easy to prove :

Proof of Proposition 5. We can estimate ξκ >f by taking absolute values :

ξκ>t(A,z)M^(2d + m2

0Γ
tlΛl$eRef(a>z)χκ(a)da. (34)

Now from (5)

in 1

Re/(α, z) - Re - J ds tτ[2izCa(ί - 2ίzsCaΓ *] - iz~ lβ trα
\ 2 o

1

= - tr(αC)2 + 8z2 Re J dss3 tr(Cα)4(l - 2izsCa)~ 1 , (35)
o

* where in the last step we used Cit — β. Inserting (35) to (34) and choosing z ̂  -p we

obtain

ξκ>t(A,z)^ξJA)(2d + mlΓt^P^2^\ΛΓ1tτC4

Λ. (36)

Using the Fourier representation of C we get

I / K χ 2

: - -

(37)

where b* is independent on A. Let us now choose K such that - [—-—τ) =loeπ.1 P 4\2d + m2) *
Then from Lemma 9 we deduce

\ξκ(z) — £oo(z)| ̂  lim sup |£K(Λ z) — ξ^A, z)|

5 \ Λ.
(38)

2(2d+m2

0)
2} n2'
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(36)-(38) give now the claim, since n~1(\ogn)2md

0~
8 <ε can be solved by n>ymd

Q~9

uniformly in β. Π

We will now turn to the lower bound, which is more subtle because of the
complexity of the measure.

Proof of Proposition 4. We start by bounding ζκ(z) and then use Lemma 9. Let us
transform ξκ(A, z) to the ^-representation :

ξκ(Λ,Z)=/Yl9κ(Φf)\1/}A},
\ίeΛ / 0,Λ

where the expectation is in the gaussian measure on IR"|y1' with the co variance

i = 1

and

gκ(φf) = ] da^-W-W. (39)

Let Λ0CΛ be [ — L + |, L + ̂ ]d. We will choose L later. Since gκ is real and \Λ0\
even, we obtain using chess-board estimates in the reverse direction (by KP
everything is positive)

°>Λ

Hence

ξκ(z)= lίmξ(Λ9z)^ I Π 0κW>?)Y / | y l o l> (4°)
Λ^Z \ieΛ0 / 0

where the co variance of < )0 is now ®CZ2 with mass m0(β) = lim m0(β, A). To get

lower bound for (40) we transform the right hand side of (40) to the a-
representation:

ΓUW
ίeΛo

where a is the matrix

aij = aίδίj if iεA0

atj = 0 if iφΛ0.

Recall that by the saddlepoint condition (9) Cit = β for all ieTLd. We can thus
compute:

Uβκ(Φ
ίeΛo

1

o
i

= j^olαχκ(α)exp( - tr(αC)2 - 4ιz f ^52tr(Cα)3(l-2zz5Cα)~1).
o
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m
To estimate the integral in the exponent, let 2\\C\\zκ<^ i.e. z/c^Ξ — -. Then

]dss2tr(Ca)3(l-2izsCaΓ1

We denoted the projection onto A0 by P0. Since (as in the previous proof)

we get by fixing \Λ0\ such that

(41)

the result

(42)

Note, that the last factor in (42) is not ξκ(Λ0) since it involves C instead of CΛo - the
periodic covariance in Λ0 with mass m%(β9 Λ0). Let C be the periodic covariance in
Λ0 with mass m%(β). Since by the method of images (see [17], Chap. IX)

keTLd

we get denoting (OC)tj = ^ Cij+ 2Lk that
keZd\{0]

f e-tr(aC κ2(tr(δC)2 + 2iτCδC)

Now for L > πi 1 we estimate

(43)

(44)

(42), (43), and (44) give

L-1 ($χκe-^c^2da)\. (45)

Note, that C^0* has the same mass as C. In Lemma 10 below we show that

m0L
(46)

Choosing K as in (38) and combining (45), (46), (41)

), (47)

where ε0=mJ~6~d(logtt)d + 3/2z. The claim is now obtained as in the previous
proof. Π
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Let us denote ^χκ(a)e-tr(aC(Λ°))2d\A^a)lllA°\ by ηκ(Λ0). Only (46) remains to be
proved:

Lemma 10. There exists a constant b6 such that

Proof. By translation invariance

—*-—2_ == η (A0) <<5^ (00))κ: . (48)

In (48) < >K)00 is the expectation in the normalized measure
exp(-tr(αC(γlo))2)χκ(fl)J |ylo|α and as in Lemma 9, δ + (a) = δ(a + κ) + δ(a-κ). In
order to be able to use chessboard estimates we define the expectation

< >κ,n = ηMo> ")~Mo1 f det(l - 2i

defined for n large enough. We now write

<«5κ

+(α0)>κ,co=lim<^(«o)>κ,« (50)
n—* oo

Note, that < )κ n is none of our earlier expectations since C\fo} ή= β in general.
However, we can still perform the transformation to the ^-representation :

<^K)X>π = <^+(^)>Ψ,κ,n, (51)

where < >^5K>M is a reflection positive measure. We can proceed as in Lemma 9 to
deduce from (50) and (51)

<52>
(48) and (52) hence give us

\ηκ(Λ0)-ηJΛ0)\ίbexp-ί^^j2. (53)

We are left with estimating

lUΛHCHUi-^C1!- (54)
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Note that η^ and ξ^ involve gaussian integrals denoting as before (C^})2 = (B(A))tj

 l

we have
i i

πm

(55)

^L>. The difference between a

C(p~k)

where the sums run through

Riemann sum and integral in (55) is easily estimated. We add and subtract in the
exponent

[2(2π)"] - 1 J dp log X (ff C(/c) C(p - fc) .

Since C(p)~(p2 + nfy~l for p small, we can choose cί such that for L>cΐπiQ 1 e.g.
the term

J dfcC(Λ) C(p - fc) - X - C(fe) C(p - /c)
t \^/

and thus easily

2(2π)'

Hence

1

2(2πf

The remaining terms in (55) are similar and we obtain for m0L<l

(56)

(53), (54), and (56) imply the claim. Q

8. Discussion

The bounds for the remainder of the expansion derived in Sect. 6 are in dimensions
d^3 qualitatively what one would expect; our remainder is approximately the
sum of the absolute values of the next order graphs (slightly different graphs
however, since some lines are missing). In 2 dimensions we have reasons to expect
that the true behaviour is qualitatively different from this because of certain
cancellations in the expansion, which we will now explain.
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Let us consider first the 0(1 /n) term for the self energy (mass correction), Fig. 3.
Near Ts = 0 we can for simplicity assume the propagator is C(p) = (p2 + m^(β])~l,
with some ^-independent cutoff. The discussion also applies to the renormali-
zation of the formal expansion for the continuum theory, where m2, is fixed and we
vary the cutoff. We use both languages freely.

Note that both graphs of Fig. 3 have quadratic divergence in the cutoff, since
the ultraviolet behaviour of B(k) is k2. In other words the graphs are 0(1) in m^2

~e4πβ (10). Thus it appears that the physical mass m2(β) = m%(β)(l + n~10(e*πβ))
and hence \ogn^> β would be the region where the expansion could be expected to
be valid. This is also essentially our bound since we require n~ίniQa to be small.
However the graphs of Fig. 3 cancel almost completely. This can be seen as
follows.

Let Gk be the "self energy insertion" BklCkl occurring in the graphs of Fig. 3 and
Gs

kl = Gkl — δkl G(0) the substracted G i.e. in momentum space

Then the second graph can be written as

Σ B ί j C ί j C j l G k l = Σ BίjCjkCjlGkl

where we used ( B ~ 1 ) ί j = (Cίj)
2. Thus the difference of the graphs is that of Fig. 5 i.e.

G is replaced by Gs. The quadratically divergent G has been substracted at zero
momentum Gs is only logarithmically divergent. The expansion thus regularizes
itself!

In terms of the field theory logarithmic divergencies are what one on formal
grounds expects, since the only counterterm for the Lagrangean L = (dμφ)2 with
φ2 = constant is L itself; there should only be wavefunction and coupling constant
renormalization. We thus expect the difference of the graphs to be proportional to
m^logmQ^ βm2), which is confirmed by explicit calculation. Hence the relevant
small parameter would seem to be β/n and not e4πβ/n.

G 2 (P)

Fig. 5 Fig. 6 Fig. 7

It is in fact easy to prove that these cancellations occur in all orders of 1/n.
Namely, by powercounting we see, that the only quadratically divergent sub-
graphs are the self energies in Fig. 6. We also note that each such insertion also
occurs in the graph of Fig. 7. Let us check the combinatorics and relative signs. Let
Gί be an insertion to tr(αC)", n>3 and hence G2 is an insertion to tr(αC)""1 all
other parts of the graphs are the same. Recall, that tr(aC)k carries the factor
|(2i)/c/c"1. There are n (n—1) ways to insert G1 (G2). Thus the graphs have the
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factors w w~1(20Λ(2)3 and (n~ ^(n~ l)~1(20II + 23 '3 '(i)5 where we recall that each
# has to be multiplied by \. Hence the two graphs have same combinatorίcal
factors, but opposite signs. For n = 3 G^ is a part of G2 and for insertions to (Cά)nC
same argument works. Thus repeating the argument above

where

) and G*

includes G* instead of Gr The G1 insertion is substracted at zero momentum. We
can hence assume that all such self-energy insertions appear in substracted form.
Standard renormalization theory can now be applied to show that the terms in the
expansion have only logarithmic divergence.

Finally we remark that there is further heuristic evidence that β/n is the correct
small parameter in d = 2. Renormalization group calculations [18, 19] give
explicit n,β dependence for the mass. If this is expanded in 1/π, β/n appears
naturally.
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