
Communications in
Commun. Math. Phys. 73, 265-271 (1980) Mathematical

Physics
© by Springer-Verlag 1980

The Relation between Relativistic Strings
and Maxwell Fields of Rank 2

Max Rinke

Institut fur Theoretische Physik, RWTH Aachen, D-5100 Aachen, Federal Republic of Germany

Abstract. The local correspondence between sufficiently smooth relativistic
string motions and Maxwell fields of rank 2 is proved.

In two recent papers [1,2] Kastrup studied an electromagnetic field which is
connected in a special way with a relativistic string [3,4].

He started from the following string motion x(τ, σ) :

x° = τ , x 1 = A(σ — f ) cos ωτ , x2 = A(σ — f ) sin ωτ ,

x3 = 0, O^σ^π, Aω=-9π

which may be interpreted geometrically as a 2-dimensional surface Σ(2} in
Minkowski space. Then Kastrup introduced Plϋcker's coordinates on Σ(2) :

dx
μ

_ _. — — , . — — , . — — ,
oτ oσ

and constructed an electromagnetic field Fμv(x) which is proportional on Σ{2} to
vμv:

Fμv(x(τ, σ)) - λvμv(τ, σ) , λ = const . (3)

The nontrivial part of the problem is to ensure that the field Fμv(x) is a solution of
the homogeneous Maxwell's equations :

P * / 7 μ v _ A * F _! pρσ
Cμ * ~U ' rμv-2&μvQσr 9 xH

[We use the metric (+1, -1, -1, -1); ft = c=l.]

The remaining (inhomogeneous) Maxwell's equations may be taken as a
definition of the current jv : = dμF

μv I
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The field Fμv, which Kastrup constructed, has the following form :

F12=-λAωρ, F13 = F 2 3 =0; (4)

ί = x°, ρ: = [(xl)2 + (x2)2Ϋ12.

It is a field of rank 2, i.e.

and satisfies condition (3) for f :g σ rg π.
The existence of the Maxwell field (4) is not accidental. We want to show that

there is an intimate relation between Maxwell fields of rank 2 and sufficiently
smooth solutions of the equations of motion for the relativistic string. Our result is
contained in the following two theorems :

Theorem 1. Let the 2-dimensional surface Σ(2} with the parametrization x(τ,σ) and
Plύcker's coordinates vμv(τ,σ) represent a four times continuously differ entiable
string motion, defined by the Lagrangian density L = ( — ̂ vμvv

μv)ί/2. Let
x(0) = .x(τ0, <70) be a point on Σ(2\ such that Plύcker's coordinates

vμQ}=vμv(τQ,σQ) satisfy the condition

_!7,μv ^f)
2V(0)V(0)μv>'J

Then, for arbitrary fixed AelR, ΛΦO, there exists a neighborhood U0 of x(0) in
Mίnkowski space and a continuously differ entiable Maxwell field Fμv(x) of rank 2,
defined in (70, such that

Fμv(x(τ,σ)) = λvμv(τ,σ], λ = const, x(τ,σ)eC70, (5)

and

- $F°σ(x)FQσ(x) > 0 , Sμ[*F"v(x) ( - ̂ (x)Fβσ(x)) ~ 1/2] = 0 . (6)

Theorem 2. Let Fμv(x) be a continuously differ entiable Maxwell field of rank 2 with

- ±F°σ(x)FQσ(x) > 0 , δμ[* Fμ\x) ( - $F**(x)FQσ(x)) ~ 1/2] = 0 . (7)

Let Z(2) be a 2-dimensional surface with twice continuously differ entiable para-
metrization x(τ, σ) and Plύckefs coordinates vμv(τ, σ), such that the relation

Fμv(x(τ, σ)) - λvμv(τ, σ) , λ = const ,

is valid on Σ(2\ Then x(τ, σ) is a solution of the equations of motion for the relativistic
string.

For the proof of these theorems we need some definitions and results from the
calculus of variations in the formulation of Caratheodory [5]. Here we refer
especially to the work of Velte [6,7] and Klotzler [8].

We start from the Lagrangian density L for the relativistic string

(8)

normalizing any constant factor to 1.
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By v(μv} and v(μv} we denote the "strict components" of υ, i.e. vμv resp. vμv with
μ<v.

The action principle, applied to the string action A = \Ldτdσ, leads to the
equations of motion :

d ( d L \ + d l d L } - 0 (9)

L(υ) is a homogeneous function of degree 1 :

L(κv) = κL(v) , K > 0 .

Therefore, the action of the string is invariant under reparametrizations, and, using
the definition

" L(υY

we obtain :

L(μv}(v)v^ = L(v).

In order to have well defined derivatives - — , -̂ — , L(llvJίv) and for reasons to be
oxμ oxμ ^μ j

seen later, we assume

L(ϋ)>0. (11)

The usual boundary conditions for the string

dL

lead to L(ι ) = 0 for σ = 0, π. This shows that L(v) > 0 cannot be valid for all τ, σ. So
we restrict our considerations to such values of τ, σ, for which the condition (11) is
fulfilled.

From the definition (2) of Plύcker's coordinates υμv we find the characteristic
condition

Assume now that at every point x in a region of Minkowski space a 2-dimensional
surface element, i.e. a 2-dimensional tangent space at x, is given, characterized by
Plίicker's coordinates Φμv(x) :

φ^v = — φvf* 5 φ^v

ε φβσ = 4Φ(μv}s φ<ρσ) = 0 . (12)

We call (x, Φμv(x)) = (x, Φ(x)) a "slope field" of 2-dimensional surface elements.
In the following we make the additional assumption that the functions Φμv(x)

are continuously differentiable.
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Definition. The slope field (x, Φ(x)) is called "geodesic with respect to the
Lagrangian density L" if the exterior differential form

Ω: = L(μv}(Φ(x))dxμΛdxv

is closed, i.e. dΩ = Q.

Let ^(x), S2(x) be twice continuously differentiable functions. We then define :

Again, we denote the corresponding strict components by s(μv)(x). The differential
form

dS^ Λ dS2 = s(μv}(x) dxμ A dxv

is exact. Thus, Ω is certainly a closed form if

Ω = dS1*dS29 i.e. L(μv}(Φ(x)) = s(μv}(x). (14)

On the other hand, according to Eqs. (10) and (12), we have

This shows that the closed 2-form Ω has rank 2. Therefore, Ω can locally be
represented in the form (14), [9], and we have the result : (x, Φ(x)) is a geodesic field
with respect to L if and only if Ω locally has a representation of the form (14).

Definition. A surface Σ(2} with parametrization x(τ, σ) and Plϋcker's coordinates
vμv(τ, σ) is called "imbedded" in the geodesic field (x, Φ(x)) if there exists a function
γ(τ, σ) > 0 with

Then (x, Φ(x)) is called a "geodesic field for x(τ, σ)".

In the calculus of variations it is shown [6-8] that for any sufficiently smooth
solution of the equations of motion (9) a geodesic field can be constructed in the
following way :

One starts from the representation (14) of Ω. From this representation and the
Eqs. (8), (10) it follows that the functions S^x), S2(x) have to satisfy the so-called
"generalized Hamilton-Jacobi differential equation" for the string problem :

[-V)(x)^(x)]1/2^l. (15)

Let x(τ, σ) be a string solution which shall be imbedded in a geodesic field. Then
one looks for solutions ^(x), S2(x) of Eq. (15), which in addition fulfill the
following "transversality condition" :

5(μv)(x(τ, σ)) = L(μv)(υ(τ, σ)) . (16)

Let ^(x), S2(x) be such solutions. Then (x, Φ(x)) with
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is a geodesic field for x(τ, σ):

Conversely, if (x, Φ(x)) is a geodesic field for x(τ, σ) with

L(μv)(Φ) — s(μv) ? sμv = oμS1ovS2 — ovS 1 oμS2,

then S^x), S2(x) satisfy the Eqs. (15) and (16).
In [6,7] it is proved that simultaneous solutions of Eqs. (15), (16) exist if x(τ, σ)

is sufficiently smooth. We state this result as Theorem A.

Theorem A. Let x(τ, σ) be a four times continuously differentiable solution of the
equations of motion (9) with Plύckefs coordinates vμv and — ̂ vμvvμv>0. Then there
exists always locally a geodesic field for x(τ, σ).

We now come to the Proof of Theorem 1:
From Theorem A we conclude that for x(0) = x(τ0, σ0) with — i^foV (O)μv > 0 we

can find a neighborhood U1 in Minkowski space and twice continuously
differentiable functions ^(x), S2(x), which are defined in [/1 and satisfy the
Eqs. (15) and (16).

If L(v(τ, σ)) = K = const for x(τ, σ)el/1, then for a given /IφO

is a Maxwell field of rank 2, which fulfills the conditions (5) and (6).
If L(v) is not constant in U1, we introduce new parameters τ', σ':

τ'-^(x(τ,σ)), σ' : = S2(x(τ, σ)). (17)

The corresponding Jacobian determinant D has the following form:

D=f^=V)W^))^(^)=^).
Since L(u(0))>0, the transformation (τ,σ)-»(τ',σ') has an inverse if we restrict
ourself to an appropriate neighborhood of (τ0, σ0):

With the help of these equations we express L(v) as a function of τ', σ' :

Now, let l/0 £ ί/j be a neighborhood of x(0)5 such that g(Sί(x), S2(x)} is well defined
and positive in U0. Then for a given A Φ O we define:

Fμv(x) : - - ̂ (x), S2(x))sμv(x) , xe C70 .

The special x-dependence of g and the form (13) of sμv(x) imply that the field Fμv is
a rank-2 solution of Maxwell's equations (with an appropriate current). Finally,
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the Eqs. (15) and (16) ensure that the field Fμv also satisfies the conditions (5) and
(6). D

Remark 1. By an appropriate reparametrization (τ, σ)-»(τ', σ') we can change L(ι )

into L(t/) = 1. Let D be the Jacobian determinant D= „, ' , >0, then we have
5(τ, σ)

Thus, every reparametrization with D = L(v) leads to L(v') = 1. An example of such
a reparametrization is given by

σ

τ' = τ , σ'= §L(v(τ,σ))dσ
o

or by the parameter transformation (17).

As s(μv) = L(μv)(ι;) = L(μv)(ι/) on Σ(2), the field sμv(x) is not affected by a repara-
metrization. Thus, for the reparametrized x(τ', σ') with L(t/) = 1

is a Maxwell field which satisfies the conditions (5) and (6).

Remark 2. The Maxwell field Fμv is not uniquely determined by condition (3) :

Example. For the string motion (1) there exist at least two Maxwell fields of
rank 2, which satisfy condition (3) for f < σ ̂  π. The first one is the field (4)
constructed by Kastrup, and a second one is the following :

F'i2=-λAωρ, F13 = F2 3=0, ρ = [(x1)2 + (x2)2]1/2.

This field Fμv also fulfills condition (6) - in contrast to the field (4).
For the Proof of Theorem 2 we need the following theorem from [8].

Theorem B. Let the 2-dimensional surface Σ(2) with the twice continuously differenti-
able parametrization x(τ, σ) be imbedded in a geodesic field (x, Φ(xJ) with respect to
L. Then x(τ, σ) is a solution of the equations of motion (9).

Now, we are prepared for the Proof of Theorem 2 :
From assumption (7) we get Fμ vΦθ and therefore Λ,ΦO. We introduce the

continuously differentiable functions

with the following properties :
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Therefore, (x, Φμv(x)) — (x, Φ(x)) is a slope field of 2-dimensional surface elements.
The differential form

Q = L(μv)(Φ(x)) dxμ Adxv=- Φ(μv}(x) dxμ Λ dxv

is closed, because

Thus, (x, Φ(x)) is a geodesic field with respect to L. On the surface £(2) we have

v^(τ9 σ) = JL [ _ i Fα/?F
α/?]1/2 <Fv(x(τ, σ)).

Hence, Σ(2} is embedded in the geodesic field (x, Φ(x)). Using Theorem B we
conclude that x(τ, σ) is a solution of the equations of motion (9). Π

We want to add a last remark: Among all the Maxwell fields which we studied
in connection with a given string motion there is a preferred one: It is the field
sμv(x) which is "normalized" by the Hamilton-Jacobi equation (15) and invariant
under reparametrizations of the string. A further study of this field might be useful.

Acknowledgment. I am indebted to Prof. Kastrup for drawing my attention to this problem, for helpful
discussions and a critical reading of the manuscript.
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