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Abstract. The present paper states and proves an asymptotic spin-statistics
theorem for composites consisting of electrically and magnetically charged
particles. We work in the framework of a nonrelativistic theory, taking as the
classical configuration space a t/(l) bundle over the space of physical
configurations, and as the quantum hilbert space the homogeneous square
integrable functions on that bundle. The theorems are proved using a
formalism we develop here for treating "gauge spaces" —17(1) bundles with
connections in particular, two products related to tensor products of vector
bundles prove to be extremely useful in displaying the structure of the gauge
spaces that naturally arise in this theory.

1. Introduction

This paper is a sequel to one in which we formulated a first-quantized theory of a
system of electric and magnetic charges interacting (non-relativistically) through
their instantaneous force-fields [1]. As the culmination of that paper, which we
call here "/", we described - in special cases - the mechanisms by which both the
spin-type (integer or half-integer) of a dyonic composite and concomitantly its
asymptotic statistics (even- or oddness of the wave function under dyon in-
terchange) can be in effect the reverse of those given by the usual combination
rules (see also [2,3,9]). We then sketched, and promised to prove, a more general
result which first would clarify in what sense dyons do behave in the asymptotic
limit just like ordinary particles whose degrees of freedom split up into internal
and external ones so that their spin and statistics can be reliably defined, and
second would confirm from this point of view that the above mentioned reversals
occur precisely when they "ought to". The present paper undertakes these tasks.

In order to express and prove our results most clearly, we have to redescribe
the bundle of / in a coordinate free way, which unfortunately relies on a much
larger body of mathematics than figures in I. Rather than obscure the simple
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outlines of our basic arguments, we have omitted from the main text most of the
mathematical preparation. To make up for this we include two Appendices in
which the various definitions and facts we need are systematically presented.
Because of the need to redefine most of the basic constructs, the present paper will
be virtually self contained. In a few places our present notation differs from that of
I, but we have tried to point out all such differences as they occur.

The paper proceeds as follows: In Sect. II we construct the configuration space
E of a system of £-poles and g-poles (electric and magnetic charges). IE is a 17(1)
bundle with connection - a "gauge space" - over the space of physical con-
figurations of the particles, and it is constructed as a certain product (W) of the
gauge spaces corresponding to e-pole — g-pole pairs. The euclidean group (of
rotations and translations of 1R3) and the group of like particle permutations are
then realized as groups of connection preserving automorphisms of E. In Sect. Ill,
restricting consideration to a system of AT identical £-poles and N identical 0-poles,
we show that under certain circumstances the system can be regarded as consisting
of N e — g composites (dyons). Namely, in the asymptotic limit in which dyon
separation is much larger than dyon size, the configuration space E becomes
isomorphic to a gauge space E in which the external and internal degrees of
freedom of the N dyons are cleanly separated formally, we introduce a second
product (03) which lifts to gauge spaces the notion of cartesian product of
manifolds and then show that E is the 0 -product of a trivial gauge space
representing the center of mass positions of the N dyons and of N 1-dyon gauge
spaces representing the internal degrees of freedom of each dyon. Realizations of
the euclidean group and the permutation group on E are induced by the
corresponding asymptotic actions on E. In Sect. IV we observe that the repre-
sentation of E as a 0 -product of gauge spaces corresponds at the hilbert space
level to a tensor product of hilbert spaces which again represent the external and
internal dyon degrees of freedom. The realizations of the euclidean and per-
mutation groups on E induce representations on the quantum hilbert space of
(homogeneous) functions on E, and we find that a reversal of spin type and of
statistics occurs in dyon formation precisely when the electromagnetic angular
momentum of a dyon is a half-integral multiple of h. For bosonic constituents, for
example, the representation of the euclidean group $ is doubled valued - i.e. is a
faithful representation of the double covering group δ - if and only if the
interchange of two dyons is represented (on the quantum hilbert space over E) by
(—1); and both occur if and only if eg = (n + ^)h. Finally, in Sect. V we state the
generalization of these results to composites containing arbitrary numbers of
particles each having in general both electric and magnetic charge.

Finally, we would like to mention that for apparently very different reasons, the
procedure known as "geometric" or "Kostant-Souriau" quantization [4, 5] deals
with mathematical objects closely similar to what we are calling "gauge-spaces",
and many of the results of that theory are useful here. Physically the difference
between "geometric quantization" and what we have done seems to be that
whereas they deal with a 17(1) bundle over phase space and introduce their
connection A in relation to the symplectic structure of that space, our (7(1) bundle
is an enlarged configuration space into which we introduce a connection to
describe the velocity dependent interaction between e-poles and g-poles.
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Nevertheless it is possible that the two approaches are more closely related than
the above would make them seem. At a minimum one could ask whether, by
subjecting to geometric quantization the classical version of our theory (as
described in Sect. 3 of I) one would produce the same quantum-mechanical hilbert
space and Hamiltonian operator as obtained in Sect. 4 of I and in its Appendix.

II. The Gauged Configuration Space and Its Symmetries

Definition. A gauge-space E = (E, M, π, Γ, A) is a principal l/(l)-bundle with bundle
space £, base manifold M, projection π :£->M, and t/(l)-action T, together with a
connection given by a normalized equivariant 1-form A on E.

Accordingly,

Definition. A gauge-space morphism T:E'->E" is a continuous map T: £'->£"
commuting with the action of 17(1) [i.e. ToΓ'(u) = Γ"(u)°TVue (7(1)] and such that
the pullback T*(A")) of A" by T9 coincides with A'.

If T~1 exists and is also a gauge-space morphism then Tis an isomorphism and
E' and E" are isomorphic (E' ~E"). Tis then an automorphism if E' = E" we denote
by "Aut(E)" the group of all such Ts. If Tis any gauge-space morphism then the
continuous map between base spaces, t:M'->M" given by ί°π' = π"°Tis said to be
induced by T and T is said to be a lift of ί.

Remarks, (i) We will usually omit explicit mention of T, writing Γ(u)(X) simply as
uX thus we may speak of "the gauge-space (£, M, π, A)".

(ii) Except where there is danger of confusion or in formal settings such as in
the statement of a theorem, we will denote canonical isomorphism by " = ".

(iii) We identify t/(l) with the unit circle C: = {zeC||z| = l}.
Notice that in contrast to / we here do not include any metric gab in the

structure of a gauge-space. Otherwise the definitions agree, although we here call
the bundle-space "£" rather than "£". ("Eich" in German = "gauge").

As discussed in / the relation (in which "d" is exterior derivative)

dA = π*(f) (2.1)

defines on M a unique 2-form /= curv(E).

Definition. For any manifold M the trivial gauge-space over M is the gauge-space
E = CxM with projection (M, x)->x, l/(l)-action w(w', x) = (MM', x), and connection ,4
such that a curve y(ί) = (M(£),x(£)) is horizontal in E iff u(t) is constant. A ίrzi zα/
realization of a group G on E is a realization which acts trivially on the fiber, i.e.
one of the form R = 1 x r. It is not hard to show (see for example the Lemma of
Sect. 5 of I) that any Te Aut(C x M) (C x M trivial) must be of the form

T-uxί (2.2)

for ueC.
The configuration space of a system of Ne £-poles (of strength ep,p=l,..., Ne)

and Ng 0-poles (of strength g^ q = ϊ,...,Ng) will be a gauge space, henceforth
to be called E, over the space jR3<N" + Λr f l) of physical configurations of the Ne + Ng

particles. We will build E from the gauge space (denoted D1/2) appropri-
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ate to a single dyon (a pair of particles: one electric charge, e, and one magnetic
charge, g) with 2eg = he and in terms of this construction we will realize the
pertinent symmetries of our system - namely, the inhomogeneous rotation group
and the group of permutations of identical particles - as gauge space automor-
phisms of IE.

The space D1/2 = (D1/2, MD, π1/2, Γ1/2, Aί/2) (introduced in I, Sect. 3, as the
bundle of a single dyon in its center of mass frame) is described in a covariant
manner in Appendix A. By introducing bases for the spaces Σ and V° of that
appendix, we here exhibit D1/2 concretely, in a form which proves to be identical
to that given by Trautman [6]1. To wit: D1/2 is a £7(1) bundle over the space MD

= R3-{0} of physical configurations of a dyon with fixed center of mass. It is
therefore four dimensional and can be identified with the nonzero elements of C2:

D1/2=C2-{0}, (2.3)

so that a point of D±/2 is a pair ξ1, 7 = 0,1, of complex numbers. With (7(1)
identified as C (the unit complex circle), one gets the action

tιξJ. (2.4)

We can write ξ1 in the form

where r = ξ°ξ° + ξlξi and (χ, θ, φ) are the Euler angles of the element of SU(2) that

(ξ°
I

R3 - {0} with spherical coordinates (r, ff, φ). Fiπaΰy, ώe connection A1/2 is defined
by

maps I K 1 to I ± 1. Then the projection π1/2 :Dί/2^MD takes ξ1 to the point of

= %(dχ-cosθdφ) (2.5)

and its curvature is

$smθdθΛdφ = $F; (2.6)

in Cartesian coordinates yl on R3,

yλ

f«ω = e«Aj^3- (2.7)

To build E from D1/2 we will need to define a product of gauge spaces and
also to extend to gauge spaces the notion of the pullback of a bundle. Appendix B
establishes, in a series of propositions, properties of these spaces and of their

1 In fact, we differ from Trautman only in the sign of the angle φ defined below, or equivalently, in
the choice of orientation for Mn
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morphisms needed in the paper. In order to make the remaining sections more
comprehensible we repeat the key definitions here.

Definition. Given a gauge space IE = (E, M, π, Γ, A\ a manifold M, and a continuous
map ί : M-»M, the pullback Ϊ(E) of E by ί is the gauge space (E, M, π, Γ, A)9 where

(2.8)

π(X, x) = x, f(w) (X, Jc) - (Γ(κ) 00, x), and

A = T*(A), (2.9)

with the map T:E-+E defined by T(X,x)=X.
It follows from (2.9) that the curvatures of E and T(E) are related by

curv ί(E) = ί* curv(E) . (2.10)

Definition. If Φ1 and Φ2 are two circles acted on by l/(l), their tensor product Φ
= Φ1(χ)Φ2 is the cartesian product Φ1xΦ2 modulo the equivalence relation
(uXl9X2)~Qίl9ύX2),XίeΦί, ue U(ί). Then Φ is itself a circle acted on by 17(1) via

(u(X1®X2) = (uX1)®X2=Xί®(uX2). (2.11)

The following gauge space product V is akin to the tensor product of vector
bundles2.

Definition. Given two gauge space E£ = (Eί5 M , πί? /^, At)9 the product Ex VE2 is the
gauge space (£, M, π, Γ, A), where

X i6££ and π 1 ( X 1 ) = π2(X2)} , (2.12)

M = M1nM2, π(X1(x)X2) = π1(X1)
 = π2Pί2X AW)^!®^)^^!)®^!' and where

τ4 is defined by requiring

[A=IA1+IA2, (2.13)
y 7ι Ίi

for any curves 7 : /->£, y. : /^ Ef such that Vί γ (t) =
It follows that on M

curv(Ex VE2) = curv(E^ + curv(E2) .

The generalization of the V-product to m gauge spaces Et over base spaces M.
is immediate; ElW...WEm is a gauge space over M = M1n...nMw l, and on M

curv / V EΛ - Σ curv(Efc) . (2. 14)
\ fc / *

Finally, we define a corresponding product of bundle isomorphisms via

Fact 2.1. Let Efc and Ffc, /c = 1, . . ., m be gauge spaces over Mk and Nk, respectively
and let Tk :Efc->Ffc be gauge space morphisms, compatible in the sense that the
induced maps ti:Mi-^Nί agree on M = M1n...nMm:ί1 |Λ f = ...=ίm|M. Then

2 In fact if V1 and V2 are line bundles associated with principal £7(1) bundles Π^ and E2 having the
same base space, then the product bundle Vί®V2 is an associated bundle
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V Tk: VEfc-» VFfc, defined by
k k k

T1W...WTm(X1®...®Xm)=T1(Xl)®...®Tm(Xm)

is a gauge space morphism and is compatible with the Tk. (This appears as Fact B9
in Appendix B.)

We can use the property (2.14) of the V-product to generalize B1/2 to a
sequence of gauge-spaces Dπ/2 defined over MD for all neZ and such that

curv(Bn/2)=-F. (2.15)

To begin with we introduce

!D-1/2 = iD1/2, (2.16)

with bundle space, base space and projection identical to those of ID1/2, but having
Γ_ΐ/2(u)ξ=u~1ξ and A_1/2= —A1/2 (see also Appendix A). Then curv(B_1/2) =
— curv(B1/2) (Eq. A 28) and therefore satisfies (2.15) in the case n= — 1.

We then define

(ifn>0:)

BV^I^V... W>1/2 (n factors), (2.17a)

(ifn<0:)

Bn/2 = B_ 1 / 2V...VB_ 1 / 2 (-n factors), (2.17b)

( i fn = 0:)

fl)0 = C x MD (the trivial gauge-space) . (2.11 c)

Notice incidentally that by Facts B8 and B6(ii) the BM/2 form a group under V :

(w+M)/2. (2.17d)

We denote by

x = (x19...,xNβ9Xi,...9x$g) (2.18)

the point of IR3(]Ve+]Vί;) representing a configuration in which the e-pole labelled by
p is at xpelR3 (p = 1, . . ., Ne) and the 0-pole labelled by p is at x- (p = ί, . . ., Ng). We
define also

3'p4 = Xp-x4, (2-19)

noting that yp^ can be regarded as a linear map from R3^*^) to IR3 and that then
the restriction of yp^ to

N^\xp^χΛ (2.20)
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projects Mp~ onto MD = R3> — {0}. Finally we define in terms of the above

E= WlEpξ (2.21)
pq.

where

(2.22)

embodies the interaction between ep and g~. Here n(p, q) = 2epg~/hc is necessarily an
integer and "j^" really means the restriction yp$\Mp~ of j;p- to Mp~. From (2.20)
and the definition of V, the base manifold of E is

and from (2.15), (2.10), and (2.14)

/=curv(E)= ΣέΦ,4)OvW) (2 23)

In the "Cartan notation" (2.23) becomes

which coincides with Eq. (69) of /, so that E is a gauge-space with the same base
manifold and curvature as that introduced in I (and called there "G"). To confirm
that that it is indeed the same gauge-space we could exhibit an isomorphism in
terms of charts but we should really ask more generally whether the curvature /in
fact suffices to characterize E. Were this not so our theory would be ambiguous
for the construction in I (see especially Sect. 4 and Appendix A) of a quantum
mechanical hilbert space and hamiltonian appropriate to a given system of e- and
g-poles required only that E be a gauge-space over M with curvature /
Fortunately one knows quite generally that, as long as the first homotopy group,
π^M), vanishes, any gauge-space over M is given up to isomorphism by its
curvature/ (See for example [4, Sect. 18].) And with the image in mind of a loop in
M as a motion of the e- and g- poles at the completion of which each pole has
resumed its original location, a little thought shows that indeed π1(M) = 0.

Having thus established the uniqueness of our theory, and in particular of E,
let us construct the symmetries of E which express respectively the homogeneity
and isotropy of 3-space, and the indistinguishability of similarly charged poles.

Turning first to the (proper) euclidean group $ of (orientation preserving3) rigid
motions of IR3, or rather to its universal covering group <?, we seek a realization
A :<ί-»Aut(E). Now we built E from Dn/2; and Appendix A supplies for (the
covering group of) the rotation group the realization R1/2 :SO(3)->Aut(B1/2),
whose induced realization r = r1/2 (acting in MD) is just the covering projection of

3 Notice that spatial reflections are not symmetries of the physical system since precisely one of the
quantities e, g must be axial
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SO(3) onto SO(3), if we regard the latter as being a group of homeomorphisms of
MD. In terms of the concrete D1/2 introduced above, R1/2 is the action of
SO(3)~SU(2) on B1/2^C2-{0}, and r is the corresponding rotation of
MD~IR3-{0}. Then Fact (2.1) (or, precisely, Fact B12) yields a realization

2 (2.24)

such that rn/2 = r. By composing Rn/2 with the map ρ :<^-»SO(3) which takes an
element e of S into its "rotation part" we get a realization of S in Bπ/2,

Anl2=Rnl2°Q>

which induces in MD the realization

We now build A from the realizations (2.25).
If e is any element of $ and e its projection into $ then e acts on IR3 ( N e + Nβ) (ίn

the obvious way) by taking x as given by (2.18) to

λ(e) (x) = (e(xί\ ..., e(xft )). (2.26)

Now fix p, q, let n = n(p9 q\ and notice that yp^ being a difference of points of
]R3(Ne+N0), takes λ|Mp- into /ίn/2 in the sense that

yp^λ(e) = λnl2(e)°ypQ (2.27)

for every e in J*.
Then fact (B4) with the replacements t->yp^\Mp^ M^Mp~,_M-»MD, E-»Bπ/2,

R-^>An/2, r-+λn/2, r-^λ\Mp~, G-+S furnishes a realization Ap% :<ί->Aut(E^) which
induces λ\Mp^. Adopting the terminology of Appendix B and leaving implicit the
restrictions of yp^ and λ to Mp~ we will write

Art = ypi(An/2) (2.28)

and call Ap% the "pullback of An/2 over the pair (λ, yp%)".
Since all Ap^ thereby defined induce the same realization on M (namely λ\M)

they are by definition compatible, and further recourse to Fact (B 12) rewards us at
last with a realization on IE,

We turn now to the group of like particle permutations. Let (P,Q)eSNe x SNg

(where SN is the group of permutations of N objects) belong to this group so that
ep(p} = ep, 0Q(3) = 0$ ^or a^ P'^ ^e corresPon<iing permutation w = w(P,Q) of
particle positions on ]R3^«+Jvβ> is given by4

(P Q)(x ...,x-, ...) = (x , . . . , x - - ι - , . . . ) • (2.30)

4 In /, P ~ ί ( p ) was written "pP". Also notice that "τσ" is a lower case pi
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n/2

Here p'=P(p), q'=8(q')

Fig.l

We want to lift w to a symmetry 77(P, β) of E. First note that w gives rise to an
isomorphism Πp^ :JEp^Έ as follows. The relation5

) (2.31)

corresponds to a commutative diagram on the base spaces M ,̂ MP(p)>£(^ and MD,
as shown in Fig. 1. This diagram is a special case of Fig. 3 in which S is the identity
morphism, id(Dπ/2). Thus, because the pullback is a functor, there is a lift

»£P^/>^ (2.32)

of cj which makes Fig. 1 commute. [In the terminology of Appendix Ba) 77p~ is the
pullback of id(Dπ/2) over the triple (®>yP(p}Q(^yp^\ the pullback is given con-
cretely by Eq. (2.8).] Since w and id(Dπ/2) are isomorphisms, Πp^ is an isomorphism
as well.

We can now use the characterization (2.21) of E as a product of the E '̂s to
define the symmetry Π(P,Q)e Aut(E) as a product of the Π^. Thus we set, for
(P, 0 in the group of like particle permutations

Π(P,Q) =
pq

(2.33)

It then follows from the functoriality of the V-product as discussed in Appendix B
[or from Eq. (2.36) below] that the Π(P9Q) compose in the same way as the
permutations (P, Q):

and thus realize the group of like particle permutations.

5 With Λ'p, vή, and yp^ regarded as maps from JR3*^^' to 1R3 the definition of w(P, Q) becomes xp°w
= XP-I(P} or equivalently xp(p)°m(P,Q) = xp (and similarly for x9). Then [writing P(p) = p\ Q(q) = q'']

yp'q
r °'®=Xp oGJ—Xq'o'®=Xp~χ%== ypq •>

which is (2.31)
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An explicit form for Π can be given in terms of the concrete definitions (2.8)
and (2.12), (see also Fact. 2.1) of the pullback and the V-product. According to
(2.22), (2.21), and these definitions

EM = {(C, x)eDn / 2 x Mp,qIππ/2(C) = yp^(x)} (2.34)

and

(2.35)

where the notation "(£, x)p~" means that (ζ, x) is the factor belonging to ΊEp*. Then
(2.33) becomes

Π(P, Q) /(X) (C,* *U = (X) (C,* tzτ(P, β) MW)<2(«) (2-36)
\pq ] Pϊ

In concluding this section let us verify that the realizations A and Π just
constructed coincide with those introduced in I and on which we there based our
analysis of spin and statistical reversal. For A, the desired coincidence follows on
general grounds from the fact, demonstrated in Sect. 5 of I, that the group $ has at
most one realization in any gauge-space.

As for 77, the automorphism 77(P,0 was in I (and under the name "P")
uniquely defined by requiring that it be the identity on the fiber π-1(x) over a
point x such that

w(P,Q)(x) = x. (2.37)

But it is clear that Π(P, Q) as given in (2.36) does have this feature. For both sides
of (2.36) are in essence products of the same set of factors ζp~. If they differ, it is only
because the factors belong to different base-points in M, which occurs precisely
when (3.37) fails.

III. The Asymptotic ("Dyonic") Configuration Space

To define composite particles in quantum mechanics, one separates the "external"
degrees of freedom corresponding to the position of the composites' centers of
mass from the remaining, "internal", degrees of freedom of each composite.
Ordinarily, this includes a decomposition of the configuration space into a
cartesian product

say, of spaces representing first the center of mass positions and then the relative
positions of the particles within each composite system. And the corresponding
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decomposition of the quantum mechanical hilbert space, §, into a tensor product

δ^δext®δf(g)...®δint, (3.2)
relies on the relation

(3.3)

In our case, however, because the configuration space E incorporates a gauge
degree of freedom, no decomposition of the form (3.1) exists. Instead, to obtain
analogous decompositions, we must first lift the notion of cartesian product to a
product of gauge spaces (which we will call "Ξ"). Then, recalling from I that the
quantum hilbert space here is the space Z?ή(E) of homogeneous square integrable
functions on IE

(3.4)

we must - and do - find that

L2,(EΞE) = L2 (E)® L\(W] . (3.5)

Let us therefore define the new product, 0 :

Definition. Given two gauge space Ef = (Eί? Mf, πί? Γί5 At\ the product E! HE2 is the
gauge space (£, M, π, Γ, A), where

E = {Xl®X2\XieEl}9 (3.6)

M = MίxM2, (3.7)

) = (π(X^ π(X2)\ Γ(u)(X1®X2) = (uX1)®X2, and where A is (again)
defined by requiring

[A=[A,+ [A29 (3.8)
V 71 72

for any curves y :/->E, y f :/^ Ef such that y(ί) = yΊ(ί) (8)72(0 Vie/.

The extension to a product of m gauge spaces is obvious. Properties of 0
needed in the text are established in Appendix B, and we repeat here only two
facts.

Fact 3.1. Let Ef, i = 1, . . ., m, be gauge spaces over Mt and let p. : M1 x . . . x Mm-^Mi

be the canonical projections. Then

Fact 3.2. If E; and E , i = 1, . . ., m are gauge spaces and TJ : Et.->F. are morphisms,

then Ξ 7J : Ξ Ef-^ Ξ Fί9 given by

η Ξ . . . Ξ Tm(X 1 ® . . . ®X J = T,^)® . . . ® Tm(X- J ,

is a morphism.
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a) Definition and Symmetries

Let us assume henceforth (until Sect. V) that Ne = Ng = N and that all the e-poles
[resp. 0-poles] have the same mass, me [resp. mff] and the same charge e [resp. g~]
then for all p, q n(p, q) = 2eg/hc = : n. We assume without loss of generality that
rc>0 (the case n = 0 is trivial).

In this section we want to show that there is an asymptotic region in which the
2N poles pair off into N e-g-composites or "dyons" which behave like "ordinary"
particles with kinematically decoupled degrees of freedom. To this end we will
define a gauge-space, IE, with respect to which the dyons behave precisely in this
way and then argue that the full gauge-space IE becomes isomorphic to E as the
ratio of dyon size to inter-dyon separation goes to zero.

As in / we form the N dyons by arbitrarily pairing off the 2N poles in the
manner {1, ί}, {2, 2}, . . ., {N, N}, and let, for P any permutation of {1 . . .AT}, JP be the
corresponding permutation of { Ϊ . . . N } . The group of like particle permutations is
now the full SN x SN [with the first (respectively, second) factor acting on the e-
poles (respectively, 0-ρoles)], and its realization Π induces a realization
ΠD : SN-* Aut(E) of the dyon permutation group via

) . (3.9)

We will derive the asymptotic (or "dyonic") gauge-space from E by omitting
from (2.21) the factors which couple the dyons to each other. Thus we define

E=ψEpp, (3.10)

(3.11)
p*q

so that

E=EWes, (3.12)

where the "residual" gauge-space (3.11) accounts for that part of the structure of E
due to inter-dyon couplings. Corresponding to this decomposition of E there are
decompositions of the realizations A and Π. For A we merely factor (2.29) as

A = AWAres (3.13)
with

Ά=ψApp (3.14)
P

Λm=^ΛΛ. (3.15)
pφβ

Similarly, in the case of ΠD we decompose, for any PeSN, the expression (2.33) as
[see (3.9)]

(P) (3.16)

where

) (3.17)
P

Πres(P)=ψΠpί(P,P). (3.18)
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Observe that the last two expressions are in fact well-defined as automorphisms of
IE and Eres respectively since (P, P) acts the same on the hatted and the unhatted
indices. By (3.16) and Fact B 12 we have decomposed ΠD in the form

ΠD = ΠWΠτes (3.19)

with Π and 77res given by (3.17) and (3.18) respectively.
We turn now to the study of the dyonic gauge-space IE. In order to expose its

structure let us define Mext = IR3]V and over it the trivial gauge-space (as defined in
Sect. 2)

Eext = CxR3 ] V, (3.20)

introducing as well

Mίnt = MD x ... x MD (N factors) (3.21)

and the gauge-space over it

Eίnt = Dn/2Ξ...ΞDn/2 (N factors). (3.22)

We will also need the projection y:M->Mint which takes xeM to the N-tuple
CViiM? •••> J>MV(X)) and the projection z :M-»Mext which takes xeM to the n-tuple
(z^x), ...,ZN(X)), where for each configuration xeIR6jV,

zp = zp(x) = (mexp + mgxp)/(me + mg) (3.23)

is the center of mass of the pth dyon.

Lemma

E~EextΞEίnt. (3.24)

Proof. The correspondence

identifies M to Mext x Mιnt and given this identification the restrictions ypp = ypp \ M
are just the projections from M to the MD in (3.21). Thus (z,yιΐ, • ••J.VΛW) are tne

projections of M==M e x txMDx ... x MD onto its factors. Now I(Eext), being the
pullback of a trivial gauge-space, is itself trivial (Fact B 3). Hence Fact B 6(ii) allows
E as defined by (3.10) and (2.22) to be put in the form

Wypp(lΰnf2)]9 (3.26)
P )

which by virtue of Fact 3.1 becomes
(3.27)

as asserted.
The lemma just proved effects a decomposition into internal and external

variables and we want to show that the realizations A and Π decompose
correspondingly. Beginning with the former, we can substitute (2.28) into (3.14) to
get (using also the definitions of V and y)
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Defining further Λext as the trivial realization 1 x λeκ\ where Λext(e) takes zp to e(zp),
and f(ylext) as the pullback of Λeκt over the pair (A, z), and referring to the Remarks
following Fact B4 and Fact B13 gives A in the form corresponding to (3.26)

Finally, because of Fact 3.1 and the functoriality of pullback and W (the
consequence of which could be called "Fact 3.1 in morphism guise") there
corresponds to (3.27)

(3.28)

Λίnt = An/2 Ξ . . . Ξ A/2 (N factors) . (3.29)

For Π the situation is roughly analogous. We define a trivial realization on Eext

where wext(P) (zl9 . . ., ZN) = (zp_ 1(1), . . ., zp-1(N)). We also define on Eint the realization
Πmi which permutes the factors Dπ/2 of (3.22) in the sense that it takes the element
of Eίnt

to Xp-ί(ί}®...<8>XP-1(N} (3.30)

[i.e. Uint(jP)=: 0 Tp where Tp is the identity map of the pih factor onto the

P(p)th factor in (3.22)1 . Noting that the pullback, y(Π'mi\ of J7int over the pair

(m(P), y) (as defined in Fact B4) is just Π [as follows for example from the concrete
forms (3.30), (2.36) (or rather its^p = q part) and (B 1) see also (B 8)] and that z(Πext)
and y(Πint) both induce w in M we can, as before, invoke the Remarks following
Facts B4 and B13 to get in turn

whence

(3.31)

Uext and 77ίnt may be said to permute, respectively, the external and internal dyon
degrees of freedom.

b) Asymptotic Isomorphism With IE

We saw in / that a certain sub-gauge-space of E in which the internal dyon
degrees of freedom were frozen out becomes trivial in a certain asymptotic region.
We are now prepared to generalize this by demonstrating that Eres is asymptoti-
cally trivial, from which it will follow that E and E are asymptotically isomorphic.
Then the decomposition (3.24), (3.28), (3.31) of dyon variables into internal and
external (as opposed to the suppression of the former in /) will make asymptotic
sense in E and will thereby give meaning also to the notions of asymptotic dyon
spin and statistics.
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In order to render our notation of "asymptotic" more precise let us arbitrarily
fix a minimum separation between dyons6, /, and define for 0^ε< oo

(IR6JV)ε = bee IR6jV max / ί, max || y * \\}^ε min || z - z
yy P

For small ε, (IR6]V)ε is a set of configurations in which dyon diameters are much
smaller than dyon separations we will refer to this as the "dyonic regime" and to
the ε-»0 limit as the "dyonic limit". For any gauge-space IE' such that M ' ClR6N we
define the sub-gauge-space Eε by setting Mε = M'n(IR6N)ε and E'ε = π'~1\^M'ε']
[equivalently Έ!ε=J(lE') where j is the inclusion of Mε into M]. Similarly for
morphisms T and realizations R' whose induced maps on base-manifolds leave
Mε invariant, we define the restrictions Tε and R'ε.

. For gauge-spaces E', E" such that M', M"eIR6jV, E' ~E" will mean that for ε-»0
there is a bundle isomorphism T(ε) :Eε-*Eε which becomes an exact gauge-space
isomorphism in the dyonic limit. [By this we mean that for sufficiently small ε,
T(ε) is a l/(l)-bundle isomorphism and that V<S>Oϊlε0>0 such that
ε<ε0=>\\T(ε)*(A'ε)-A'ε\ <δ. Here the argument of || || (call it "AA") is the
difference of two connections and therefore the lift of a unique 1-form A a on
M'ε C 1R6]V, and \\AA\\ can be taken to be the largest absolute valued assumed by any
cartesian component of Δa.~] Similarly R' ~R" will mean that as ε-»0, T(ε) carries
R over into R".

In order to produce an asymptotic isomorphism E~E we write, by virtue of
Fact B6(ii),

and compare this with

Eε = EεVEε

res (3.32)

[from (3.12)]. In view of (2.14) it is plain that an asymptotic equivalence

E r e s~CxM r e s (3.33)

will imply that

E~E. (3.34)

To establish (3.33) it suffices in turn to prove an exact isomorphism for ε = 0.
[Strictly speaking we should, because EQCS is not compact, estimate the deviation of
jgres from jgres for smajι ε j3U^- ^his was done in effect in I (see Sect. 7b) thereof) and
A a shown to be 0(ε//).] Thus we are reduced to proving

Lemma. EQCS is a trivial gauge-space :

Er

0

es-CxM^s (3.35)

6 We need / only to exclude from the dyonic limit configurations in which separations between
dyons go to zero. Without such an exclusion, and with the definition of asymptotic isomorphism used
below, our proof of (3.33) would fail
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Proof. From the Definition (3.11) of IEres, we have7

This can be rearranged as

EΪT8= VEΠΛ0), (3.36)
p<q

where by definition

0. (3.37)

We claim this last gauge-space is already trivial. To verify this, notice first that for
xeMΓ

0

es, yp, = ypq=: -yqp= -yqp so that, on Mr

0

es,

where Θ:MD-^>MD is inversion in the origin (θ(x)=— x). Hence inserting the
Definition (2.22) of Ep^ into (3.37) and using Facts B2 and Bll gives

))]0. (3.38)

Finally we can reduce the argument of yp^ to a trivial gauge-space as follows by
appealing in turn to (2.17 a) and Fact Bll, to (A 29), to Fact B 8, and finally to
Fact B6(ii) [see also (2.17c),d))] :

DΛ/2 v£(DM/2) = (D1/2 W(D1/2)) (3.39)

= ψ(CxMD) (3.40)
i

= CxM D . (3.41)

Hence (3.38) becomes by Fact B3

Er

0

es(A4) = CxMΓ

0

e s, (3.42)

as claimed, whence likewise the triviality of (3.36) as required.
With the proof of (3.33) we are prepared to discuss asymptotic dyon spin and

statistics. But before concluding this section let us summarize its main conclusions
in a series of asymptotic decompositions of E, A, and ΠD.

For the gauge-spaces themselves we had in (3.12), (3.24). (3.22)

E=EVEres (3.43)

JE=IEextΞEint (3.44a)

E int-Dn/2Ξ...ΞDπ/2 (N factors). (3.44b)

7 The second equality is an example of the type of relation whose proof we are usually leaving
implicit but which could be derived rigorously using facts from Appendix B in this case it follows from
Fact Bll and the definition of ( )ε as a pullback
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Corresponding to these we found in (3.13) (3.28), and (3.29) for the realizations of <f,

(3.45)

(3.46a)

(3.46b)

and in (3.19), (3.31), and (3.30) for the realizations of SN,

(3.47)

(3.48a)

77int = "permutation of the factors of (3.44b)". (3.48b)

Finally we found in (3.33)

E r e s~CxM r e s (3.49)

without however proving any corresponding facts for Λres or 77res.

IV. The Persistence of the Spin-Statistics Connection

a) Quantum Interpretation of Previous Results

The last section showed in effect that in the dyonic regime - and with respect to IE,
A, and 77 - our N dyons behave kinematically as particles whose external and
internal degrees of freedom can be entirely disentangled, the only unfamiliar
feature being the involvement of a gauge degree of freedom in the internal dyon
configuration space, Dn/2. In this way the notions of dyon spin and statistics
become unambiguous and correspond, as we will shortly confirm, to the
realizations A and Π.

For the constituent e- and 0-poles these notions are not so clearcut.
Nonetheless the realizations A and Π are physically natural (as discussed in I)
and will provide unambiguous quantum definitions of total (linear and) angular
momentum and oΐe- and 0-pole statistics. To study how the spin and statistics of a
dyon relate to the spin and statistics of its constituents amounts then to studying
the relation of the above realizations to each other.

Before proceeding with this study let us complete our formal framework by
introducing the quantum mechanical hilbert spaces - and associated unitary
representations of d, SN x SN, and SN - with respect to which questions of spin and
statistics can be properly posed. Although this "quantization" is logically nec-
essary, it proves to be but a mechanical translation which, at least for our purposes
here, adds nothing to the already classically significant structures introduced in
Sects. 2 and 3.

As in effect given in I this "translation" converts gauge-spaces into hilbert
spaces and realizations into unitary representations. Specifically if E is a gauge-
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space and IR: G-»Aut(E) a realization, then we define8 the hilbert space

L2(E) - {ιpεL2(E)\ \/Xe E, Vwe C, ψ(uX) = uιp(X)} (4.1)

and therein the unitary representation R : G-» Aut(Z?ft(E)) given by

i) (4.2)

for 0eG and φeZ?Λ(E). [In Appendix B, R is denoted "L2

Λ(jR)" to emphasize the
"functorial" aspect of quantization.]

For our full system of 2N e-poles and g-poles, quantization produces a hilbert
space Z?Λ(E) and unitary representations A and Π describing respectively the
quantum mechanical rotation and translation operators and the physically
natural e- and 0-pole permutation operators. All this assumes however that the e-
and 0-poles are in themselves spinless. In order to relax this restriction we could
augment Z?h(E) to

with §e (resp. &g) being the internal ("spin") hilbert space for a single e-pole (resp.
g-pole), and correspondingly extend Λ, Π to unitary representations on (4.3). But
since the extra degrees of freedom thereby introduced would never interact with
the gauge-space degrees of freedom, their spin and statistics would only combine
in the usual way with each other and also with those of the gauge-space degrees of
freedom. Rather than augment our hilbert spaces, then, we will stick with L2

h(E)
and merely augment our final results to the general case of e- and 0-poles with
spin.

Now from the asymptotic equivalence (3.34) it follows that asymptotically

L2(E)~L2(E). (4.4)

But E decomposes as in Sect. 3, and we claim that to describe I?Λ(E) from the point
of view of (4.4) is to describe our system as a collection of N kinematically
decoupled particles, or "dyons".

Theorem 1. The "dyonic hilbert space" / (̂E), to which lίh(E) is asymptotically
equivalent, can be written in the standard form

fc3N) (4.5)

with the first (resp. second) factor representing the internal (resp. external) dyon
degrees of freedom. The internal or "spin" hilbert space ξ>D is ΰh(Dn/2) with the
associated unitary representation of SO(3) being Rn/2_(see (2.24)) and given this, A
and Π are respectively the standard action of $ and the standard particle
permutation group in an N-particle hilbert space.

8 In order that L2(E) make sense, M must be endowed with a volume element (from which one on E
follows immediately). Since for us M is always a subset of Rfc (for k = 3,3N or 6N) we can always use the
volume element induced therefrom. (This is equivalent to - but not quite the same as - what was done
in/)
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Proof. According to Facts B14 and JB15 a 0-product at the gauge-space level
translates into a tensor product at the quantum level so that (3.44), (3.46), and
(3.48) give rise respectively to9

L2^EHL2(Eext)(x)

corresponding to which

A=Aext® \(^)An/2\ (4.7)

and

Π = Πext®Πini (4.8a)

where

Πίnt = "canonical permutation of the last N factors in (4.6)". (4.8b)

Because of the Definition (2.25) of Λn/2, Rn/2 is indeed the internal dyon rotation
group in (4.7) and we will be done if we show that

and that then Λe x t and 7Iext act in the standard way by acting on the coordinates of
Mext = R3]V. But by definition Eext, Λex\ and 77ext are trivial. Then in the first place
we can display the required isomorphism (4.9) as ψ<^>φ via

ψ(u,x) = uφ(x). (4.10)

Given this and the definition in § 3 of Λext, for example, as 1 x /lext, it follows
immediately from (4.2) that Aexi(e~ l ) ψ = ψ°(l x λQXt(e)) corresponds to φ°λext(e) as
asserted.

The hilbert space Z (̂E) comprises the asymptotic states of the system which
make sense in the dyonic limit just as, for example, in scattering theory a free-field
fock space describes the "in" and "out" asymptotic states. Theorem 1 then
suggests that we regard A as giving the operators of dyon rotation and translation,
and Π as giving the operators of dyon exchange. Indeed if we accept this
interpretation of A then that of Π is unavoidable for to say that a unitary group is
the group of particle permutation operators for a hilbert space in the form (4.5)
with linear and angular momentum given by (4.7) is precisely to say that the group
acts in the way described by equations (4.8)10.

9 Notice that, as required by Fact B14, the volume element on M is equal under the identification
(3.25) to the product element on Mext x MD x MD x ...x MD

10 Notice that the fact that the dyon position operators zpί acting in the second factor of (4.5) and
giving the centers of mass of the e-pole-0-pole pairs, are correctly permuted by Π is also a consequence
of (4.5) and (4.8)
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Hence we can establish both the interpretation of A and that of Π by showing
that the physically correct represention of <?, namely A, goes over into A under the
asymptotic isomorphism (4.4), which we now undertake11.

Notice first that (4.4) - or rather (3.34) - is in more detail the string of
equivalences

M) = IE. (4.11)

The corresponding string which we seek to establish is

l) = A, (4.12)

of which the first is (3.45) and the last is the Remark following Fact B 13. Finally in
order to prove the central equivalence we must show that Ares is asymptotically
trivial. But the dyonic limit of Aτes is trivial :

Λ%'=lxλθ9 (4.13)

if only because both members of (4.13) realize $ and gauge-space realizations of $
are unique. (See I, first footnote to Sect. 6.) [Alternately the analogue of the
computations made below for Πres would prove (4.13) directly.] From the exact
isomorphism (4.13) follows, as before, the required approximate triviality of Ares as
ε-+0:

Ares~lxλ. (4.14)

b) Reversals of Spin and Statistics in Dyon Formation

On the basis of the interpretations just given, we are able to deduce (asymptotic)
dyon spin and statistics from those of the constituent monopoles.

Let us ask first whether the dyons' spin-type is integral of halfintegral.
According to Theorem 1 this depends on the representation Rw/2, and in fact on
whether the latter is faithful or not of SO(3). By (4.1) and (4.2) Rπ/2 is faithful iff Rn/2

is itself faithful, which it surely is (according to Appendix A) when n=ί. Now let
(2π)eSO(3) be the 2π-rotation, and set T=R1/2(2n). We claim T= - 1. In fact the
induced map t : MD-+MD is by definition the identity, and then Te Aut(D1/2) and
T2 = 1=>T= ± 1 but if Twere + 1 then £1/2 would not be faithful. Hence by (2.24),
R

n/2(2π)= WT=(- 1)Π so that Rn/2 is faithful precisely for odd n.
i

Inasmuch as our elementary e- and g-poles have been treated as spinless, the
ordinary rule for combining angular momenta would predict integral spin for the
dyons. When n is odd this naive expectation is reversed and as discussed above this
reversal persists if we endow the poles with intrinsic spin of their own that is

Theorem 2. Consider a system of N identical e-poles of charge e and intrinsic spin se

and N identical g-poles of charge g and intrinsic spin sg. Then a reversal of spin-type
occurs in dyon formation iff n = 2eg/hc is odd.

To determine the relation of dyon statistics to the statistics of the constituent
poles we will relate Π to ΠD by studying /Ires. To begin with, Π defines the
individual e-pole and g-pole statistics, with the former (latter) given by the

1 1 We could also found our interpretation of A directly on the uniqueness of realizations of <f (see
below) but the present reasoning will help prepare our discussion of dyon statistics
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behavior of φeZ?h(lE) under permutations in SNx{e} ({e}xSN). Thus a wave
function ψ which is of pure type (i.e. either bosonic of fermionic) with respect to
both kinds of poles will also be of pure type with respect to ΠD, and that type will
follow by the usual combination rule (odd x even = odd, etc.) from the types of the
e- and g-poles. For example, a ψ describing fermionic e-poles and bosonic 0-poles
would be odd under ΠD. However it is not ΠD but Π which, according to
Theorem 1, determines asymptotic dyon statistics. Just as with A and Λ, ΠD and Π
are related by (3.47) but for the group SN we can conclude from the asymptotic
triviality of IEres only that /Ires is asymptotically either trivial or the odd character
of SN. [See I, the discussion surrounding Eq. (77).]

It is precisely when 77res is not asymptotically trivial that a reversal of statistics
occurs. For, writing, in correspondence to (3.49),

where χ : SN^>C is either 1 or the odd character (— l)p, we learn from (3.47) and the
definition of V (see Fact 2.1, also Fact BIO) that there corresponds to (4.11) the
chain of equivalences

ΠD = Π Wes - Π W(χ x mres) - χΠ .

After quantization this becomes, in virtue of (4.1) and (4.2)

so that statistics according to Π agrees with statistics according to ΠD precisely
when χ=l9 that is, precisely when J7res is asymptotically trivial. We are now ready
to prove

Theorem 3. A reversal of statistics occurs in dyon formation iff n is odd.

Proof. As just shown a reversal fails to occur iff 77res ~ 1 x O7res, equivalently iff 77oes

= 1 x ϋ?Qes. Thus a reversal is equivalent to ΠTQ*(P) = (— 1) x w, where we hereby fix
PeSN as the exchange (l<-»2), and correspondingly w as w™*(P}. Writing for brevity
T=77r

0

es(P) and Tpq = (Πpq(P,P))0, we have from (3.18), the definition of /7Γ

0

es as a
pullback, and the commutativity of pullback and V (Fact Bll)

[See the discussion around (2.32) for the definition of Πpq and § 3b for the "( )fi"
notation, of which "Π™*" and "(Πpq(P, P))0" are instances.]

Equation (4.15) corresponds to (3.11) but by rearranging it suitably we can
write T as a product of morphisms, each of which acts on a trivial gauge-space:

(4.16)

where Tpq = TpqWTqp and Tq = TlqWT2q. According to (2.32), (3.37) and Fact 2.1 (or
Fact B9)

(p,q)) (4.17a)

Tq€ Aut(E«s(l, q) VEΠ2, qfi (4.17b)
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To evaluate (4.16) let us refer to the concrete expression (2.36) for Π(P, P), or rather
its analogue for T=ΠT

0

QS(P\

[where p' = P(p\ q' = P(q) = P(q)']. Since the the base-point x plays no role in the
following considerations, we can omit it and write the action of T simply as

Now since each of the Tpq, Tq is an automorphism of a trivial gauge-space over
Λ/oes, each is (2.2) of the form u x w for some ue C, and Tis therefore nontrivial iff
the product of the w's is — 1. Moreover each Tq or Tpq permutes a finite subset of the
factors of (4.18), and we will evaluate in turn each of the cases indicated by (4.16).

Consider first Γ12eAut(E^es(l,2)). In Sect. 3 we reduced Έg*(l,2) by a suc-
cession of isomorphic replacements first [in (3.38)] to T(JDM/2 V&(JDπ/2)) where
t = (yί2)Q = y12\MTQS

9 and then to the trivial gauge-space (3.42). Since this suc-
cession renders Eόes(l,2) explicitly trivial it must convert Tί2 into an expression
u x w as discussed above. Moreover (3.38) and (3.39) imply (see Fact BIO) that the
factor u in question is σn where σ is the factor for n = 1. For this case the successive
replacements in question are

=ϊ[CxMD]. (4.19a)

The isomorphism &(lD1/2)~D_1/2 is given, according to (A 30) by

(η,v)^Θ(η)9 ηeDί/29 veMD]

(In terms of the concrete D1/2 of § 2,

and the isomorphism D 1 / 2VD_ 1 / 2 = CxM D is given, according to (B5) by

where, for ξccζeΣ~<£2, ξ:ζeC is the unique solution of ξ = ( ξ : ζ ) ζ . Then the
replacements for an element of Eόes(l, 2) corresponding tα the isomorphisms (4.19a)
are

(ξ, x)®(yy, x) [where t(x) = π ί / 2 ( ξ ) = - π1

(4 19b)
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Or dropping the x as was done in (4.18), and consolidating, the replacement which
converts Eφes(l,2) to trivial form becomes finally

ξ®η^ξ:Θ(η). (4.20)

Now by definition [see (4.18)] T12(ξ®η) = η®ξ. Under the replacement (4.20) this
becomes

ξ:θ(η)\-*η:θ(ξ). (4.21)

But we claim that

ξ:θ(η)=-η:θ(ξ). (4.22)

In fact if ξ = uθ(η) then from the Theorem of Appendix A and the conjugate
linearity of <9, Θ(ξ) = Θ(uΘ(ή))= —ΰη, whence (since ΰ=l/u)η= —uΘ(ξ\ whence
η:Θ(ξ)=—u as claimed. Thus (4.21) is the map —1 when n=l, and T12

contributes in general a factor (—1)".
Consider second Tq9 or for concreteness T3. According to (4.17b), (3.37), and

(4.18) this is the permutation

ξ®η®ζ®β^ζ®β®ξ®η . (4.23)

Now with (4.20) applied to both EΓ

0

es(l, 3) and EΓ

0

es(2, 3), the LHS of (4.23) reduces
to K:Θ(^)]®[ζ:0(j8)], and under the further reduction (CxMD)W(CxMD)
= CxMD [see Fact B6(ii)] it reduces further to the numerical product
[ζ\Θ(ή)'\ [£:©(/?)]• It follows that (4.23) is simply the identity map so that TQ

contributes a factor of 1.
Finally the factors such as T34 act as

which under the replacement (4.20) evidently amounts to nothing - or rather to 1.
Thus the Tpq for 2<p<q also contribute factors of 1.

Corollary. A reversal of spin occurs in dyon formation iff a reversal of statistics
occurs iff eg/he is half-integral.

Proof. Immediate from Theorems 2 and 3.

Corollary. Dyon formation preserves the connection between spin and statistics.

V. Summary and Final Generalization

We began by introducing a certain gauge-space E to represent the degrees of
freedom of a system 6 of (spinless) point e- and 0-poles and we found natural
realizations in E of the symmetries of S corresponding to translations, rotations
and permutations of identical monopoles. In a certain asymptotic regime - which
exists if we assume ep = e,mp = me, gp = g,mp = mg, and Ne = Ng = N — ]E decomposes
as a product E~Eext[χ]Eint where Eext = CxR3 ] V and Eint = Dn/2Ξ.. ΞIDM/2, so
that ® appears as a system of N composite "dyons", each with external degrees of
freedom 1R3, as usual, and internal degrees of freedom DM/2.
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Our realizations A and ΠD of $ and SNcSNx SN, respectively, agree with this
asymptotic decomposition of E except that, when n = 2eg/hc is odd, ΠD differs by
the odd character χ from the standard form 77, which by definition is simple
permutation of the (internal and external) dyon degrees of freedom. Moreover the
gauge degree of freedom embodied by Dw/2 means that "internal" dyon angular
momentum can be other than purely "orbital" and consequently can assume half-
integral values. Again this happens precisely when n is odd. Interpreted in terms of
the quantizations scheme of I, these facts mean, as we have seen, that in the
"formation" of composite dyons from point e- and g-poles (possibly with intrinsic
quantum mechanical spin), a reversal of spin-type and statistics-type occurs if and
only if n is odd. Since the reversals always occur together, the composites obey the
spin-statistics connection if the constituents do.

Within the restriction to a non-relativistic, first-quantized theory the above
work falls short of full generality in three ways : the constituents are assumed to be
either pure β-poles or pure 0-poles; all composites are taken to be identically
constituted only dyonic pairs (as opposed to singlets, triplets, etc.) are considered.
Dispensing with these limitations, one can still carry out an analysis closely similar
to that of Sects. 2-4, and we conclude by sketching it.

Let there be N dually charged monopoles ("point dyons") with dual charges
(e

p> 9P\ P = 1.. N. (We need only one sort of index now.) Define as before M, xp, ypq,
and set

where

and where j(p, q) : = (epgq — eqgp)/hc must be of the form n/2 for some integer n
("Dirac quantization condition"). Just as before there are in IE natural realizations
A of $ and Π of the subgroup 5 C SN which exchanges only like monopoles.

Now let us group the point dyons in any way whatever into K disjoint sets and
consider as before the limit where each set forms a composite particle whose
diameter is much smaller than its separation from the other composites.

In this limit we have as before E~EextEEint with Eint= Ξ E^being a product of

gauge-spaces each of which describes the internal degrees of freedom of one of the
composites. (Eext is no longer trivial'however.)

Again there are natural realizations Λext, Aint of <f and 77ext, 77int of the group
SDCS of elements of S which keep the dyonic composites together, and again

but

where ΠD :SD-»Aut(E) is the restriction of Π to SD, and χ:SD-*{±l} is a
character.
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For a particular composite - say the 7th - its acquired spin is given by the
action of SO(3) on E}nt and its acquired statistics by the sign of χ(P) for any PeS
which exchanges it with another composite of like composition. The main
conclusion is just as before: For a particular composite a spin reversal occurs iff a
statistics reversal occurs iff, among the pairs formable from its constituent
monopoles, an odd number have half-integral j(p9 q).

Appendix A. The One-dyon, One-twist Gauge-Space

After introducing the notion of, and notation for, SO(3)-spinors, this appendix will
construct the gauge-space D1/2 and the "inversion" Θ, deriving in particular the
equality Θ2= — 1 to which is due the "reversal of statistics in dyon formation".

Of the many available descriptions of D1/2 ([6-8] see also the presentation in
terms of coordinate charts in I (§ 3)) that given in part (b) below seems to us to
contain the fewest extraneous elements.

a) SO(3)-spinors

Let Σ be a 2-dimensional complex vector space and Σ* its dual :

). (Al)

Let Σ (the "conjugate" to Σ) be Σ itself only with elements of C acting as their
complex conjugates. By this we mean that any element ξeΣ can be regarded at the
same time as an element ξ of Σ and that

ϊξ = zξ (A2)

for all zeC, ξεΣ. In representing tensors formed from Σ, Σ*, etc. we will use the
"abstract index" notation_so that ξA

9 ξA, ξA\ ξA, are elements of Σ9 Σ*, Σ9 Σ*
respectively. (We identify Σ* to Σ*9 Σ to Σ**9 etc.) Thus for example, jf ξεΣ*, ηeΣ,
and ζ=ξ®ηeΣ*®Σ9 we write ζA=ξAη

B and express ζ\ = ζ®η as ζA> = ϊ;A>ηB'
We assume henceforth that Σ has a distinguished positive-definite hermitian

metric GAB and define its inverse GAB by

GAB'GB,c = δA

c. (A3)

We will also write the metric, whose hermiticity appears in our notation as

GA.B = GBA,, (A4)

in the index-free manner

<ξ9ηϊ: = ξA'GA,Bη
B. (A5)

By definition the group Aut(Γ G) of invertible linear operators SA

B which preserve
GA,B9 i.e. such that

GA,AS
A'B,S

A

B = GB,B, (A6)

is isomorphic (as an abstract group) to C/(2), and we may as well denote it by the
same name. Clearly (A 6) is equivalent to the condition S^ = S~1 where we define
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for any Se&(Σ,Σ)

(tf)A

B = GAA'SB'A,GB,B. (A7)

We will call Σ with its distinguished hermitian metric a "space of SO(3)-
spinors"12. The relation of spinors to vectors emerges if we consider the complex
vector space

V={vAB\vA

A = Q} (A8)

and the bilinear form thereon given by

(t?, w) = ̂ trvw = ̂ VA

BW
B

A. (A 9)

The subset of hermitian [in the sense of (A 7)] elements of V9

V° = {veV\Όi = υ} (A 10)

is, together with the metric (A9), a real 3-dimensional euclidean vector space. In
fact V° is an oriented 3-space because setting

s(vl9v29v3) = ̂ tτv^v^v^] (All)

defines canonically a 3-form on V°.

The prescription

p(ξ) = 2ξA ξ»' GB,B - (ξc' Gc,DξD)δA

B (A 12)

defines a map from Σ onto F°, and under this correspondence, SE Aut(I) goes into
the linear operator

p(S) = {v^SvS~i} (A 13)

[i.e. p(S) p(ξ) = p(Sξ) = Sp(ξ)S~1']. Plainly (A 13) is a rigid rotation [it preserves the
metric (A9)]? and in fact the p(S) exhaust the rotation group of F°, which we may
as well call "SO(3)". When restricted to the subgroup of (7(2),

l}, (A 14)

p expresses that SU(2) is the universal covering group, SO(3) of SO(3).
In what follows we will need a 2-form (skew tensor) εAB and its inverse SAB

defined by

εACεBC=δ\. (A 15)

Since Σ is 2-dimensional such an SAB is unique up to a complex factor. We can even
normalize it in magnitude by requiring

εABGA,AGB,B = εA,B,, (A 16)

12 One might want to include a distinguished 2-form εAB in the definition of "SO(3)-spinor space".
This would reduce Aut(£) to SU(2) and allow a "geometrization" (up to sign) of SO(3)-spinors
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but the phase of £AB remains arbitrary. [Notice that the LHS of (A 16) could be
regarded as (dQtG)εA,B,, and the positivity of GA,B entails that of detG. Thus the
sign in (A 16) is not arbitrary.]

Also for future use we evaluate the norm of p(ξ). From (A 12) and (A9) [and
writing |£|2 = <&£> and \\v\\2 = (v,v)]

\ξ\2 = GA.Bξ
A'ξ*. (A 17)

Finally let us relate our notation to one which might be more familiar. To this
end we treat the inclusion of V into Σ®Σ* as a linear map, σ. Regarded as
belonging to V*®Σ®Σ*, this map has the index structure σa

B

C9 where lower case
Greek indices refer to the vector space K In terms of σ the metric (A 9) on V
becomes

0tf = KVΛ» (A18)

which can be used to raise and lower Greek indices, and we have then the
identity13

nocβ A C — JfiAzC__ϊAςC f Δ 1 Q Ϊ
9 σα Bσβ D~/'0DOB °B°D' 1A1^J

From (A 19) follows

p(ξ), = ξλ'GA.AσΛ

A

Bξ* (A20)

which will look still more familiar if we define

(&Λ = ξA'GA.A, (A21)

and suppress the spinor indices so that (A 20) appears as

p(α = ̂ σβξ. (A22)

We will also need the identity

εAN°?Nr MB= σ«AB, (A23)

which follows from trσ = 0 and the general relation ^AB^CD = δcδB

D-ODδB.

In terms of any orthogonal basis for Σ the metric GA,B becomes the identity
2 x 2 matrix, V becomes the set of traceless 2 x 2 matrices, and (A7) becomes
hermitian conjugation. Hence V° becomes the set of traceless hermitian 2 x 2
matrices, and if we determine a basis for V by requiring that the σΛ

A

B be the Pauli
spin matrices, we recover the standard isomorphism between 2 x 2 hermitian
matrices and IR3 under this isomorphism the 3-form ε defined by (All) becomes
the usual alternating symbol for which ε123 = l.

13 To prove it use (A 18) to show that the LHS of (A 19) is the orthogonal projection ofΣ®Σ* onto V
and notice that the RHS is this same projection
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b) The Gauge-space D1/2

We know from I that D1/2 admits a faithful realization of SO(3), and we have just
seen that the space Σ of SO(3)-spinors also admits such a realization. Is it
surprising then that we look to Σ as a basis for constructing D1/2?

Definition. We imploy the notation just introduced. Π)1/2 = (D1/2, MD, π1/2, Γ1/2,
A1/2) is the gauge-space with D1/2 = Γ-{0}, MD=V°-{0}, π1/2 = p, (Γ1/2(u))(ξA)
= uξA for weC, and connection given by

Am'^ = lm<^ (A24)

where £ is a tangent vector at ξeDί/2.
(Because D1/2 is naturally a subset of the vector space Σ we can represent ξ as

itself a vector in Σ.)
Inasmuch as we have defined Al(2 in a fully SO(3)-invariant manner, without

having preferred any direction in F°, the associated curvature f=fί/2 must be
sperically symmetric. Direct calculation shows

fΛ^) = ̂ βaβγυ^υ\Γ3 = ̂ FΛβ(v) (A25)

[with εΛβy given by (All)] and thereby justifies our appelation "D1/2".
Consider now the symmetries of D1/2. Because SU(2) as defined in (A 14)

preserves all the structure involved in defining D1/2 (S.U(2) C Aut(Σ)) it induces in
Σ—{Q}=Dί/2 a group of gauge-space automorphisms. Thus identifying (A 14) with
SO(3) as discussed above gives the (by definition faithful) realization

R1/2:SO(3)->Aut(B1/2)

in terms of which dyon angular momentum is defined.
Although D1/2 admits proper rotations as symmetries, we should not expect

the same for orientation reversing "rotations" of V° such as inversion in the origin

for the product eg=-hc is an axial, not a polar, scalar. Rather, if θ: F°-»F° is

inversion in the origin (θ(v) = — v) then we should expect a lift of θ to change the
sign of A (and hence of the curvature). And in fact the conjugate-linear map taking
ξAGΣ tO

Θ(ξ)A = ξA'GA,Bε
AB (A26)

is such a lift for any εAB normalized according to (A 16). To see this notice first that
since Θ is conjugate-linear it clearly takes fibers into fibers and reverses the action,
Γ1/2, of 17(1). Moreover iϊη = Θ(ξ) then by (A 16) and (A4)

= £*GM,^'*'G^, = <^ (A27)

so that

Λ π A nB_κC A Kf PBi>
'/ ^σα B f/ ~^ fc^Cσα BS D fc
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where the final step used (A 23). This confirms that Θ induces θ on MD. Similarly
one can verify for the pullback that Θ*(Ai/2) = ~Alj2, which is almost obvious
anyway since Θ has been defined (up to a phase) solely in terms of the structure of
D1/2.

We can also view (A26) as the linear map Θ : Σ^Σ given by

In this sense it expresses an isomorphism of D1/2 and ID_1/2 where we define

D_1 / 2 = (Γ,MD,p,Γ_1/2, ~A1/2)

with [(Γ_ίl2(u))ξ]A' = uξA' = tiξ* for ξeΣ (recall that Σ^Σ as sets). Observe that

^4-1/2 ~ ~^l/2^>

curv(D_ 1/2) = - curv(D1/2) . (A28)

We remark J hat according to its definition, D_ 1/2 coincides with the opposed
gauge-space D1/2 as introduced in Appendix B. Also, since the lift
π1/2(θ) : 0(D1/2)->D1/2 (again, see Appendix B for terminology) induces on MD the
same inversion θ as does Θ, the composition

θ °π1/2(θ) : Θ(D1/2HD_ 1/2 = D1/2 (A29)

is an isomorphism which induces the identity map on MD. In terms of elements
(A29)is[forp(ξ)=-ϋ]

(A30)

which for fixed v maps [5(π1/2)]
 1(v) onto (π_1 / 2) *(ι;).

Finally let us exhibit the crucial minus sign:

Theorem. Θ2=-l.

Proof. If if = 0(0 and ζ = Θ(η) then, in light of (A26), (A21), (A27), and (A 15),

ζC __ t £CA

 = ξB

ε £

CA

=—ξc

Appendix B. Products and Fullbacks of Gauge-Spaces

In this appendix we define, and collect some relevant properties of, three
operations on gauge-spaces, whose explicit use greatly clarifies the relations
presented in the body of the paper.

a) Fullbacks

Given a gauge-space E=(E,M,π,Γ,,4), a manifold M and a continuous map
f:M->M. one can define the pullback of E by t as the gauge space E
= (E,M,π,f,Ά) where E={(X,x)eEx M\π(X) = t(x)}yπ(Xίx)==xioΐ (X,x)eE and
f(u) ((X, x)) - (Γ(tt) pi), x). Plainly the map T: E-+E given by T(X, x) =X commutes
with the action of LΓ(1) as given by Γ, Γ, and we define A to make Ta gauge-space
morphism: Ά = T*(A). In this situation (see Fig. 2) we use the notation E=1
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v
M-

Fig. 2

Fig. 3

£=T(£), π=T(π), f =ί(Γ), A=Ϊ(A), and T=π(ί). Notice that ί is the map on base-
spaces induced by T; so our notation is consistent.

Fact Bl. curv(f(E)) = ί*(curv(E)).

Proo/With notation as above and /=curv(E) έ/A = dT*(A)=T*(d^l)=T*(π*(/))
= (πoT)*^/) = (ίoπ)*(./) = π*(ί*(/)) so that ί*(/) fulfills the Definition (2.1) of

/=curv(E).
It is also easy to verify that

Fact B2. <ί1°ί2(IE)^f2°Γ1(lE) (canonical isomorphism).
The notion of trivial gauge-space was defined following Eq. (2.1) and the follow-

ing follows straightforwardly from the definitions.

Fact B3. The pullback of a trivial gauge-space is trivial. In the above situation
with IE the trivial gauge-space CxM, the isomorphism E^CxM is given by

Let us recall from the theory of principal fiber bundles (in particular 17(1)-
bundles) another result which extends readily to gauge-spaces. To this end
consider (Fig. 3) a pair of gauge-spaces Ef(i = l,2) and of maps t^M^M^ and
retain the notation ^-(Ej.) = !£,-, etc.
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If"(S, S):(π1,ί1)-^(π2,ί2)" means that ίS:E1->IE2, s:M1-+M2 and st1=t2s
(where, as always, s is the map induced by S) then given (S, s) : (π1? ί1)-^(π2, £2) there
is a unique gauge-space morphism £ :Γ1(E1)->Γ2(E2), inducing s and such that
S°π1(ί1) = π2(ί2)oS. We will refer to S as the "pullback of S over the triple (s, t2, fj",
and the use of this expression will entail that (5,5) :(π1,ί1)^(π2,ί2). In concrete
terms S is just the function

(Bl)

Furthermore, if E3 is a third gauge-space and Q is the pullback of Q :E2->E3

over the triple (g, £3, ί2) then Q°S is the pullback of Q°S over the triple (q°s9 ί3, ix).
Finally if Ex =E2 -E, M1 = M2 = M and S = id(E) and S = id(M) are both identity
maps, then plainly the pullback of S over the trivial triple (s, t, f) is itself the identity,

The facts recounted in the last two paragraphs can be described as the
functoriality of the pullback. From this functoriality follows readily

Facts B4. Let t : M->M, where M is the base-manifold of a gauge-space E. If R, r,
f, realizing the group G in E, M, M respectively are such that R induces r (as
implied by the notation) and t°r = r°t (for all #eG) then the prescription
"R(g) = pullback of R(g) over the triple (f(g\ f , £)" lifts f to a realization R of G in
f(E), and π(t)°R = R°π(t).

We will call R the "pullback of R over the pair (f, ί)", and denote it by "Γ(K)"
(omitting reference to f).

Remark. In Fact B 4 i f E = C x M i s trivial and R is also trivial (in the sense that
R = 1 x r for some realization r) then ΐ(R) is also trivial.

bj Products

If Φ. (i = 1, 2) are gauge-space fibers [equivalently circles acted on by (7(1)] then we
define their tensor product Φ = Φl®Φ2 to be their cartesian product Φ1 x Φ2

modulo the equivalence relation

for weC, the unit complex circle. Then Φ it itself a possible gauge-space fiber since
it is topologically a circle and is acted on by C= U(l) via

where we have written "X1®X2" for the equivalence class of ( X ί 9 X 2 ) . Using this
construction we can define two closely related types of gauge-space product.

The first of these extends to gauge-spaces the notion of cartesian product for
manifolds. For an arbitrary pair Et (i = 1, 2) of gauge-spaces let E^Ej^ 0E2 be the
gauge-space whose fibers are the tensor products of the fibers of E1 and E2 and
whose projection is therefore the map π:E->M 1xM 2 given by π(X1(S)X2)
= (π1(Xί), π2pf2)). This gives E as a principal Ϊ7(l)-bundle (the definition of its
topology and the proof of its local triviality being straightforward) and we define
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the connection A which renders it a gauge-space by requiring

[A=\Al+\A2 (B2)
y 7Ί J2

for any curves y :/->£, γ. :I-^Ei (where / = [0,1]) such that Vtγ(t) = γ1(t)®γ2(t).
The second product essentially takes gauge-spaces E£ over a sw0/e M and

produces a gauge-space E over the same M, whose curvature is the sum of those of
the Ef. (In particular the Chern class of E will be the sum of those of the Ef.)
However it proves useful here to allow the base manifolds M{ to differ and define
the product only over their intersection. Thus we define for arbitrary gauge-spaces
E1? E2, E=E1VE2 to be the gauge-space over M = M tnM2 whose fiber over
xeM is the tensor product π~[ I(x)®π2

 1(x) of the fibers of Ex and E2 over x. In this
case E is, so to speak, the point-wise tensor product of Ex and E2. To specify the
connection on E^WE2 we again use (B2) where now the γ. (and therefore γ) must
be lifts of the same curve y : /->M.

We can summarize the two definitions as follows:

E1 WE2 = {X1 ®X2 \XieEi and π^) - π2(X2)} .

That 0 and V are similarly defined is apparent, and in fact either can be expressed
in terms of the other using pullbacks. To express V in terms of 0 let
ί :M1nM2-*M1 xM 2 be the canonical injection, ί(m) = (m,m). Then

E1VE2^T(E10E2) (canonically). (B3)

Conversely if pt \Ml x M2— >Mf are the canonical projections then

E10E2-p1(E1)Vp2(E2) (canonically). (B4)

Because of (B3) and (B4), a result in terms of one of the products has usually a
directly equivalent form in terms of the other product. When this happens in the
sequel, we will state the equivalent form only if it is needed for the body of the
paper.

Fact B5. curv(Ex VE2Hcurv(EJ|M + curv(E2)|M, where M = M1nM2, and/|M is
the restriction of / to M.

Proof. As above let γί9 y2 and y = y±®y2 be lifts of the same curve γ and assume
further that γ is a loop bounding the surface S m M and that the curves γt bound
lifts St of S in Eί then γ also bounds a surface S in E1 VE2 whose projection onto
M is S. We have

5,

{A=[dA=lf,
y s s

whence from (B2)

ί(Λ+Λ-/)=o.
S
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Since S is arbitrary, the integrand vanishes.
The following comes straightforwardly from the definitions :

Fact B6. Let E1 be any gauge-space over Mί and E2 = Cx M2 the trivial gauge-
space over M2, and let p1 :M1 x M2-^M1 be the projection. Then

(i) IE1[χ]IE2^jpι(Eι) (canonically) via

X1 <8>(tι, x2)+*(ύXl9 (π^XJ, x2))

(ii) E! W2^E1|(M1nM2) (canonically) via

X1®(M,x)<<->uX'1 .

(Here "E|AP' denotes the restriction of E to ΛΓeM, that is E|N=J(E) where
j : N-»M is the inclusion.)

Definition. Let E=(E,M,π, Γ,,4). Then the opposed gauge-space is

E= (£, M, π, f, - 4) where f (w)X = Γ(u~ l)X

Fact B 7. curv(E) = - curv(E).

Proof. Clear from (2.1) and the last definition.

FactBS. E V E ~ C x M (canonically).

Proof. Let Φ = π~ 1(x), and Φ = π~ x(x). By definition both these fibers are equal as
sets and we write "X" for an element of Φ regarded as belonging to Φ. Then the
desired isomorphism restricted to Φ(x)Φ takes Xί®X2 to

ip(X1®X2): = (X1:X29x)eCxM, (B5)

where AΊ : X2 is the unique we C for which Γ(wpf 2 =^Γ1. The map ψ will be well-
define^ iff for all ueC, ψ(Γ(u)(X,)®X2) = ψ(X,®Γ(u)(X2)), which is equivalent,
since Γ(u)(X2) = Γ(u-1)(X2\ to lΓ(u)(X1)-]:X2=Xi:[_Γ(U-ί)(X2)l i.e., to the
relation,

whence to Γ(w)~1Γ(w)^Γ(w)Γ(w~1),_which is true for the abelian group C. It is
also straightforward to verify, using A = — A, that ψ takes the connection on EVE
to the trivial connection on C x M.

We consider now the V-product of gauge-space morphisms as needed for the
body of the paper. For i= 1, 2 let E^ (resp. E.) be gauge-spaces over Mi (resp. AT.)
and let Tt :Et.-»E. be morphisms such that ti\M = t2\M where M = MίnM2. We
will call such morphisms compatible. The obvious presription (for X1®X2eEί W
E2),

, (B6)

defines a gauge-space morphism



194 J. L. Friedman and R. D. Sorkin

as is not hard to check. Moreover if St :W.-+<Sj. are also compatible morphisms
then

(S1oT1)V(S2oΓ2) = (ίS1VS2)o(Γ1VΓ2) (B7)

(functoriality). (In particular the V-product of isomorphisms is itself an isomor-
phism.) More generally we can state the following self-evident result.

Fact B9. Let Efc and Wk for k = 1 . . .m be gauge-spaces over Mk and Nk respectively
and let {7^} be a collection of compatible gauge-space morphisms Tk:]Ek-+Wk.

Then the obvious extension of (B6) defines a morphism W T, : WEt-> WE,.
k k k *

If the Tk are all isomorphisms then so is their product.

Fact BIO. For ukεC, "ψ(ukTk) =
k

In particular u' Wu" = u'u"

Remark. The equivalent results for 0 are precisely analogous, except that no
compatibility of morphisms need be assumed.

Fact Bit. Let Efe, k=l...m be gauge-spaces over Mk and let tk:Mk-*Mk be
mutually compatible : ί1 |M=... = ίm |M = ί where M = r\Mk. Then

V ΐk (Ek) ~tl V EΛ (canonically) .
k \ k )

In other words V commutes with pullback.

Sketch of Proof. The following is a well-defined isomorphism :

(B8)

where necessarily nk(Xk) = t(x) for all k.
Again there is an equivalent result for 0.
The following are immediate corollaries of the functoriality of W and 0.

Fact B 12. Let Ek k=l...m be gauge-spaces over Mfe and let Rk :G->Aut(Efc) be

compatible realizations [i.e. the Rk(g) are compatible for each geG~\. Then R=^
k

Rk given by R(g) = V ^kto) realizes G in *ψ Efe and is compatible with the .Rfe.
k k

Fact BIS. If, for fc=l to m, Kfc realizes G in Efc then the map Q<] Rfc

taking gfeG to 0 Kfc(gf) realizes G in 0 Efe.
fc k

Remark. Let Et and E2 be as in Fact (B6). If Rt (ί= 1, 2) are compatible realizations
of G in Et of which the second is trivial (R2 = 1 x r2) then clearly Rί WR2

corresponds to R^ under the isomorphism (ii) of Fact (B6).
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c) The \χ\-Product Under Quantization

Assume henceforth that Et and E2 are gauge-spaces whose base-manifolds M1?

M2 are endowed with volume elements μ l 5 μ2 and let M1 x M2 have the product
volume element μ = μίxμ2. Then E1? for example, inherits a natural volume
element μ1 in terms of which one can define L2(EX) and the subspace /^(EJ of L2-
functions which are homogeneous in the sense of (4.1). We have the following
isomorphism (in which ® is of course the hίlbert space tensor product).

FactBi4. 4(mιΞE2)^L2

ft(E1)(χ)Z2

I(IE2) (canonically).

Proof. Let ip^I^fEj) (ΐ= 1,2) and let ψ be the function on E = E±\x\E2 defined by

ψ2(X2). (B9)

The homogeneity of ιp1 and ψ2 ensures that ψ is well-defined and itself
homogeneous, so that t/;eL2

Λ(E). Moreover since the mapping (ip^\p2)\->\p is
bilinear it defines a linear map β0 from the algebraic tensor product of Z^QEj) and
Z^(E2) [itself a dense subset of the hilbert space product L f̂(E1)(2)Z^(E2)] into
Z?Λ(E). Let us show that β0 is an isometry onto a dense subset.

Firstly if < , > is the hilbert space scalar product then

while by (B9)

>=fv>^
£

The homogeneity of the tp's and 0's reduces the integrals to ones over M1 x M2,
whence their equality because dμ(xl9 x2) = dμί(x1)dμ2(x2). Hence jS0 is an isometry.

Secondly the question whether the image of β0 is dense in Z?h(E) can be studied
in a coordinate patch, and there a favorable answer would follow from the full
result (i.e. Fact B 14 itself) formulated for trivial gauge-spaces. To establish the
latter we need only write

L2((C x MJEKC x M2))-L2(C x M1 x M2) = L2(M1 x M2)

where the first isomorphism follows from Facts B6(i) and B3, the second and
fourth are obvious [see (4.9), (4.10)], and the third is well known.

It follows that β0 extends to an isometry

Just as a gauge-space (with volume element) E gives rise to a hilbert space
Z?Λ(E), a (volume preserving) realization R on E gives rise, via the natural
prescription

= V°«te"1), (BIO)
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to a unitary representation lίh(R\ acting in I?h(ΊE). [In the body of the paper this
process was used to derive Λ=I?h(Λ), Π = ΰh(Π\ etc.] As for the spaces, we have
also for the realizations,

Fact B 15. If R± and R2 are volume preserving realizations of G in Ex and E2

respectively, then under the isomorphism of Fact B 14

Proof. Let β be the isometry constructed in the last proof. We must show, for each

Applying this to an arbitrary ιpΐ®ψ2 (and suppressing g) reduces it to

which itself, when applied to an arbitrary X1®X2eE1l*\E2 reduces to
ψΐoRί(Xί)ψ2oR2(χ2)=β(ψl(g>ψ2)(Rί(χί)(g)R2(χ2)l which - at last - is im-
mediate from the definition of β.
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