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Abstract. We consider the φ4 theory in Euclidean space of complex dimension
v and prove that, for Rev<4 the renormalized Feynman amplitudes grow at
worst exponentially in the number of vertices in the graph. This implies that
the Borel transform of any Schwinger function may be defined in a neigh-
borhood of the origin in the Borel plane.

1. In this paper we prove the existence, in a neighborhood of the origin, of the
Borel transform of the perturbative series for any Schwinger function of the
Euclidean φ* model, when the (possibly complex) dimension v of space time
satisfies Rev<4.

We do not discuss the more difficult problem of extending the domain of
analyticity of the transform and proving the Borel summability of the theory (a
problem which has been solved by constructive quantum field theory in the integer
dimensions v = l,2,3). A discussion of the background and motivation for this
study is given in [1] (see also [2]), to which we refer the interested reader here we
summarize the problem briefly.

We consider then a truncated Schwinger function of N ̂ 2 fields. Such a
function has a formal power series development in the coupling constant λ:

N \ oo in

Σft ΣΓΪ^V),
1 / n = 0n

where an is a sum of Feynman amplitudes which are associated with connected
Feynman graphs and in which v appears as a parameter. Since the number of such
graphs is obviously smaller than the total number of graphs appearing in the
development of the full Schwinger function, and since this number

-l)l\ is certainly bounded by (nl)2-(16)n (4n + N-l)N/2, the con-
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vergence of the series for the Borel transform B(t) :

in a neighborhood of the origin (|f[<£0) will thus follow from our main result:

Theorem. Let G0 be a connected graph in the φ* theory with n internal and N^2
external vertices, and let δ^p^Iζ^v) be a renormalίzed Feynman amplitude for
G0. Then for 0<Rev<4, there is a constant Av independent of n and of the graph
G0, such that:

(1)

Moreover, Av may be chosen uniformly on compact subsets of {0<Rev<4}.

We note although we do not deal here with this question, that a precise
numerical calculation of Av would provide a rigorous bound on the behavior of
large orders of perturbation theory for φ*, that could be compared with the more
precise behavior obtained by Lipatov's method [3,4].

We remark also (see [1]) that it suffices to establish the theorem for any one
choice of renormalizatίon method, since a finite renormalization will not affect the
estimate (1). The generalization of the theorem to the region Rev<4 is trivial (see

The remainder of the paper is organized as follows. In Sect. 2 we introduce our
notation, recall briefly the method of dimensional renormalization, and reduce the
proof of the theorem above to an estimate on unrenormalized amplitudes.
Section 3 is devoted to two preliminary estimates, on convergent graphs with
generalized propagators, and on self-energy graphs. Section 4 gives an integral
representation of an arbitrary amplitude in terms of the amplitudes considered in
Sect. 3 and proves the final estimate.

2. We establish our notation for an arbitrary connected Feynman graph G in
which line / has generalized propagator (p2 + ζl)~λl, with Λ, r^l, Re£,>0.

Let LG, nG, and hG denote the number of lines, vertices, and loops, respectively,
and write

IθG

for the superficial divergence in dimension v. Some vertices {va} of G are external
and formally associated to them are Euclidean momenta {pa} satisfying overall
momentum conservation the complex dimensional amplitude is a function of the
invariants {sab} formally given by sab = pa-pb. The standard combinatoric functions
are:

UG(*) = ΣΠ«« (2)
T IφT

VG(a,s) =^1(α)Σ(Π«A(Σ
T2\lφT2 \aeE
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where T is a (spanning) tree in G, T2 a 2-tree which separates the external vertices
into two non-empty sets, one of which is E. Finally the unrenormalized Feynman
amplitude [5] of G is, omitting irrelevant factors :

/c(v,s)= J..J ΠTOΓX'-^αJt/^expC-^ + Mo)]. (3)
0 leG

This integral converges absolutely for Re v < 2.
To study renormalization of the φ4 theory, we fix v0<4 and restrict v to the

domain Ω={v/0<Rev<v 0}.
A graph G0 in the φ4 theory has ̂  = m2, λt=l for each line / the amplitude !GQ

ί 2
is meromorphic in v and is analytic in the domain Ω= <v/0<Rev<v 0 , V Φ 4

for any n^l> [5] . A one-particle irreducible (1PI) graph G0 is superficially

divergent for some veΩ [i.e. <5G(v0)>0] if and only if G0 has two external lines (i.e.
is a self energy graph, obtained by amputating a graph in the Schwinger function
of two fields) and satisfies nGo < [2 — (v0/2)] ~ *.

Thus there is a finite collection / of divergent 1 PI self energy graphs and all
other graphs are superficially convergent.

Suppose then that G0 is superficially convergent in Ω(δGo(v0.)^0). G0 contains a
(possibly empty) collection {Hl9...,Hj} of divergent connected subgraphs, each
isomorphic to an element of /. Then the dimensionally renormalized amplitude
/*o has the form [5]:

S [ies

where the sum is over subsets Sc{l,...,/} such that {Hΐ9ieS} are disjoint, Gs is
obtained from G by replacing each Ht, zeS, by a single φ2 vertex, and fHι(v)
depends only on the structure of Ht and is analytic in Ω. Moreover, IGo is analytic
in Ω.

Now in Sect. 4 we will prove:

Lemma 1. For any compact subset KcΩ' there is a constant Bκ^l such that, for
veK and for any Feynman graph G containing φ4 and φ2 vertices and at least two
external lines:

Here we note that the main theorem of Sect. 1 follows immediately. For the right
side of (4) contains fewer than 2L° terms thus if K C Ω is compact and
bκ= maxίsup fH(v}\ then for vεK, \IG(v,s)\<z(2bKBK)LG.

i

A similar bound follows on a compact subset KcΩ by writing IG in terms of
Cauchy's integral formula on a Jordan curve in Ω' enclosing K. Since LG<2nG, (1)
follows.



296 V. Rivasseau and E. Speer

3. We need two preliminary estimates for the proof of Lemma 1. The first
controls the behavior of convergent graphs the key idea is to use a convexity
argument (as in [1, 2]) together with a standard result from linear programming to
estimate V^'2 as a product.

Lemma 2. For any compact KcΩ and any α>0, there is a constant Cκ^l such
that, if G is a connected Feynman graph whose propagators (p2 + Q~ λl satisfy λl ̂  1,
Reζ^α, and for which δj(v0)^0 for every subgraph J, then for veK:

\Ie(v9s)\£(CκJ&λl. (6)

Proof. Let μ = Rev. We claim that there exist weights Wτ for the (spanning) trees T
of G such that :

(7)

> v0

Suppose this is true then :

i^ote Σ WrΠ^ Π(ΓkfΓ= Γk^ (8)
T IφT T \lφT / I

by the standard inequality between geometric and arithmetic means. Hence from
(3), since 7e^0,

0 0 I

^ Πίϊ Γ(λ^-1a?'-1exp(-aul)dal
i L o

where ρr = λl - \ μ ̂  Wτ satisfies λl ̂  ρz ̂  1 - μ/v0.
Tφl

Then (6) follows: for example, we may take Cκ α^(max{l,α})Γ(r) where

• ,Λr= mf 1

It remains to prove the claim. Now (7) may be reformulated as follows : there
exist weights {Wτ} and {ut\leG} such that:

V / e G .
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By a lemma of Farkas [6, 7], (9) has a solution if there is no solution (y, xz) to the
dual problem:

x ^ 0 V / e G

leT

y+
leG

Suppose then that a solution of (10) exists, we number the lines of G so that
xlι^xh^...^xlL^xlL+ί=Q and let Jk be the graph formed by / 1 ? ...,/k.

The condition <5Jk(v0)^0 is precisely:
k

Σ M^ Λ-^'Ά-CΛ (H)
7=1

where cJk is the number of connected components of Jk.
Multiply (11) by x / k + ι — xZfc and sum over fe=l, ...,L to obtain:

L

ΣXΛ^ Σ^[K-cJ ί t)-(Wjfc_ ι-cJk_ ι)]=Σx ί, (12)
G k=l leT

where T={/ f c/n J k-c J kΦn J k_ ι-c J k_ ι} (set nJo = 0, cJo = 0, by convention).
But T is clearly a tree in G, so that (10) implies :

T G

contradicting (12). Thus (10) has no solution, and a solution exists for (9). Π
The second estimate we need controls the high energy behavior of self energy

graphs. Such results are known in greater generality [8] and we give a proof in our
somewhat different case primarily for completeness.

For a self energy graph we write z for the external energy (z = p2) and the
notation F(α,z) = t;(α)z.

Lemma 3. Let H be a 1-PI self energy graph in the φ4 theory. Then for
m2

Rez> — — , the defining integral:

00 00

I(v,z)= j ... J Π^;t/"v/2exp[-(ϋz + (Σα)m2)] (13)
0 0

converges absolutely z/Rev<2, may be analytically continued to the domain Ω', and
on compact subsets KcΩ' satisfies

(14)

for some constant Dκ, with <5 = max{Re(5H(v),0}.

Proof. We leave the case v(a) = 0 (in which the external vertices of H coincide) to
the reader. In the general case we first note that, from (2), v(u) ̂ Σ^i anc* hence :

H

- (15)
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Now following [5], we write /= £/. where the sum is over all s-families ξ for H,

and in Iξ introduce scaling variables {tj\Jeξ} by α z= f]ί . Then:
Jsl

\ - v / 2

0 0 Jeξ
J Φ f f

(16)

where c(t\ f(t\ and 0(ί) are independent of £H, continuous and positive in the
integration region, and ξ' — { Je ξ/J φ ff and J connects the external vertices of H}.
The absolute convergence of (16) for Rev<2 now follows from (15) and the
inequality Re(5j(v)<0, Jeξ.

To continue Iξ to all of Ω' we use the identity, valid for Rev<2,

0 0

(17)

for each Je% = (Jeξ/J^H, <5j(v0)>0} carry out the τs derivatives, then do the tH

integral explicitly. The result is a finite sum of terms which we label by a partition
2 = 3/u3" describing which term of (17) occurs for each J, and non negative
integers c, d, describing the number of times the z and m2 terms respectively are
pulled down from the exponential in (16) by τ derivatives. Thus (using 3n£/ = 0):

/{= Σ Γίc+d-aHMΠc-wr1/...}^;''00

S'.c.d 3' 0 0 3"

where R is a continuous function and :

m2

By (15), ReS^gf(ί,τ)— hence the integral in (18) is convergent for veΩ and (18)

provides an analytic continuation of / to Ω'.
To verify (14), note that for appropriate C15 C2 :

Hence since

if

if
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Inserting these estimates in (18) yields (14).

4. Our goal in this section is to prove Lemma 1.
Thus, let G be a graph with φ4 or φ2 vertices and propagators (p2 + m2)"1;

since Lemma 1 is an asymptotic result we may assume <5G(v0)^0.
We identify in G a collection G^...,Gp of subgraphs as in Fig. 1; Gj is a

maximal chain of r(j) subgraphs G ke/, joined by lines Ij0jjί9 ...Jjr(jr

Moreover, we suppose that Gjk is a maximal subgraph of G belonging to J^
and that every such maximal subgraph is a Gjk for some j, k. Feynman parameters
in Gj are denoted ajk (for ljk) or ajki (in Gjk) other Feynman parameters in G are
denoted γ..

Fig. 1. The subgraphs Gj

We consider also the graph G obtained by replacing Gj in G with a single line lj
having Feynman parameters β. and propagators (p2 + ζj)~λj where

i ϋ)
^ = ~ *G/VO) = 1+ Σ (1 - SGjk(v0)) . (19)

k= 1

Note that if J is a subgraph of G and J' the corresponding subgraph of G obtained
by replacing ίy by Gj throughout, then <5/v0)^<5j/(v0); thus Lemma 2 applies to G.
We will write U, U, Uj etc. ... for UG, U& UG. etc. ... and from (2) note that:

1 (20)
V(x,y,s)=V(β,y,s)/βj = υj.

Also:

KJ)
U/«)= Π Ujk(a)

ΐ KΛ

ι?/α) - X ι;jk(α)+ X ajk

k=l k=0

and hence :

We now give a purely formal derivation of a new representation of IG a similar
representation is used in [9]. From (3) and (20),

00 00 p

IG(v,s) = J ... J γ[dady Y[
0 0 j = 1
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Now write

δ(βj-vj)= ^ ί dC,exp[C/ι>,-/ty], (24)
Zπί Reζj__m 2 /2

ηjϋj (25)
0

so that (23) becomes [using (3) for G and Gp then (22)] :

IG(V>$= ί Π dμfa)IG(v,s) f\ ίίz^
Rezj>-m 2 /2 7= 1 j= 1 [

where Zj = ηj-ζj and άμ.(z^=—-\λ -\}r\]3~2dv\.dζj [recall that /^ contains a

factor

Lemma 4. The formula (26) z's ϋβ/ίίi for all veί2'.

Proof. We first establish (26) for Rev sufficiently small. Let φ be a smooth, even,

non-negative function of compact support on 1R for which lφ(x)dx=l, and let
IR

φ(t) — J φ(x)eιxtdx. For ε > 0, we may regularize the ^-function above by inserting a
R

factor φ(ε!mC7 ) in the integral (24); substitution of (25) and the modified (24) into
(23) leads us to define

/ε(v, 5) = j fl Φ(* Imzy)Γ(λ jΓ 1 dμ/^) ? Π d^
R e z j > -m2/2 j= 1 0

.)]. (27).
7=1

This integral is absolutely convergent, since taking the absolute value of the
integrand replaces v by Rev and ζj by m2/2, thus

ί I . ..\dηdζdκdydβ = ί Π IΦ(e Imz,)| dμ/z .)/g(Re v, s)|{ .=m2/2

which converges by (22) and Lemmas 2 and 3.
Thus we may evaluate (27) by doing the α, β, and y integrals to obtain

fUs)= f ΠΦ(βIm*j)Φ^
j j *

Since φ(o) = 1 the Lebesgue dominated convergence theorem and Lemmas 2, 3
yield :

lim /ε(v,s) = [right hand side of (26)].
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[The use of Lemmas 2 and 3 to estimate integrals such as (28) is given in detail in
the proof of Lemma 1, below.]

It remains to show that

εHm/ ε(v,s) = /G(v,s). (29)

For this, we do the z integrals in (27) to obtain

P(v,s)= JΠ d* Yldy Π C^~Uj~1)t/7v/2^m2/2]exp(-M)Gε(α,7), (30)
j = ι

where Gε(α,yH f ΓW"1*' ̂ Kβj-v^^p^β^^dβ^Ό-^^p^ V\
o j

Clearly

lim Gβ(α,y) = (ι;/^1 exp(-ϋX/2)[C7-v/2exp(- V}\\β=V (31)e

and if we can take this limit outside the integral in (30), (29) is established. Now
choosing any term in U we may estimate

where bjy ci are zero or one; using 7^0 we have

(32)

Since λj>ί the supremum is finite for Rev sufficiently small. From (21),

/ r ( j ) \Σ(<5G j k(v 0)-l) r(j)

^-^ Σ«J" ^ EK0*™-"- (33)
\ f c = l / fc=l

Using (32), (33), and (15), we see that the integrand in (30) is in absolute value less
than

(const) - f][7Γc<Rev/2e""yίw2] Πl^"α 7θm2 Π [α

and for Rev small the dominated convergence theorem yields (29).
To complete the proof we must verify (26) for all veΩ. But by Lemmas 2 and 3

the right hand side is absolutely convergent for all veΩ', (again see the proof of
Lemma 1, below) and hence analytic in Ω'. The result follows by the principle of
analytic continuation.

Proof of Lemma 1. We apply Lemmas 2 and 3 to estimate (26) for veKcΩ, K

compact. Let L= LG — ̂ LG. = LG — P and set t.=
j
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Then

(34)
j = ι

with μ} = r(/) + 1 - Σ max [0. Re<5Gjfc(v)].
k

We introduce polar coordinates η. = rj sin θp lj = rj cos ΘJ9 and note

for an appropriate constant A.
Thus we estimate the bracketed term in (34) by :

A-">B(λJ,μJ-λJ),

where B is the beta function. (We have used sin θj ^ θj.)
Since λ > 1 and μj — λj is uniformly bounded away from zero on K [see (19)],

the beta function is uniformly bounded by some K-dependent constant.
Thus (34) becomes :

\ΣU.;-i)

since L'^LG, £λ^ ΣM/)+l]^G bY (19)> P<LG
this yields a bound of the form (5).
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