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Abstract. In this paper we prove the existence of solutions to a class of
boundary value problems for a singular nonlinear elliptic partial differential
equation in a half plane. By a recent paper of J. Glimm and A. Jaffe, this proves
the existence of multimeron solutions to the classical SU(2) Yang-Mills field
equations in Euclidean space.

I. Introduction and Results

In this paper we prove existence of solutions to a class of boundary value problems
for the singular elliptic equation

r2Aψ = ψ3 — ψ (1.1)

d2 d2

in the half plane IR+ = {(r, ί)eIR2 |r>0}, where A = -^-j + -^j. We remark that r2A

is the Laplace-Beltrami operator for the Poincare halfplane [IR+ with the metric
r~2(dr2+dt2)~]. The boundary values are specified by an increasing sequence
{t^l^i^ln} of real numbers and the requirement

(1.2)
lim ψ{r, £) = 1 >

(r,ί)->oo

where we have defined t0 = — oo, t2n + t = oo. Our principal result is

Theorem 1.1. There is a function Ψ, real analytic and satisfying (1.1) in IR+, which
assumes the boundary values (1.2).
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In the past few years considerable progress has been made towards the
understanding of classical gauge field theories, particularly for an SU(2) gauge
group in four dimensional Euclidean space. Various explicit solutions have been
found - the instantons, see e.g. [1-3], and the two-meron solution of DeAlfaro et
al. [4]. Instantons are characterized by having finite action and integer-valued
topological charge, while merons have topological charge density ±\ con-
centrated at points, which leads to infinite action. In recent papers of Callan et al.
[5] and of Glimm and Jaffe [6], it is argued that merons might provide a
mechanism for quark confinement in non-abelian gauge quantum field theories.
Glimm and Jaffe [7] reduced the problem of finding cylindrically symmetric
multiple-meron solutions of the SU(2) Yang-Mills equations to the solution of the
above boundary value problem. The points {(0, f •)} are interpreted as the location
of the mef ons, the ί-axis is the axis of cylindrical symmetry and the r-coordinate is
the distance from this axis. Thus Theorem 1.1 proves existence of multiple-meron
solutions to the Yang-Mills equations with merons located on a straight line.

Formally (1.1) is the Euler-Lagrange equation of the functional

A(ψ)= J d2x{fflφ)2+{r-2(ψ2-l)2}. (1.3)
JRΪ

However, it is not hard to show that A(ψ) is infinite for yi which satisfy the
boundary conditions. In order to employ variational methods to solve (1.1) we
define a renormalized action (energy) functional AR. Let Ψo be a C x function on
IR+ satisfying the boundary conditions (1.2). Then ψ = Ψo -f φ is a solution of (1.1)
and (1.2) if and only if

o , (1.4)

and

limφ{r,t) = 0 = lim φ(r,t), (1.5)
r-+0 (r,t)~*oo

where

f=-AΨ0 + r-2(ψi-Ψ0). (1.6)

We observe that (1.4) is obtained by varying the functional

-^~φ2 + ΨoΦ3HΦ4\\. (1.7)
2 JJ

Let {Mn}£=1 be a family of bounded open subsets of IR+ with the following
properties:

i ) M B c M n + 1 .
ii)inf{r |(r,ί)6MJ>0.
iii) dMn is smooth.

iv) 0 Mn = R2

+.
n= 1

For ΩQ]R2

+ define

AΩ(ψ)= \d2x{\(VΨ)2+ir-2(ψ2-ΐ)2}. (1.8)
Ω

Then

AR(φ)= Jim [AMn(f
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This justifies the name renormalized functional. Throughout ίhe paper we
consider a fixed family {Mn}™= x as above.

While mathematicians generally study finite action solutions to elliptic equa-
tions, definiton (1.7) reduces the study of certain infinite action solutions of (1.1) to
the study of finite action solutions of (1.4). This trick, isolating the infinite part of
the action, is the mathematics of what physicists call vacuum energy
renormalization.

Our solution to (1.1) and (1.2) is obtained by choosing an approximate
solution, Ψo as above and then solving (1.4) by minimizing AR on a family of
Hubert spaces. At the end we extract a solution to (1.4) and (1.5) by a compactness
argument. As an approximate solution we take

t-t )
ιΛ (1.9)

which satisfies the boundary conditions (1.2). It is clear that the corresponding/is
real analytic and in the Appendix we show that/ i s bounded and O((r2+ t2)~2) at
infinity.

Let ΏCIR+ be open and denote by C^iΩ) the set of all C00 functions on WL2

+

restricted to Ω. Let C%(Ω) be the collection of those functions in Cσ(Ω) that have
compact supports contained in Ω. We use the notation || ||p, || ||P>/ί f°Γ the
//-norms with respect to the measures d2x and dμ = r~2d2x, respectively (d2x is
Lebesgue measure), while || | |p Ω, \\ - | | p ? μ Ω denote the corresponding norms with
d2x replaced by χΩd2x. Here χΩ is the characteristic function of a measurable set
ΩClR2,.

Let Wp>q(Ω) denote the completion of C"°(Ω) in the norm

, peZ+.

The completion of CQ(Ω) in the same norm is denoted W£'q(Ω). To simplify our
notation we write BΩ for WQ'2(Ω) and Bn for BM . We note that BΩ is a separable
Hubert space and there is a natural isometric imbedding of BΩ into BΩ, if ΩcΩ'. In
the sequel we use this imbedding without explicit notation.

Let ΩCIR+ be bounded and define | | φ | | β = WΦ\\2,Ω f° r Φe^Ω- The norms || \\B

and || | | ! 2 are equivalent on BΩ (see e.g. [9]). We denote by B the completion of
C^IR2;) in the norm ||F( ) | | 2 Then BΩcB for Ω bounded.

Our main technical tools for proving Theorem 1.1 are the following two
estimates:

E l . There are positive constants Cx and C2 such that for all φeB

E2. // φeB is a smooth solution to (1.4), then

\rVφ\ ^constant.

We show in the appendix that AR is strongly continuous on BΩ provided Ω is
compact in 1R+. In Sect. II we prove that AR is weakly lower semicontinuous on BΩ
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under the same hypothesis. In Sect. II we also prove a stronger version of El. The
estimate El and the weak lower semicontinuity imply that there is φΩeBΩ at
which AR attains its infimum on BΩ. It follows that φΩ is a weak solution of (1.4) in
Ω. Letting {Mn}^=1 be as above, the sequence {φMn}™=1 is bounded in B and
therefore has a weakly convergent subsequence with limit Φ say. The function Φ is
a weak solution of (1.4) in ]R+.

In Sect. Ill we show that Φ is real analytic in IR+ and Φ->0 at the boundary of
IR+. To prove the second of these statements we use E2.

II. Existence of Weak Solutions

We begin by recalling some results of functional analysis. For a detailed exposition
of the techniques used here see e.g. Vainberg [8]. In the following, X will denote a
separable reflexive Banach space with norm || ||.

Proposition 2.1. Let G be a weakly lower semi-continuous real-valued functional on
X such that G(u)-+ oo as ||w||-»oo. Then G(u) is bounded below and attains its
infimum on X.

For a proof see [8, p. 93].
We wish to apply Proposition 2.1 to the functional ΛR on the Hubert spaces Bn

of Sect. I. The weak lower semicontinuity of AR on Bn is proven in Theorem 2.3.
Theorem 2.7, which implies estimate El, establishes that AR{φ)-+co as | |φ| |β-^oo.
Thus, Proposition 2.1 and Theorems 2.3 and 2.7 prove the existence of φneBn

minimizing AR on Bn.

Proposition 2.2. A strongly continuous convex functional onX is weakly lower semi-
continuous.

For a proof see [8, p. 87].

Theorem 2.3. Let ΩclR+ be open and Ω compact in IR+. Then AR is weakly lower
semi-continuous on BΩ.

Proof For φeBΩ we have

-^r-2 Ψ2

0φ
2d2x.

Ω Ω

The first integral above is a convex function of φ. It is also strongly continuous
since /, r~2, Ψo are bounded functions on Ω and Ω is bounded, cf. Appendix. By
Proposition 2.2 we conclude that the first integral is weakly lower semi-
continuous. The second integral is a weakly continuous function of φ, since the
imbedding

is compact (see e.g. [9]) and r~lχ¥\ is bounded on Ω.
Before proving Theorem 2.7 and the estimate El, we establish three

inequalities.
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00 ldu\2 °° u2

Lemma 2.4. IfueC%((09 oo)), then j* dr — ^ J dr-y.
o Wr/ o r

Proo/ Integrate u2/r2 by parts and use the Schwarz inequality.

Lemma 2.5. If ue C%(( - π/2, π/2)), then for ae [0,1] :
71/2 fduV π / 2

j da — ^ j da{a2u2 + (a —a2)u2 sec2a}.
~π/2 \da] _π / 2

Proo/
π/2 π/2

;(w2sec2α)=-2 J
-π/2 -π/2

du
-r-wtanα
da

^ J ώα
-π/2

-Jdu\
+ α u t a n α f .

The lemma follows immediately since sec2α = l + tan2α.

Definition. For 2 > 0 , ε > 0 w e define Dh λ on C"((-π/2,π/2)) by

π/2

ε j λ (w)= j
dot

^ 2 t J 2

Lemma 2.6. T/iβrβ is an εoe[0,3/4]
λe [1/2,3/4]

ίftαί /or weC£((-π/2,π/2))

Proq/ We write u = u++u_ where u + and u _ are even and odd, respectively under
the transformation α-> — α. Since the inner product in L2(( — π/2, π/2)) between an
even and an odd function vanishes,

-π/2 da

+ sinα(t/3_

Using 2ab^ —c2a2 — c~2b2, we have

w + w_ s i n α ^ — {(2/l)~2u+ +λ2u2_ s i n 2 α } ,

2u\u_ sinαg: —{\λ~2u\u2_ +|/l2w2 sin2a},

u3, s inα^ — {\λ~~2u4_ +λ2u2_ sin2α}.

Using the above inequalities in Dε λ(u) yields

π/2

D ε > λ ( M ) = j dα
-π/2

-(ί+ε)(u2

++ui)

The positive operator ^4= — (d2/dα2) + (l/3)A2sin2α is strictly greater than
— d2/da2 since Λ2sin2α is positive and the resolvent of A is compact.

1 Λ 7 7 7 i 7 7

\λ u\ sin α —/ sm
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The minimum eigenvalue of —d2fd2a with zero boundary conditions on
[ — π/2, π/2] is 1. Thus for some ε + >0,

f dot
-π/2

du +

~da
— (1 +ε)u2

+ + ̂ λ2 si ^ 0 , if ε ^ ε + .

The smallest eigenvalue of -d2/da2 with zero boundary conditions restricted to
the odd subspace of L2((-π/2,π/2)) is 4, so for ε ^

— {l+έ)u2_ — λ2 sin2 otu2_
π/2

i

IIV

da

1
— π

(du_

[da

da
12 [ d a ] (1 + /

This completes the proof of Lemma 2.6 with εo = min{ε + , 3/4}.

Theorem 2.7. There are constants c/>0, h>0 such that for

ft,

Fig. 1. The regions Ωι,Ω2 and Ω3

Proof We divide the half plane IR+ into three disjoint regions Ωx, Ω2, and Ω3 (see
Fig. 1). Let D = {(r,ί)eIR2

+|r2 + (ί-f ί)
2<(5 2} and define

Ω^QD,

We assume (5^i/2min{|ί ί — tj\\i=¥j}. Let ε= -̂ -, with ε0 as in Lemma 2.6 and

define

Finally, Ω 3 = 1 R 2 - ( β ^
For Ω a measurable subset of 1R2 and 0 e C J ( I R 2 ) define
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Since C^(IR2) is dense in B it suffices to prove the theorem for φeC£(R2

+). By
Lemma 2.4,

AR(φ)^ Σ^iΦH ί d2*fΦ- (2.1)
i = 1 Rl

We bound each EΩ(φ) from below. Consider first a half disc DicΩι and introduce
polar coordinates (ρ, α) in Dt:

r = ρcosα, £ =

0<ρ<<5, - π / 2 < α < π / 2 .

Note that in the disc D^

where |i/ι||x Dι->0 as (5->0.
Hence,

We choose (5 so small that | | / ι | | x I ) ^ - for any ie{l, ...,2/i). Lemma 2.5 with

a = 1/2 implies

while from the Schwarz inequality and Lemma 2.5 we have

Consequently,

EDι(φ)^ J ^ x { ( | -

J ) ι | | ^ | | 2 i ί i i D i . (2.2)

Now, with v = (l + 2ε)1/2 and

we have

^(3 sin2α - ( 1 -4ε))(/>2 - |sinαφ3 |

Inserting the above identity into (2.2) and using r gρ yields
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By the definition of ε and the fact that ε0 ΐΞ 3/4 one obtains

ve (1,3/2)

and

Thus, we can apply Lemma 2.6 to conclude

D,

Hence,

This argument can be repeated in each disc Dt so

Next we consider region Ω2, where Ψl^l—ε. Since \Ψ0\^

Finally,

2,μ,Ω3

Applying the Schwarz and Minkowski inequalities we have

so

Now, | k / | | 2 < o o (see Appendix), so

d2xfφ S\\rf\\2\\φ\\2 <2\\rf
IR +

(2.3)

(2.4)

(2.5)

(2.6)

by Lemma 2.4.
Combining (2.1) and (2.3)-(2.6), there are constants α>0, b > 0 such that AR{φ)

| | ^ μ ) - b . This completes the proof.
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Corollary 2.8. The estimate El of Sect. I is valid.

Proof. This is an immediate consequence of Theorem 2.7.

Proposition 2.9. Let Ω CIR+ be open and Ω compact in IR+. Then there is a function
φΩeBΩ that solves (1.4) weakly in the region Ω.

Proof By Proposition 2.1, Theorem 2.3, and Corollary 2.8 there is a function
φΩeBΩ that minimizes ΛR on BΩ. Let weC^(ί2). Since

the term in AR(φΩ + w) that is linear in w vanishes. Hence,

Let us denote φ M n by φn.

Proposition 2.10. The sequence {φn}^= ι has a weakly convergent subsequence in B.

Proof. The Banach space B is obviously separable. It is reflexive, being isometri-
cally isomorphic to a closed subspace of L2(IR+) under the mapping φ-+\Vφ\. It
follows that bounded sets in B are weakly precompact so it suffices to show that
{Φn)n=ι i s bounded in B.

By Theorem 2.7,

On the other hand

ΛR(φn)= mf ΛΛ«>)^ M^AR(φ) = AR(φί),

since B1QBn for any n^l. Hence, \\φn\\2

B^a~ι{AR(φi

for any n ^ l .
We can assume without loss of generality that {φn}™= ί is weakly convergent.

Let Φ denote its weak limit.

Theorem 2.11. The function ΦεB is a weak solution to (1.4) in IR+.

Proof Let weC^(IR2

f). Choose n0 so large that suppwcMMo. Then, by
Proposition 2.9,

Mn

for all n^n0. Now let n->oo. Since {φn} converges weakly to Φ in β, {φnw}
converges weakly to Φw in Bno. The imbedding

is compact for any pe[ l , oo) (see e.g. [9]), so {wφζ} converges strongly to wΦp in
Lι(Mn^. Since ^Q and r~2 are bounded on MΠo, it follows that

R?
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III. Regularity of Solutions

We begin by proving interior regularity of the weak solution Φ obtained in

Theorem 2.11 which follows by standard estimates. Regularity at the boundary

follows from an a priori estimate on VΦ.

Theorem 3.1. The function Φ is real analytic in IR+.

Proof. Let Ω be a compact subset of IR+ with a regular boundary. Since Φ is a

weak solution of (1.4), ΔΦeL2(Ω). Thus Φ is in the Sobolev space W2'2{Ω). By

Sobolev's Lemma ([9, p. 97]), Φe C°(Ω). Repeating this argument for derivatives of

Φ we obtain Φe C3(Ω). By a standard theorem it follows that Φ is real analytic ([10,

pp. 170-180]) in Ω.

To show that Φ tends continuously to zero at the boundary of IR+ we prove a

simple property of the Banach space B.

Theorem 3.2. Let φeB with \\rVφ\\rJZ<c. Then

limφ(x)= lim φ(x) = 0.

Proof Suppose on the contrary that there is a sequence X Π E I R + with \φ{xn)\ > ε and

either rπ-*0 or |xj-»oo. Choosing a subsequence, if necessary, we may assume that

discs of radius rn/2 about xn are non-overlapping. Let Dn be the disc of radius δrn

about xn, where δ = min{l/2,ε/4c}. In Dn, r^rjl so \\Vφ\\OZj^Dn^2cr~1. Thus for

xeDn and L a straight line from xn to x,

(xn)+\Vφ(x')-dl'
L

\φ(x)\ =

This contradicts the assumption that φeB since it implies that

n Dn

Lemma 3.3. Let φeC 2 (IR+) be a solution of r2Aψ = ψ3 —ψ in JR2^. Then

o c . (3.1)

Proof To estimate Vi/:(x), x = (r, t)e 1R+, we use the Dirichlet Green's function g for

Laplace's equation in the closed disc D of radius r/2 and center x :

^ | (3.2)

χn—X ίr\
2

where x"* = xH =• - . The function w satisfies the identity
\x"-x\2\2)

ψ(x')= \ d2x"g{x',x")r"~2(ιp3{x'f)-ψ(xf'))
D

ffdg(x',x")
sn——-—ψ(x"), (3.3)
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where d/dn" denotes the outward normal derivative. Differentiating (3.2) with
respect to x' and setting x ' = x w e obtain

and differentiating with respect to x" gives

dg „ _ - i - 3

dn" ' x"ecD

Thus, differentiating (3.3) at x' = x and taking sup norms yields

where we have used r"^r/2 for x'ΈD.
Let us denote φn + Ψo by ψn and let Ψ = Ψo + Φ.

Lemma 3.4. The function ψn satisfies ||ipw|ί0G Mn = l

Proof Suppose there is x o e M B such that |ψ / ?(x0)|>l. By the argument of
Theorem 3.1 ψn is real analytic in Mn so there is a neighborhood of x 0 where

lvJ>i.
Let F G C ^ I R ) satisfy

ii)
iii) \F\ξ))^\ for all ς e R

It follows from i), ii), and iίi) that AMn(F°ψn)<AMn(ψn). We have ΛR(φn)
==AMn(

ιPn)-ΛMn(
ψo) s o defining φn = F^ψn-Ψ0 one obtains

ΛR(φn)<ΛR(φn). (3.4)

We claim that φneBn9 which contradicts the fact that φn minimizes AR on Bn, and
the lemma follows. To verify the claim we use a trace theorem for Sobolev spaces
(see e.g. [9, p. 216]). The mapping

y :Wί'2(Mn)-+Wί/2'2{δMn)

defined by y(u) = u\ oMn is continuous. The kernel of 7 is precisely W^2{M^ = Bn.
Now,φneBn so φn t dMn = 0 a.e. Hence, φn tβMn = 0 a.e. and φne WU2(Mn) by (3.4)
so y(φn) = O in Wll2'2(dMn) which implies φneBn.

Theorem 3.5. The function Ψ satisfies || Ψ\\ x ^ 1.

Proof Suppose there is XOG1R+ such that | ^ ( x o ) | > L Then there is a neigh-
borhood, K of x 0 and ε > 0 such that |!P(x)| >1 +ε, for all xe K Let ^C O

W (F) , ^ ^ 0 ,
^ φ θ . Since {φΠ} converges weakly to Φ, we have

j gφnd
2x-^- j gΦd2x as ^-^oo,

and consequently

ί Q(ψn~ Ψ)d2x-+0 as n - ^ x .
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This is impossible, since ||tp«lioσ = ^ which implies \ψn—Ψ\>ε on V.

Theorem 3.6. The function Φ satisfies | | rFΦ|| 0 0<2n + 6, where 2n is the number of
merons.

Proof We apply Lemma 3.3 and Theorem 3.5 to Ψ obtaining

T h e o r e m 3 . 6 f o l l o w s i m m e d i a t e l y , s i n c e \\rVΨ ^ W ^ ^

Corollary 3.7. The function Φ satisfies

lim Φ(x) = lim Φ(x) = 0.
r->0 Λ:-> OC

Theorem 1.1 of the introduction has now been proven. It is a restatement of
Theorems 2.11, 3.1, 3.2, 3.6, and Corollary 3.7 for Ψ=Ψ0 + Φ.

Acknowledgement. We would like to acknowledge helpful conversations with Arthur Jaffe and (in the
case of J.H., O.McB.) with Lars Wahlbin. We are also indebted to Bradley Plohr for pointing out an
error in the original version of this paper, and to David Groisser for careful reading of the manuscript.

Appendix

Lemma Al. Let f be defined by (1.6) and (1.9).

Then,
i) / is 0{{r2 + t2)~2) at infinity,

ii) / is bounded,
iii)r/GL2(]R2

+).
2n lt-t

Proof We have ¥>o = cos0, where 0= £ ( - 1 ) % 0f = arctan
ί = i \ r

Let f, t be unit vectors in the r and t directions, respectively. Then

Vθj = [r 2 + ( ί - ί f )
2 ] - x ( r t - ( ί - ί^ί) (Al)

and

/40f = O.

Hence,

ΔΨ0=-Ψ0(VΘ)2

so

By the mean value theorem,

d

where At = t2i-t2i_v Denote (r2 + ί 2 ) 1 / 2 by JR. Then for R large

\θ2i(r,t)-Θ2i_1(r,t)\SO(l)rR-2.

\θ2i(r,t)-θ2i_ι(r,t)\^\At\ sup
t'e[t,t + Δ
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Similarly, for R large,

\VΘ2i(r,t)-VΘ2i^(r,

It follows that

Σ

~6\ Π(Ώ ~ 4

Since \Ψ0\^l, this proves i).
Let ε>0,

and

In

υ={jB,
i= 1

We see from (Al) that (Wθ)2 is bounded on the complement of U. Furthermore,
θ(r, t) = 0{r) for r small and (r, ί)e!R2 — U so / is bounded on the complement of U.

Now focus attention on one of the half discs BtCU and assume ε< mm|ί. — f.|.
i φ j J

Then θ = θι + ξ where ξ has a continuous extension to the closure of Bt in IR2. We
observe that (Vξ)2 is bounded on Bv Now introduce polar coordinates in Bt so that
θi is the polar angle. Let ρ denote the radial coordinate. Then

r" 2 sin2θ = (ρ2 cos2θ f)~ 2 x (sin2θ. cos2 ς + cos2O sin2 ς

H- 2 sin θf cos θ sin ξ cos ξ)

and

To prove that / is bounded on 5 we therefore need to show that

tan 2 θ cos2 ξ + sin2 ξ + 2 tan 0 sin ξ cos ξ—ί

By Taylor's formula

sin2 ξ = 1 + O(r2), cos2 ξ = 0{r2)

so we only need to show

(A2
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tan0,= L and sine cosξ
r

= sm I ± — — 2L arctan cos ± — — 2^ arctan

r

so the left hand side of (A2) becomes

f f γ2 \(f f \ ( f i

This proves ii) as the above argument applies in each of the discs Bt.
Finally, i) and ii) imply iii) since

$ rψd2x= f r2f2d2x+ f r 2 / 2 d 2 x

and both the integrals above are finite.

Lemma A2. Let ΩCIR+ bg open αn<i Ω compact in 1R2 . T/iβn ^ κ is we// defined and
strongly continuous on BΩ.

Proof Let φeBΩ. Then there is a sequence {φΠ}^= 1 C CQ(Ω) converging to φ in the
I^-norm. We shall verify that ΛR(φn) is Cauchy in IR. We have

\AR{φa)-AR{φJ =
Rf

2 _ I

°

There is a constant C, such that

for all φeBΩ. Hence,

\AR(φn)-AR(φJScomt\\φn-φJB

since IIV^ + VφJUo, | | (^, + Φm) | | 2,Ω,

ll(Φ2 + ̂ Φ m + ̂ )ll2,o and \\(Φl

are all uniformly bounded.

o,Ω'
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