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Abstract We consider gradient systems of infinitely many particles in one-
dimensional space interacting via a positive invariant pair potential Φ with a
hard core. The main assumption is that Φ is strictly convex within the range R
of Φ (where R is a fixed number ^ oo). Under some technical conditions we
prove the following theorems: Let the initial distribution be given by a
translation invariant point process ρ on 1R1. Then there exists only one extreme
equilibrium state ρ with a given intensity I(ρ) satisfying /(ρ)^^"1, and all
ergodic initial distributions ρ with an intensity /(ρ)^^"1 converge weakly as
ί—»oo to the extreme equilibrium state with the same intensity.

1. Introduction

In classical statistical mechanics one considers configurations of many particles,
which in the mathematical idealization means infinitely many particles, moving
according to Newton's equations

(1.1) x£(ί)

with zeN, x eIRd(de]N) and a pair potential Φ. Only recently [1] has a non-
equilibrium existence proof for (1.1) in the case d= 1,2 been found, and in the series
of papers [4] the equilibrium states are characterized as Gibbs measures
corresponding to the potential Φ. However the problem of the asymptotic
behaviour of the system (1.1) is not understood as yet (apart from some cases with
a degenerate potential Φ there are no results as yet). For a survey on the present
state see [2].

Related to (1.1) is the system of stochastic equations

(1.2) dxi(t)

with independent Wiener processes ωf(ί) and the inverse temperature β(β > 0). As
follows from [9] the Gibbs measures for the potential 2βΦ are equilibrium states
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for (1.2). In the limit β->oo we get from (1.2) the following system of first order
differential equations (gradient system) :

(1.3) xt(t) = - X gradΦ^W-x/ί)), ie N, xίe!R
d (de IN) .

j*i

Our aim is to study this system. The first order Eqs. (1.3) are more accessible to
mathematical treatment, firstly because one knows Liapunov functions, and
secondly because it is possible to exhibit equilibrium states explicitly. If, for
example, d = 3 and Φ is rotation-invariant and convex, there exist several entirely
different candidates for ground states, i.e. equilibrium states with minimal energy :
Since there are different possibilities to superpose plane layers of closely packed
balls (see e.g. [6], p. 41) there exist different close packings of balls in space such
that the centers xf of the balls satisfy the equilibrium condition

(1.4) £ gradΦ(xί-x</) = 0 for all ieN.
j:j*i

In statistical mechanics the term equilibrium state has a somewhat different sense,
so in the following we will use the term rigid state, when (1.4) is statisfied. Since
(1.3) results (formally) from (1.2) in the limit β->oo, one can hope to find
connections between the problem of phase transitions for Gibbs measures and the
existence of different ground states in the system (1.3).

In this paper however we wil l confine ourselves on the study of the asymptotic
behaviour of (1.3). Since we will get complete results in the case of

(1.5) dimension d = 1 ,

we will consider in the following only this case.
As regards asymptotic behaviour, (1.3) is related to the following system of

deterministic equations for infinitely many particles x/eIR1(ieZ,x ί<x ί + 1), which
was introduced in [13] :

(1.6) *,.=/(**+! -^-/(Xi-Xi-i) (ίeZ),

where / is a function IR+ — >IR+ such that there exist numbers m, M with

(1.7) 0<m^ ^M<oo (x,j;e]R+,x=|=)0.
x y

In the special case/(x) = x (1.6) reduces to a system of linear equations which is
solvable explicitly; for a generalization of the system (1.6), but which is still linear,
see [3]. For general / satisfying (1.7) Spitzer has proved the following ergodic
theorem ([13], pp. 217-222 including the footnote on p. 221): Given an ergodic
translation invariant point process ρ on R1 satisfying some unessential technical

conditions, and with intensity - (r > 0), let ρt be the image of ρ under the flow

defined by (1.6). Then ρt converges weakly as ί-»oo to that translation invariant
point process for which adjacent points have equal spaclngs r. The connection
between (1.6) and (1.3) is the following: Given the function /in (1.6) define the
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M
potential Φ as Φ(x): = j dyf(y) — for example in the linear case we get Φ(x)

o
= \ \x\2 — then (1.6) can be interpreted as a special case of the gradient system (1.3),
namely the case of dimension d = l and of an attractive nearest neighbor potential.
Dropping the restriction that only nearest neighbor points can interact, it is more
natural to assume the potential in (1.3) is repulsive. Furthermore as an analogue to
(1.7) we assume that Φ is strictly convex in the domain { xeIR1:0<Φ(x)< oo}, so
we have in addition to (1.5) the second assumption on which the study of the
asymptotic behaviour of (1.3) is based in this paper:

(1.8) Φ is positive, (has a hard core of radius δ because of technical reasons) and
there exists a positive number R <Ξ oo (the range of Φ) such that Φ is strictly convex
on the domain {xeIR1, δ < \x\ <R} and identically zero for \x\ ̂ .R.
The third basic assumption is the following

(1.9) the initial distribution ρ is translation invariant.

In the next section we consider finite gradient systems on the torus. This simple
case illustrates the questions of this paper, in particular it explains the use of the
convexity of Φ. With the help of the latter we give in the third section a simple
proof of the existence of a solution of (1.3) (Theorem 1). In Sect. 4 we prove that
there exists only one translation invariant extreme rigid state with given intensity
/^K" 1 (Theorem 2). It is characterized as that translation invariant state with
minimal energy (Theorem 3). Under the assumption that the intensity / of the
ergodic initial distribution satisfies /^JR" 1, we deduce in Sect. 5 an ergodic
theorem (Theorem 4) analogous to Spitzer's theorem for (1.6) described above. The
proof is based on the fact, that the average energy is a Liapunov function, even a
convex function (in the variable ί) and furthermore, that taking the average of the
square of the spacing between two particles gives a Liapunov function as well.
Combining this last property, which is typically one-dimensional, with an idea of
Kesten, and in the case R<oo using in addition an idea of Nguyen Xuan Xanh
(see the proof of Lemma 5), we deduce the ergodic theorem.

The discussion above about the ground states in dimension d = 3 shows that
such a result does not hold in higher dimensions. However we can still deduce for any
d that every ω-limit point of {ρf :ί^0} is a rigid state (the proof is based on the
notion of Palm measure from the theory of point processes). Results for d^2 will
be communicated later.

The starting point for this paper was the ideas of Spitzer in [13, pp. 217-222],
as well as some conversations with J. Fritz.

To both I am very grateful, to F. Spitzer also for his communication of Kesten's proof (the proof of
Theorem 4). My thanks go to H. O. Georgii and Nguyen Xuan Xanh for encouragement and
substantiaJ contributions, to Ch. Preston for his help with English as well as to H. Rost and H. Zessin.

2. Preparations: Finite Gradient Systems and Notations

Before we study the infinite gradient system, we first consider in this section finite
systems. The use of the convexity of the potential will be explained in this simple
case, so preparing for the following sections.
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Let r>0, rceN, D={x = (x l5 ...,xn_1)εlRn~1 :0<x1 <... <x π _ 1 <nr} given
(x l5 ...jX^JeD, define the infinite sequence {xj by periodic continuation:
x0 = 0, x . + n : = x . + nr (i e TL) and let ID be the set of all such periodic sequences in
the following identify D and D.

Let Φ:IR\{0}-»IR+ be a function with the following properties:

(i) Φ is symmetric,
(ii) Φ is twice continuously differentiable,

(iii) there exists a number R (the so called range of Φ) with 0<R^nr, such that
Φ is positive and strictly convex on (0, R) and identically zero on [#, oo).

(iv) limΦ(x)=oo.
jciO

The equations of motion are given by

(2.1) χ.(0=- ΣΦ'(X;«-*/ί))

with the initial condition

{x .(0)} = {x .} for some {x .} e D .

To understand the asymptotic behaviour of the solution x(ί) of (2.1) it is
necessary to know the rigid points, i.e. the points {xJeD with

(2.2) Σ Φ'(χ.-χ.) = 0 for all ieZ.
J'J*i

From the convexity of Φ follows :

Proposition 1. If R^r, then there exists only one rigid point x, namely {x } = {ir}.

Proof. Define the energy function Won (the convex domain) D by

(2.3) W(x) = \ Σ "Σ Σ Φ(*ί - ̂  + k nr) = \ *Σ Σ φ(*i ~ *j> >

then we have for ί^ij^n—

(2.4)

(2.5)

Σ Σ Φ"(Xi-Xj + k nr), if i=j

Σ φf(xi-x] + k nr), if iφj.

Denoting the gradient on IR""1 by D, from (2.2) and (2.4) we get

(2.6) xeD is a rigid point if and only if DW(x) = 0.
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By virtue of (2.5) it follows for all α = (α 1,...,α f I_ 1)eR> I~ : l and xeD that

r)2W n~1

(2.7) Σ « ^ Γ W = Σ Σ«,2 Σ V'^-Xj+k-nr)

~ Σ Σ Σ u.ia.jΦ"(xi-xj
\k\£l i = l l£j£n-l

j*ί

= Σ "Σ αfΦ^ + fc nr)
| k |£ l i = l

+ Σ "l«f Σ Φ"(x,-X; +
|k |£l i = l l ^ j ^ w - 1

7*i

«-l

- Σ Σ Σ α^.Φ^-x
i = l 1

and using Φ"(x) = Φ"( - x), the right-hand side of (2.7) can be written

"
Zj Z-f i V i ~ ̂  / ' 2 Z-i Z-ί Z-i i V i j

rt-1
1 V"1 X"1 V"1 9 -*:/// 7 \• / / / oc Φ (x — x -\-k nv)2, Z-^ L-j ί-^ j ^ ί j '

-2 Σ^ .Σ ι < .Σ 12αία;Φ"(xί-xJ. + /c nr)

«- 1 «-l

/ j / ' i V ί " ^ / " ^ 2 / ^ / ^ / v V ΐ J/ V ϊ j

Therefore FT is convex on D.
Let x be a rigid point, i.e.

(2.8) DW(x) = 0.

Assume x Φ x. To deduce a contradiction we consider two cases :
Case I : r = R.

Then one could find an index i(ί^i^n—ί) with x. — χ._ 1 <r = j R ^ x ί _ 1 — xt

contradicting the condition Σ Φ'(χi — χj)= Σ Φ'(χί~xj)

Case II:
Developing W in a Taylor series first about x, we get from (2.7) and from

DW(x) = Q

(2.9)
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By assumption there exist an index i(l ^i^n — 1) and an ε>0 such that

(2.10) χ.+ 1-χ.^r-ε.

Developing Win a Taylor series, this time about x, we obtain from (2.7) and (2.8)

(2.11) W(x)^W(x) + inf Φff(9r + (l-&)(xi + ί-xί))(xί+1-xi-r)2

0 < Q < 1

^W(x) + ε2 inf Φ"(x) > W(x) ,
0 <x^r

because r<R and Φ is strictly convex on (0, R).

Remark 2.1. Let R^r. If xeB such that W(x)= min t^(j ), then x = x.
yeD

The question of the asymptotic behaviour of the solution x(i) of (2.1) is
answered by

Proposition 2. Let R^r. Then lim (xi+1(t) — xi(t)) = r for all xeB and α// z
f-> oo

Proo/ Let xeD and x(ί) be the solution of (2.1) with initial condition x; write

(2.12) vi(ή=- ΣΦWO-*/*)).
J φ i

The proof is based on the fact that the functions

t^W(x(t)) = ± Σ V Σ Φ(xi(t)-

n-1

and ί-> Σ ϋf(0 are Liapunov functions (Wis a Liapunov function also for general
i = 0

gradient systems with not necessarily convex Φ, see e.g. [7]), and furthermore that,
as a consequence of (2.4) and (2.5), t-+W(x(t)) is convex [the following com-
putation for (2.14) is similar to that for (2.7)] :

d n~1

(us) -,-»nx(i))= Σ
αr ί=0

= -2 Σ "ί Σ Σ φ"(χ;-χ,+/c «φ;
i = 0 |k |^ l O^j^n-1

j*i
n-1

+ 2 Σ vi Σ Σ Φ'XXi-Xί + fc nφ.
i = 0 | f c | ^ l O^j^ιι-1

j*i

= ~ Σ "Σ Σ
ί=0 O^j^n-
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Hence the (positive) function t-*W(x(t)) is convex and decreasing, and thus it

follows that lim — W(x(t)) = 09 which by (2.13) means :
f-*oo at

(2.15) 11111̂ (0 = 0 for all zeZ.
ί-» oo

Given a sequence tk of positive numbers such that ίfct°°
 an<3 lim (xf(ίΛ) — Xί-ι(tk))

-

), we have z f>0 for all /eZ, because otherwise from the singularity of Φ
at the origin it would follow that the sequence W(x(tk)) was unbounded, in
contradiction to (2.13); by the periodicity of D we have xn(t) — nr = x0(t). Therefore
the point y defined by y. : = z1 + . . . + zf(l ̂  / ̂  n — 1) is in D.

From (2.15) we get

(2.16) 0= lim Σ Φ/(χί(g-χ/g)= Σ ΦΌ*,-^),
k^0 0./*; j φ i

from which we conclude by virtue of Proposition 1 that y. = ir(l ^i^n — 1), hence
z. = r(zeZ). This proves Proposition 2.

In this note we want to answer the question : given a not necessarily periodic
initial condition x = {χ.}5 does a theorem analogous to Proposition 2 still hold?
For this purpose it is natural to replace the energy function (2.3) with the averaged
energy

(2.17) W(x):= lim -4 Σ *(*,-*,)
"-*«>" 2\i\ϊn,\j\ϊn

i*j

(for all χ = {χ.} for which the limit exists).

Similarly to (2.13) it is easy to see that this function is still a Liapunov function1. It
is not clear however whether Proposition 2 holds pointwise for sufficiently many
non-periodic initial conditions; obviously the analogue to Remark 2.1, pointwise
formulated with the function W defined in (2.17), is not correct. Concerning
Proposition 1 for non-periodic {x.} it is as yet impossible to prove it except in
some special cases (one case is Φ(x) = e~x, which is solvable by direct computation,

another case is when (2.2) is replaced by the condition Σ Φ'(xf — Xj ̂ O for
j:l£\i-j\£2

ieZ). Therefore, it seems reasonable to be content with statistical statements, i.e. to
start with an initial distribution ρ, which means a point process on IR1, and to
study the asymptotic behaviour of ρt, where ρt is the image of ρ under the flow
defined by (1.4).

Notations. Let {xj be a sequence of points (a "configuration") with x elR1, x^co
for /-> oo and xf J, — oo for z-» — oo. Denote by

(2.18) M=set of configurations {x } such that xί+ΐ—xi>δ for all ί'eZ, where

(2.19) δ is a fixed positive number denoting the length of the hard core of the
potential Φ [cf. (2.31)].

1 It seems to be possible to conclude from this fact, that lim vi(t) = Q(ίeZ) for sufficiently many
f-» oo

initial conditions (cf. [10])
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Instead to work with a translation invariant point process, i.e. a translation
invariant probability measure on the space M of configurations, it does not make
any essential difference to consider shift invariant probability measures P on the
space of sequences

(2.20) z = (zί)i6Z,zi>δ

via the transformation

(2.21) zi = xi-xi_l

(this is a well known fact in the theory of point processes, cf. [8, 11]. But because
we do not want to use this theory we work exclusively with measures P on (IR+)Z

in the following, however it is expedient to use the picturesque language of point
process theory sometimes too).

Conversely, given a sequence z = (zi)iez we define {xj by

(2.22)

In the following we use both notations (zί)ίεZ and {x.} and do not always mention
/ ί x }

the corresponding transformation (2.21) resp. (2.22) e.g. we write P s l im— =r>
\ r*00 l }

for a probability measure P on (R+)z .

Endow (IR+)Z with the natural topology resp. σ-algebra and define

(2.23) IP = set of probability measures P on (IR+)Z satisfying the following
properties (2.24), (2.25), and (2.26) :

(2.24) £P[z1]<oo.

(2.25) P is invariant under the shift zίH>zί+1 .

(2.26) P{z1>δ} = ί with δ as in (2.19).

Endow IP with the weak topology.
Define further the intensity /(P) of Pe IP by

(2.27) /(P) = {£p[z1]}-l.

For the special measure Pe IP which is concentrated at the point zf = r(ieZ) we will
use the notation

(2.28) βr, defined by Qr{Zl=r} = ί (r>0).

The equations of motion are given by (2.1). By (2.21) they can be transformed in
equations for the zf, so we can define for PelP

(2.29) Pf = image of P under the flow given by (2.1).
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Suppose further the following properties of the potential Φ :

(2.30) Φ:(-oo, -<S)

(2.31) there exists a number R with δ<R^co (the range of Φ) such that Φ is
strictly convex on (δ, R) and identically zero on [JR, oo) ,

(2.32) Φ is twice continuously differentiate,

(2.33) ]dxΦ(x)<oo,
2δ

(2.34) behaviour near δ : lim Φ(x) = oo. There exists a positive number α (fixed in
xlδ

the following) with |Φ/(x)|^(x-^)~α and |Φ//(x)|^(x-<5)~α~1 for all x near
δ(x>δ).

3. Existence

Given a potential Φ satisfying (2.30)-(2.34) we must show : the system of Eqs. (2.1)
is solvable for sufficiently many initial conditions xeM. For this purpose we define
for all j8>0

(3.1) X ϊ=ίxeM:inf(z i-5)Dog+(ί)]1//?>θl,
I ίez I

where log+(x) = log(l + |x|).

Theorem I2. Given α as in (2.34). Then for all β> — - — we have: For every initial

condition xeJ£β there exists one and only one solution x(t) of the Eqs. (2.1) satisfying

(3.2) mf inf(zf(ί)-^)[log+(xί)]1//?>0 for all T<oo.

Example 3.1. Given Φ(x) = (|x| — δ}~λ with λ>2. Then we have ρ(Xλ)=l for all
Gibbs measures ρ w.r. to the potential Φ ([12], Theorem 3.2).

Proof of the Theorem.

Step 1. Consider a system of n points on R1 moving according to
χ.= — V Φ'(xf — Xj)= :vt(l^i^n). We formulate mathematically the idea that

l^j^n
7*i

the particles disperse due to the convexity of Φ. Given t ̂  0 and an index i with

vf(t)= max it follows that

(3.3) — ι;?(£)^0, because
dt

—1)2(1) = — 2vt Σ Φ"(x. — Xj) (vt — Vj)= — 2 Σ Φ"(Xi — Xj) (vf — vtVj) ^ 0,

using Φ"^0 and |u.(ί)l^ 1 (̂01 for all;.

2 The aim of this section is only to give a simple existence proof in the case of convex Φ such that the
content of this paper is not empty. Certainly one can find an existence proof for other potentials too
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Given ί^O and an index i with z f(f) = iηf z,(ί) it follows that
2<n

(3.4) — z,.(f)^0, because

- ( 0 = - Σ Σ

= Σ (-Φf(χl-χJ+1)+Φ'(χi-1-χ^-Φ'(χt-χί)

n- 1

Φ' being negative and monotonically increasing on

(<5, oo) and xi — xj+1^xί_ί—xj respectively Xj — Xi-i

It follows from (3.3) and (3.4) that

(3.5) ίπ> max vf(t) is decreasing, ίι-> min zf(ί) is increasing :
l ^ ΐ ^ H 2 ^ ί ^ M

this holds by virtue of the following elementary fact: Given functions
gt :1R+->IR (l^i^n), continuously differentiable, g(t):= max g.(t). If g'j(t)^0 for

all ί^O and all indices i satisfying gi(t) = gi(t\ it follows that

(3.6) t\-*g(t) is decreasing ,

and an analogous statement holds for mmg.(t) and gf'f(ί)^0.

Step 2. Given x = {xί}eX/? and πeN, consider only the particles xf with |z |^n;
these move according to the equations of a gradient system consisting of 2n + 1
particles. Denote the solution of that system by x(M)(ί). Step 1 enables us to apply
Lanford's iteration method quite analogously to the procedure used in [12] to
estimate

(3.7) \^ ds
0 Φ i j*i

because Step 1 gives estimates (dependent on n) on the Lipschitz constant of Φ'
and on the fluctuations of the particles: for xeX^ we have:

(3.8)

zί+1-<SΓα + const [using (2.34)]

^ const [log +(i)]α//ϊ with a constant <oo [using (3.1)] .
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According to (3.1), (3.8), and (3.5) there exists a constant C(x)<oo with

(3.9) inf inf (z<">(ί)-δ)^ inf (zjn)(0)-δ)^ -^-[logπ]"1/β

ί^O | i | ^ n | i |^n C(X)

for all fteN,

(3.10) sup sup |u<">(ί)| ̂  sup |t?<n)(0)| ̂  C(x) \\ogn\«lβ

ί^O | ί |^n | ί |^n

for all rceN.

So we see that the estimates, which are derived in [12] (Theorems 3.1 and 3.2) for
all points in a set of Gibbs measure 1, are satisfied in our case even pointwise for all
xeXp. The hypothesis (2λί)~ί (2 + λ2)<l9 assumed in [12] at the top of p.83,
reads in our notation as (2/?)"1 (1 +α)< 1, and this holds here.

Definition 3.1. Let <£ denote the set of all PelP such that

(3.11) there exists β> ̂ - with P(X/?) = 1 [X^ as in (3.1), recall (2.21)],

(3.12) there exists η>0 with

£p[(z1+...+zk)
2 + ̂ ]<oo for all feeN and

(3.13) the following functions can be differentiated by first differentiating the
integrands and then taking expectations:

: Φ(Xί(t)-x0(t))\, ί-*£j Σ #(xft)-x0(t))
(fee IN),

\ i = l

[comment to (3.13): These functions are well defined at f = 0, as follows from
(3.12), (2.33), (2.34), (2.21), and the condition about the hard core. The proof of
Theorem 1 enables one to find sufficient conditions on the initial distribution P so
that the above expectations exist for all ί^O, and under which it is valid to
interchange the operations of differentiation and expectation, but these are
unessential details, so the formulation (3.13) is sufficient.]

4. Characterization of the Rigid State

As in (2.31) denote the range of Φ by R (δ<R^co), let r be a number with
δ<r<oo.

PelP is called a rigid state [cf. (2.2)] if

(4.1) Σφ'(χi-χj) = 0 for all ieZ P-a.e.

In this section we consider PelP satisfying the following properties

(4.2) P{ lim ^=rl=l,

(4.3) £J,[|Φ'(z0)|]<oo.
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Furthermore we define

(4.4) IP(Φ,r) = {PeP: P satisfies (4.2) and the following condition (4.5)},

(4.5) V(P) = EP ΣΦ(
i Φ O

With this notation we are ready to formulate the following two theorems about
rigid states.

Theorem 2. Ifr^R, then there exists a unique rigid state PeP satisfying (4.1)-(4.3),
namely P = Qr (defined by (2.28);.

Proof. We postpone the proof to § 5, p. 145, because then Theorem 2 will follow
easily with the same method used to prove Lemma 4. Under the additional
assumption of the integrability of the potential at infinity (which is not necessary
for Theorem 2 as the proof in § 5 will show) there is an alternative way to prove
Theorem 2, namely by translating the idea of the proof of Proposition 1 to the case
of infinitely many degrees of freedom. A similar method is used to prove the
following

Theorem 3. Letr^R. Then Qr is characterized as that measure PeP(Φ, r] for which

(4.6) F(P) = min{F(P) :PeP(Φ,r)}.

Proof. We will use the following notation:

(4.7) 5c={ir:ieZ},

(4.8) Wn(x)=- \ Σ Φ(Xi-xj) (xeM,rce^),
n * \ i \ Z n , \ j \ Z n

i * j

( X }
(4.9) Ύ=φeM: lim -*- = r, lim Wn(x) existsL

[ ϊ-> + oo I n^ao j

so that we can define the energy function W on Y by

(4.10) W(x)= lim Wn(x) (xe¥).
n->oo

For PelP(Φ,r) we have P(Y) = 1 and if in addition P is ergodic, we get by the
ergodic theorem and (4.5)

(4.11) V(P)=W(x) P-a.e.,

(4.12) V(Qr)=W(x).

The theorem will be proved by the following two steps:

Step 1. Show that

(4.13) W(x}^W(x) for all xeY

which implies

(4.14) V(P)^V(Qr) for all PelP(Φ,r).
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Step 2. Assume that there exists a measure PeIP(Φ,r) such that

(4.15) PΦρ r, but V(P)=V(Qr).

Without loss of generality we can assume that P is ergodic, hence we get from
(4.11)-(4.13)and(4.15)

(4.16) W(x)=W(x) P-a.e.

However we will show

(4.17) W(x)>W(x) for x in a set of strictly positive P-measure, and this
contradicts (4.16).

Proof of (4.13). Computing the first and second derivatives of Wn in a way similar
to (2.4), (2.5), (2.7), and using the Taylor development of Wn about x we get

(4.18) Wn(x)=Wn(x)+- Σ (*,-*,) Σ *'(*,-*;
H \ i \ Z n \J\Zn,j*i

+ 1 - - £ ((x.-xt)- (Xj-xj))2 Φ"((Sχ. + (1 - $)xt

for some θe(0,1).

The last term is non-negative by the convexity of Φ. Using (2.33) and

Σ Φ'(*i — */) = 0 (JeZζ) we see easily that

(4.19) sup Σ ^ Φ'(Xi~-Xj) < °°

Furthermore

(4.20) lim — \x{ — 3c | = 0

X X
because of lim -*- = lim -̂  =r by (4.9).

Thus from (4.18), (4.19), (4.20) we get (4.13).

Proof of Step 2. Let P be an ergodic measure in lP(Φ,r) satisfying (4.15)

Case r = R

By P + QR we have P{x1<R}>0, hence V(P) = EP ]Γ Φ(χ.)l >0, but this con-
i Φ O J

tradicts 7(Qr) = 7(Q1.) = £n J V Φ(x,)l -0.
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Case r<R

(4.2) and Pή=Qr imply that there exist a number 77 >0 and a set NcY satisfying

(4.21) P(JV)>0 and

(422) ]H^n_ Σe< W+:z*r-,,](*f-*i-ι)>0 for *eAΓ

If xf — χ._ 1 ^r — fy, we get

(4.23) inf Φ//(θ(χ.-x ί_1) + (l-S)r)^ inf Φ"(x) = : C > 0 .
0<#<1 (5<;c5Ξr

(4.22) and (4.23) imply

(4.24) i n f l . l Φ ' ' ( S ( x I . - x i

•(Xf — X j - i — r) l[Z6iR+:z^r-f7](^i — X j - i )

^I^i Σ W:^-,,^-*;-!) (nelN).
^ n -n<i^n

Therefore we get from (4.18), (4.24), and (4.22) that (4.17) is satisfied for all xeΛΓ, so
the proof of Theorem 3 is finished.

5. The Ergodic Theorem

Lemma 1. Let PE£? be given
(a) Given tn] oo and PelP such that Pίn-»P, then I(P) = I(Pt) for allt^O (where

the intensity I is defined by (2.21)).
(b) The set {Pt :t^Q}js relatively compact in IP.
(c) Given ίnt°° an^ PE^ sucn tnat ^tn~^^ an^ a continuous not necessarily

bounded function φ : (IR+)Z->IR+. Then it is sufficient for lim EP (φ) = Ep(φ) to hold
n-»oo tn

that the set of functions (φ(z(t)) : t ̂ 0} is uniformly integrable with respect to P. The
latter condition is satisfied e.g. if there exists an ε>0 such that sup EP^φl+ε)< oo.

Proof, (c) Clear.
(a) Since (2.1) is invariant under translations, it follows that I(Pt) = I(P) for all

ίg:0, see for example [5], Lemma (4.3).^ince Φ has a hard core we can apply e.g.
[8], Theorem 4.6.3, so we get I(Pt) = I(P) for all ί^O.

(b) Because Φ has a hard core of length δ and hence P^IP for all ί^O one can
apply compactness criteria from the general theory of point processes (e.g. [8],
Chap. 4.3) to conclude that {Pt : t ̂ 0} is relatively compact in the set of probability
measures on [(5, oo)z [since we confine ourselves to the one-dimensional case we
could alternatively apply [5], Corollary (12.4) combined with the subsequent
Lemma 4(a)]. It remains to show that. Ptn~^P implies PelP. For the proof consider

the function φ(z):= \ Σ Φ<Λ )]1/2 which is continuous on the set [t>, oo)z by virtue
i Φ O
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Of

lim sup

recall inf(χ.+ 1 — x^δ for xeM

The function t-+EPt[φ2~\ is decreasing [the computation is post-poned to the
subsequent Lemma 2(a)] so we can apply the criterion of Part (c) to conclude that

Eplφ] = lim EP [φ] ^ 1 + ϊiϊn EPt \_φ2~\ ̂  1 + EP\_φ2~] < oo
H-»OO tn n-> oo "

Σ <&(*,)]< oo by Pe&\
iΦO J /

This implies Σ Φ(xf)<oo P-a.e., hence z1>δ P-a.e., so Lemma 1 is proved.
i Φ O

The proof of Proposition 2 is based on the existence of the Liapunov functions
(2.13) and (2.14). Analogously we first prove [cf. (4.5)] the following

is decreasing.

Lemma 2. Let
(a) ί->F(Pf) is decreasing.

(b) ί->EP
i Φ O

(c) is — V(Pt)= -2EP[v2(t)].

Proof. Similar to the considerations in [13, p. 222] we use the shift invariance of P :
(a) When the context is clear, we omit the argument ί and write E instead of Ep

i Φ O

= -£[>o]- Σ
i Φ O

= -£[»§]- Σ
i Φ 0

-x0) Σ *'(

-xo) Σ
j Φ i

o-x-ί) Σ
j Φ 0

(b) -£[«g(ί)]=2£[l)oi0]=-2£f»0aτ

= -2£

*0
"(x0-^)»ol - Ef Σ

[where we have used Φ"( — x) = Φ"(x) ̂  0, cf. the proof of
(2.7)].

(c) Follows from (a) and (b).
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Lemma 3. Let Pe JSf, tn]co such that Pίn~»P for some PelP. Then we have

(5.1) EpK2]=0.

Proo/ Lemma 2(a) and (c) implies the following proposition analogous to (2.15)

(5.2) HmEPt[ι£]=0.

Since PelP, ̂ 0

= Σ φ/(xϊ) *s we^ defined P-a.e. Further the function zh>
i Φ 0 i Φ 0

is continuous on the set (<5, oo) z by virtue of lim sup V φ'(χ.) = 0.
"-*00 *eM i:Xιφί_nί+n}

Therefore (5.2) implies Ep\v^ ΛN]=0 for all NeN, hence Lemma 3 is proved.

From the considerations so far mentioned, which as one can show are not
restricted to dimension d = 1, it follows, that for an initial distribution Pe & the set
of ω-limit points of {Pt : t ̂ 0} is non-empty and contained in the set of rigid states.
From this and from Theorem 2 we cannot immediately deduce an ergodic
theorem: the situation is different from that in (2.16), because now we know from
Lemma l(a) only Ep(zί) = Ep(zί), but not whether even the distribution of the

X
variable lim -̂  is conserved in the limit ί->oo. The following considerations are

ϊ-»oo I

based on the fact, that, besides the potential and the kinetic energy, there exist still
more Liapunov functions in the case of dimension d=l (cf. [13, p. 222]).

Therefore the following reasoning is typically one-dimensional.

Lemma 4. Let PE «£?, fce N and φ : 1R+ ->]R be a convex function, which is differenti-
able on the domain {zeIR+ :φ(z)<oo}. Then the function

(5.3)
\ i = l

is decreasing (if the expectation exists and if it is permissible to interchange the
order of differentiation and expectation, cf. (3.13)j. Particular cases are (with
α>0 given in (3.12), (2.34) resp.) :

(a) φ(z) = z2 + \
(b)
(c)

Proof. For the proof we abbreviate

(5.4) /;.(w):-Φ/(z.+ ...+z ί + n _ 1 )

using (5.4) we get from (2.1)

f(n) __ V f(n) \ _ / V /•(»)_ V fWΛ +i 2^ Ji-n + i] \ L Jί L h-n

f (n) V f ("}\ - / V f (π) - V f (n) \
-'i+l LJI Ji \ \ L, Ji+ΐ-n <L Jί-n\>
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which implies

(5.6) £ Z,= Σ C^l-/?0)- Σ (f^-n-f^-n)
i=l n^l n = l

— V Γί fW fW\ (fW f(«) \Ί
~ Lt \\J\-n~J\ )~\Jk+ί-n~Jk+l)j

(5.7) i

To prove that this expression is ^0, by (5.6) it is sufficient to show:

(5.9)

(5.10)

145

Using again the shift invariance of P in a way similar to the proof of
Lemma 2, it follows that for all ne N;

k

i = l

fc

i = n + l

/ n + k

'( Σ *.}-<!/
i=ι

Substituting (5.9) and (5.10) in (5.8) and using (5.4) we get

(5.11) Eφ'Σ [(/ί^.-yί^-C/Zϊi-.-Λϊ
.ί=l

( n+k \ I k \\ I I k+n
TΓ^ \ i / V U / JR/ / V-» \ Ji/ /

ί=Σ ι

 zή -ψ (Σt ή) (v(i=Σ t *,) -v(t=ι
n+k k k+n n

but this is ^0, because Σ zi= Σ zι ^ anc* only if Σ z ΐ = Σ z; an(^ because
i = n + l i = l i = f c + l i = l

φr and Φ' are both increasing functions. This proves Lemma 4.
This is the right place to supplement the proof of Theorem 2.

Proof of Theorem 2. Given r^R and PelP satisfying (4.1)-(4.3) we have to show
that

(5.12) P{z1=r} = l.

From (4.1) we get

(5.13) EP zJ- Σ Φ7^-*,•)+ Σ Φ'ί^o-^))] =0

/the integrability of the integrand follows easily from (2.24), (4.3), (4.1) and

Σ \Φ'(nδ)\«x>\.
n = 2 }

Using the notation (5.4) and Σ |Φ'(^)I < °° we can write (5.13) in the form
n = 2

and applying (5.8) and (5.11) with φ(z) = z2 and fc = n = l we get from (5.14)

(5.15) (zi + 1 — z.)(Φ'(z + 1) — Φ'(zf)) = 0 for all iεΊL P-a.e.

It is easy to see that (5.15) and (4.2) imply (5.12).
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Lemma 5. Let Pe^f be an ergodic measure satisfying Ep(zl) = :r^R^ oo, where R
is the range of Φ (cf. (231)). Given a sequence tn ΐ oo and PelP such that Pίn-»P, we

have (z(t)-z(t))-^for n-*co.

Proof. Lemmas 4(a) and l(c) imply
(5.16) lim£Pt[(z1 + ...+z,)2]-£p

n~* oo "

using

(5.17) £P[(z2(t)-Zl(ί))2] = -£p[(Z

= -£ί,t[(z

and applying (5.23) we get

(5.18) lim £P[(z2(g-z1(O)2] = £p[(z2-z1)
2]

n~* oo

to prove the proposition it is therefore sufficient to show that P is a mixture of
measures Qr (0<r^R).

Case I : R = co

Without loss of generality we can assume that P is ergodic (decompose P into its
ergodic components) and we define r : = Ep(z1)< oo[Ep(z1)< oo by (5.16)]. Then P
satisfies the assumptions (4.1)-(4.3) of Theorem 2: (4.1) follows from Lemma 3,
(4.2) is satisfied, because P is ergodic with Ep-(z1) = F<oo, and (4.3) follows from

Ep[(zi — <S)~α] < oo / use Lemma l(c) and sup EP [_(z^(i) — <5)~2α] < oo according to
*

Lemma 4(b)\ and from (2.34). Since r<#=oo, the proposition follows from

Theorem 2.

CaselΓ. R<oo

It is proved by Nguyen Xuan Xanh. With his kind permission we reproduce his
proof:

If we show

(5.19) P{

then we can proceed in the same way ^s in the case R = oo : using (5.19) we can
assume without loss of generality that P is ergodic with r : =Ep(zί)^R, and so we
can apply Theorem 2 again. Assume that (5.19) is wrong, i.e. that there exists ε>0
such that

(5.20) rm P{z1
n->oo

To deduce a contradiction we observe firstly that the functions

(5.21) t^zj^vR (iel) are decreasing

for xf — Xj.^K we get χ.= £ Φ'ίx^ — xf)^0 and
J>i

i-ι = - Σ Φ'ίXf-i-x^O, hence i.^
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Therefore the events {z^ή^R + ε} are decreasing in ί, so we get from (5.20) the
relation

(5.22)

The ergodic theorem and (5.22) imply

(5.23) l im-Σ 1 n „.(,.) iΛ + .}]W>0
n-» o o t t ί = 1 π > ι J

for points xeM which are elements of a set of positive P-measure.

Since P is ergodic and EP(z1) = r^R we can find a point xeM satisfying (5.23) and
furthermore the condition

(5.24) lim- Y zM = r£R.
«->«>n f t ι

So let x be such a -point. Define

(5.25) /: = {feN:z.(ίn)^^ + ε for all nelN} = {i l 5i2,...}, where i 1 <z' 2 <... .

The points {x;.:i/c^7<ifc+1} form clusters not interacting with any other particle
for any ί^O, because the "barriers" zffc(ί) and z / k + 1 (ί) remain ^1^ + ε for all ί^O
[cf. (5.25) and (5.21)]. Hence the clusters {Xj(t):ik^j<ik+1} are finite systems
without boundary condition. Considerations similar to those in Sect. 2 show that
lim Zj(t)^.R(ik<j<ik+1). Using (5.21) we deduce that the spacing available to the

particles {Xj:ik-l^j^ik+1} at time ί = 0 must be ^(i f c + 1— (ifc — l)) jR + 2ε, and
more generally

(5.26) Xk-x^^-ί^-lfl.K + n ε (rceN).

This implies

(5.27) lim - Y z,(0) = lim ̂  ^ .R -f ε lim - > R
π-» o o Π ί - ι n->oo J n-» o o li — JL n n

[by (5.25) and (5.23)] .

But (5.27) contradicts (5.24).
So Case II is handled and hence Lemma 5 is proved.
We are now ready to prove the ergodic theorem for infinite systems, which is

analogous to Proposition 2 :

Theorem 4. Let Φ be a potential with range R^co and satisfying the properties
(2.30)-(2.34). Let Pε£> be ergodic with EP(zl)= :r^R. Then

(5.28) limEP[(z1(ί)-r)2]=0.
t-κχ>

Proof (Kesten, Spitzer). Let ίn|oo from Lemma l(b) it follows that there exist a
subsequence of (ίJweN, which without loss of generality we will again denote by
(fJneN» and some PelP such that

(5.29) Pt -»P.
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Since by Lemma l(a) r = EP(zί(t)) for all ί^O, we have to show:

(5.30) mn"Ep[z2(O]^r2.
n— > oo

To use the ergodicity of P for this purpose (if P is ergodic, Pt is ergodic, too, but
this will not be used in the actual performance of the proof) it is plausible to
approximate r2 by the averages given in the ZΛergodic theorem :

(5.31) EPγ fora11 k^

Lemma 4 is the essential tool to get rid of the time dependence of k(t) :

(5.32)
i = ι

τ Σ>WΠ for all ί^O (fee IN).
0 ί=ι / J

Next we have to find a connection between the left-hand sides of (5.30) and (5.31),
but this is given by Lemma 5:

(5.33) lim
ί=l

= 0 (fee IN).

These considerations [we postpone the verification of (5.33) to the end of the
proof] are already sufficient to prove (5.30): Given ε>0 choose k^fc(O) so large
that (5.31) holds for ί = 0; using (5.33) with this k we find an index n0 such that for
all n^n0 we have [taking into account (5.32)]:

(5.34)
1

+ 8

Proof of (5.33). By Lemma 4, we know that sup Ef
r > 0

<oo (fee IN), so it is

sufficient to prove
L2(P)

. But this holds, because from (5.29)

and Lemma 5 it follows that L2(P)- lim (zί(ίll)-z1(ίw)) = 0 for all zeN.
n— > oo

Remark 5.1. Let Φ be convex, not necessarily strictly convex on (δ, R\ and let
Pt5£. Then it is clear, that Theorem 4 does not hold in general. But we can still
deduce the following far weaker statement :

Given indices ijeZ (fixed), the spacings (χ.(ί) — x^ί)) converge in distribution
as f-»oo.

Proof. By Lemma l(b) the set of the distributions of the variables
{(z1(£)+...-fz/c(ί)):f^O} (keN fixed) is relatively compact. But the Laplace
transforms £P[exp( — λ(z1(i)+ ... +zk(i)J] are decreasing in ί because of Lemma
4(c). and this implies that they have the same limit for all sequences ίπt°°
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Remark 5.2. Using the correspondence between measures PelP and translation
invariant point processes on R1 (cf. [8, 11]) we deduce easily from Theorem 4 the
ergodic theorem mentioned in the introduction.

Remark 53. The proof of Theorem 4 is based on the assumptions (1.8) and (1.9)
mentioned in the introduction. Interesting open problems arise if one drops one of
these conditions.
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