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Abstract. The classical Yang-Mills equations in four-dimensional Minkowski
space are invariant under the conformal group. The resulting conservation
laws are explicitly exhibited in terms of the Cauchy data at a fixed time. In
particular, it is shown that, for any finite-energy solution of the Yang-Mills
equations, the local energy tends to zero as ί->oo.

1. Introduction

Since the conformal group is 15-dimensional, Noether's theorem implies that there
must exist 15 independent conservation laws for the Yang-Mills equations [13].
Ten of them are the familiar laws of conservation of energy, momentum and angular
momentum. One is the dilation law due to scale in variance and the remaining four
are the inversional laws.

From the first inversional law comes the major decay result. More precisely,
for any smooth solution for which the rFμv are square integrable, the energy within
any cone, which expands at a strictly slower speed than that of a light cone, decays
to zero at the rate t~2 as f-»oo. Moreover, for any finite-energy solution, the
energy within such a cone tends to zero as ί-> oo. This can be interpreted as stating
that all the energy of a solution radiates out along the light cone that is, at
characteristic speed. In particular, there are no "classical lumps". Earlier results
asserted that the energy within a fixed sphere tends to zero for some sequence of
times tn-+oo [1,4,11] and that the radius of gyration moves at characteristic speed
[2]. The exact analogue of our result was first derived for the linear wave equation
in [5,14] and for the nonlinear wave equation ϋ\u = u3 in [9].

The conservation laws are exhibited in terms of the Cauchy data at fixed times,
as is appropriate in the study of the existence and asymptotic behavior of
solutions. An exposition of these ideas in the case of the nonlinear Klein-Gordon
equation may be found in [10]. A similar program of deriving conservation laws is
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carried out in the case of the Maxwell-Dirac equations and the Klein-Gordon-
Dirac equations in [3]. The ideas in [10] show clearly that useful asymptotic
information can also be derived for many systems which are not conformally
invariant. In particular, the systems studied in [12] enjoy the t~2 decay rate, but
we have not carried out the calculations.

In Sect. 2 we list our notational conventions. We have intentionally made an
effort to write all the equations explicitly using only standard calculus notation.
Section 3 contains the 15 conservation laws. In Sect. 4 we present the decay result.
We also derive some "cone estimates". These estimates are bounds for certain
quadratic expressions in the field strengths integrated over light cones. Such
estimates are crucial ingredients in the scattering theory of the nonlinear Klein-
Gordon equation [6]. In Sect. 5 we consider two special gauges in which the
potentials Aμ are shown to have appropriately bounded square integrals. We also
explicitly write the 15 conservation laws in terms of potentials in these gauges;
these explicit expressions could prove to be useful in a future analysis.

In this paper we do not discuss the question of the existence of solutions. That
has been done recently by Segal [8]. Using the quasi-linear character of the
equations, he shows that solutions to the Cauchy Problem exist and are smooth
locally in time, if the initial data are smooth. If one could prove that all the second
derivatives, for instance, of the potentials, had a priori bounded square integrals,
the global existence of solutions would follow. In [8] it is shown that a weak limit
of solutions of certain truncated equations exists globally. For an exposition of
such existence questions in the context of the nonlinear Klein-Gordon equation,
see [10]. In the present paper we simply assume that a smooth solution of the
Yang-Mills equations is given in all space-time.

2. The Yang-Mills Equations

For convenience we choose the gauge group to be SU(2) and consider the
unknowns Aμ(x, f) (μ = 0, 1,2, 3) as real three- vectors, following [7]. The com-
ponents of each Aμ are written as A£, k= 1,2,3. The physical variables are
xAί = (x°5x

1

Jx
2,x3) J with x° = t. We write xμ = gμvx

v (sum on v) where the metric
gμv has signature - + + +. Thus Xμ = (xθ9xί9x2,x3) = (-x°,x1

9x
2

9x
3). We

further define

1 if ί=j

and denote by εijk the standard permutation symbol (εijk = 0 if two indices are
equal; εijk = +1 (resp. — 1) if i,j, k is an even (resp. odd) permutation of 1, 2, 3).

The Yang-Mills field strengths are defined by

Fr = 3Mr-3M? + 0 Σ εijkAμi (1)
j , f c = ι

where g is a positive constant and i=l, 2, 3. In vector notation, (1) can be written
as

u,v = 0,l,2,3)
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where A x B denotes the usual cross product of two three-vectors. We also employ
the notation A - B for the ordinary dot product of two such vectors. Now define a
differential operator by

3

Dv

ίj = δijd
v + g Σ tikjAl (3)

fc = 1

(v = <U,2,3;iJ=l,2,3).

Then the Yang-Mills equations take the form

3 3 3

For convenience, we employ throughout the rest of the paper the following

conventions: all sums Σ are taken over the indices fc=l,2,3. The physical
k

variables mil be denoted by t,xί9x2,x3.
We define the analogues of the electric and magnetic field strengths by

Ek = Fko (fc=l,2,3) (5.1)

and

H — F ,H=F ,H =F . (5.2)

Let £ be the 3 x 3 matrix whose columns are El,E2 and E3. Let H be the 3 x 3
matrix whose columns are H1, H2 and H3. In this notation the Yang-Mills
equations take the following explicit form.

dH1 _ dE2 dE3

dt dx3 dx2

dH2 dE3 dE1

dt dx1 dx3

dH3 dE1 dE2

dt dx2 dx1

dE1 dH3 dH2

dt dx2

dt dx3 dxί

dE3 _ dH2 dH1

dt dx1 dx2

dAk , dA°

*H2 (6.2)

+ gE2 x A^gA2 x E^+gA0 x H3 (6.3)

+ gH2 x A3+gA2 x H3 + gA° x E1 (7.1)

+ gA°xE2 (7.2)

+ gA°xE3; (7.3)
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with the "constraints"

= 0. (9)

3. The Conservation Laws

The energy is obtained as follows. Multiply (take the dot product of) (6.j) by Hj and
(7.j) by Ej (/— 1,2, 3) and add the resulting six equations. The twelve cubic terms,
each of which is a scalar triple product, all cancel. The twelve quadratic terms
combine to give the energy identity

!«»>-?£ <•>
where

e(E,H) = ±(\E\2 + \H\2)=±Σ(\Ek\2 + \Hk2) (10)
k

and

p3=H1 E2-E1Ή2. (11)

Of course if (e) is integrated over all space and the solution vanishes at infinity
(which we always assume), we get the conservation of energy :

§e(E,H)dx = const.

Unless otherwise specified, the symbol \dx denotes integration over all of 3-space.
The momenta are obtained as follows. The expression dp1 /dt is the sum of four

terms. Use Eqs. (6.2), (6.3), (7.2) and (7.3) to substitute for the time derivatives.
Upon adding and combining terms, we obtain

- [H1 H2 + E1 E2] - - r - [f/1 tf3 + E1 E3]
dx2 dx3

3£2 , dE*\ viJdH2

2

+ gE2 (E1 x A2) + gE* - (E1 x

+ gH2 (Hίx A2) + gH3 -(H
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If Eqs. (9) are now used, the last three lines greatly simplify and we obtain the
momentum conservation law. The result is

Thus conservation of momentum is expressed by §pj(E,H)dx = const.
The other eleven conservation laws are direct consequences of Eqs. (e) and (pj).

The angular momenta are the integrals of X2p
1—x1p

2, x^p2 — x2P
3^ χιP3~χ^^

and Xje + tpj (7 = 1,2,3). The dilation identity (scale in variance) gives

dx = const. (12)

The first inversional identity is obtained as follows. Multiply (e) by r2 +12

(r=\x\) to obtain

Multiply equation (pj) by 2tXj to obtain

~ [2ίx/] ~ 2*jPj = /- [2txf] - Σ /- [2tXj{& - Ek

oτ oXj k oxk

(/=1,2,3). Summing the resulting four equations, we obtain

+ t')e + 2tΣ*/l = Σff (13)
j \ k OXk

where

Finally, the last three inversional conservation ίαws are

je(E,H) + $(t2-r2)pi(E,H)+ΣxjXjr(EMdx (14)
m \

= const. (/=1,2,3).

4. Estimations

The fundamental bound is that of the energy :

+ |ίίT^ = const.

That is, all of the 18 components of E and H have square integrals which are
bounded in time.

Next, let K be any light cone. Then we claim that 12 of the 18 components are
square-integrable on K. These 12 components vary from point to point on K.
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Suppose, for instance, that K is the positive light cone {|χ| = f}. Integrate (e) over
the 4-dimensional region {|x|<ί<Γ}. Then

j β|E|2+±|H|2 + Σωιjή-^=i ί (\E\2 + \H\2)dx
| x | = ί < Γ \ k ) 1/2 | x | < f = Γ

where ωk = — and dS denotes the usual measure on the surface of K. Letting

T-KX), we obtain

1/2

The integrand on the left is nonnegative and can be written as a sum of squares.
For this purpose we introduce the following notation. Recall that E denotes the
matrix whose columns are E1, E2 and E3, and H the matrix whose columns are H1,
H2 and H3. Now Eτ is the transpose of £ and |E|2 = tr(EΓE)=£|E/|2.

ij
X

Let ω be the vector — . Given ω with |ω| = l, we introduce unit vectors α, β
\x\

such that α, β, ω form an orthonormal basis for IR3 with α x β = ω. We then have

and

since α, β, ω are orthonormal. Next, we calculate

<x - o c ) ( H 2 E3 - E2 -

Hence we can write

It follows that the integrand on the left above can be written as

Thus the twelve components of the vectors Eω, Hω, Eα — Hβ, and EjS + Ha are
square-integrable on K.

Next we integrate (13) over all space to obtain

J (r2 + t2)e(£, H) + 2 tr Σ ωkp
k(E, H) dx = const.

where ωk = —. The calculation just completed shows that
r

conservation law implies

< e. Hence this

J(ί - r)2e(E, H)dx ̂  const. (15)
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In particular, if we restrict the integral to a cone of smaller aperture than a light
cone, we get

(εί-JR)2 j e(E,H)dx^ const.
l -ε)ί

for t>Rε~1. Therefore we have proved the following

Theorem. Let R>0 and 0<ε^l. Then

J \_\E\2 + \H\2~\dx = 0(Γ2} as ί->oo.

This is valid for solutions whose Cauchy data (at any time) satisfies §r2e(E,H)dx
<oo.

We can extend the class of solutions for which a decay result is valid as fol-
lows : Let E, H, A be any finite energy solution of (6)-(9). Thus it is only assumed
that

at some fixed time. Let ζn(x) be the standard cut-off function: CMeC°°, 0:gCM^l,
ζn(x)=l for |x|^n, ζπ(x) = 0 for |x |>n+l. Consider the solutions E(n\ H(n} whose
Cauphy data is obtained from the original Cauchy data by multiplying it by ζn(x).
We assume that

supJ[|E ( n )-E|2 + |H(lI)-H|2]dx-^0 as n-*oo. (16)

Since the Cauchy data of E(n\ H(n} have compact support, the hypotheses of the
theorem are satisfied, and hence E(n\ H(n} enjoy the ί~2-rate of local energy decay.
We employ the notation

| |w| | 2Ξ J \u(x,t)\2dx.

Now let (5>0 be arbitrary. By (16) we can choose n = N such that

.

Then, using the theorem, we choose T so large that

for all t ̂  T. Since δ was arbitrary, we have the following result :

Corollary 1. Assume that any finite-energy solution can be approximated by cut-off
solutions as in (16). Let R>0, 0<ε^l. Then for every finite-energy solution of the
Yang-Mills equations we have

lim E
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Corollary 2. If the Yang-Mills equations possess a finite-energy solution of the form

E = E(x-ct), H = H(x-bt)

where b and c are constant vectors of norm less than one, then E = H = Q.

Let K again be any light cone, say |x| = ί. We integrate (13) over a
4-dimensional region as before to obtain

J \(r2 + t2)e + 2 tr Σ ωkp
k + Σ ωkn

k| dS ̂  const.
κ[ k k \

Using the definition of nk, we can write the last integrand as

•k 2

Therefore 6 of the 18 components of E and H are square-integrable on K with the
weight function t2.

5. Special Gauges

It is useful to obtain bounds on the potentials Aμ as well as on the field strengths E
and H . We begin with the Lorentz gauge

In this gauge the potentials have appropriately bounded square integrals. Indeed,
we take the scalar product of Ek [Eq. (8)] with Ak and sum on fe:

Using (*) and integrating over all space, we obtain

1/2
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whence

g [ J (\A°(x, 0)|2 + £ \Ak(x,

for all ί. Therefore

ί[M°l2
(17)

for all ί.
In this gauge the Yang-Mills equations take the form

2 °
d2A dA°

~dT
,OxA —

dx
AxA

δt

d2Aj

--ΔAj + g

k

dAj

{\Ak\2A°-(Ak A°)Ak}=0

dA° .„ ,

(18.0)

= 0.

We have made use of the identity

Ax(BxC) = (C A)B-(B A)C.

The 15 conformal conservation laws now take the following forms, after some
tedious computations.

The energy density is

-2*04) =
dt

+ \VA°\2-

+ 2gΣ\—.AkxA° + ΣAk A»:

The momentum densities are

(/=!, 2,3).
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Notice that e(A) and pj(A) differ from e and pj of Sect. 3 by certain x-derivatives
(which integrate to zero). The angular momenta are

dx = const.

(/ = !, 2,3)

and

ί
dA

' —
8Al

- xtp
m(A) + xmp'(A) + A' — -- Am — + 2gA° AlxA

dt dt
dx

= const. ( lφm,/ = l,2,3).

The dilational identity is

(\A°dA° V 1

J ot

Jr

" dr dt

dx = const.

ϊ' dr dt

The inversional identities are

° °
dA° dA dA

dt dr

and

f ,0ί \χi\A -~^-J J\ dt

- tXje(A) -A° Aj + \(r2 - t2)pj(A)

ΛO Λ'}+t\A -~^~A '•-*/ \ dt dt

υi 01

-const. (/ = 1,2,3).

The Lorentz gauge has the drawback that some of the quadratic terms in the
energy density e(A) are positive and some are negative. Consider instead the
Coulomb gauge
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By the same method as we obtained (17), we have

'2
, t)\2dx ί (J Σ \A

\ k
x, 0)|2rfxV /2 + (f \E\2dxγ'2ds

I o

hence

for all ί.

In the Coulomb gauge the Yang-Mills equations take the form

(19.0)

(fc=l,2,3).

If (19.0) is multiplied by ^4°, the useful identity

is obtained. The energy density takes the form

λk 2

dx,. dt

dAj

(20)

k * k,l

with the understanding as before that it may differ from the preceding energy
densities by a spatial divergence (which integrates to zero). The Coulomb gauge
has the advantage that the energy density can be written so that the quadratic
terms are positive.

The momentum densities are
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The angular momenta are

Q Λ JI Xje(A) - A° + tp*(A) dx = const. (/ = 1, 2, 3)

and

J "mf v v ^jf v-v ' "-•• Λ , ^ A Λ ,

(mΦyj=l,2,3).

The dίlational conservation law is

ί
<^ r kte(A) + \ \Ak - —— + r + gr -

3r 3ί y dr

The inversional conservation laws are

.n δyl*
^^•^/C^ Λ

ft fc ^r

δ^l^ 3XΛ dAk dAk

r̂—
3ί dt dr dr

and

- tA°
dt

n\dχ = const.

Λ O Jx AΌ > \dx = const.

= const.

+ Σ XjXm

dA™

'~δΓ

= const.
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Note Added in Proof
The results of this paper are valid for Yang-Mills fields coupled to scalar fields.






