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Dissipations on von Neumann Algebras

C. W. Thompson
Department of Mathematics, University of Manchester, Manchester M 13 9PL, England

Abstract. We extend a characterisation by Lindblad of complete normal
dissipations on hyperfinite von Neumann algebras to general semifinite von
Neumann algebras.

Introduction

The time-development of certain quantum systems can be represented by one-
parameter semigroups of completely positive maps on the associated C*-algebras
(see [4] for a discussion of the physical justification for this). When the semigroup
is norm-continuous the infinitesimal generator is a bounded linear map on the
C*-algebra, and Lindblad [4] gives a characterisation of those linear maps which
are infinitesimal generators of such semigroups. These he calls complete dissipations.

If we now take a von Neumann algebra .o/ and look at complete normal
dissipations on .o, we would like to prove a result corresponding to the theorem
that every derivation on a von Neumann algebra is inner. In [4], Lindblad shows
that if 0:.o/— .o/ is completely positive then y,:.o7— ./ defined by

7ola)=0(a) =5 {0(l)a+ab(1)} ()

is a complete dissipation on .7, and it is clear that 7, is normal if and only if  is.

Definition. A complete dissipation y on a C*-algebra .o/ is called inner if y —7, is an
inner derivation for some completely positive map 0 on .o7.

Lindblad shows in [4] that every complete normal dissipation on a hyperfinite
von Neumann algebra .o7 is inner. In [ 5] he uses the general theory of cohomology
of operator algebras to show that the same is true for any type I von Neumann
algebra, except that in this case he can only show that the range of the completely
positive map 0 is contained in #(H), where .o/ is considered as a weak-operator
closed subalgebra of #(H) containing the identity map. However, since any type I
von Neumann algebra is injective, there is an expectation from %(H) onto .<Z, so by
the remark at the end of [5] we can choose 0 with range contained in ..
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We show here that every complete normal dissipation on a semifinite von
Neumann algebra is inner. The starting point is Proposition 1 of [5], which we
state in the next section for completeness.

1. Preliminary Definitions and Results
Let .o/ be a C*-algebra with identity.
Definition. A dissipation on .27 is a linear map
vl —.of
satisfying, for a in .7,
1) y(a')— w(a)*,
2) ()=

o1
3) yla* a)>a v(a) +y(a*)a.
It is called a complete dissipation if

T =7 ®1d9¢®Mn_>Q/®M”

is a dissipation on .« @ M, for every n=1,2,..., where M, is the C*-algebra of
nx n matrices over € (so .« ®@ M, can be considered as the C*algebra of nxn
matrices over .o/).

Kishimoto shows in [3] that every dissipation on a C*algebra is bounded.

For a dissipation y on a C*algebra .o/ we define, following Lindblad [5], two
related functions, the first from .oZ x .« to .o/ and the second from .7 X o7 x .o/ to
o/. They are defined as follows: for a, b, ¢ in .o/

d(a,b)=d (a,b)=7y(ab) —p(a)b — ay(b)
and
D(a,b,c)=D.(a,b,c)=d(ab,c)—ad(b.c).

Note that if .o7 is a von Neumann algebra and 7 is ultraweakly continuous, then d
and D are separately ultraweakly continuous in each variable. Also

d(a,by=D(a,1,b)  (a,be.oZ).

The following proposition is Proposition 1 of [ 5], except for the normality of ©
and V, which is easily verified. We can also deduce the normality of V from [7].

Proposition 1. Ify is a complete dissipation on a C*-algebra o/ and D is defined us
above, and if </ is considered as a norm-closed algebra of operators on a Hilbert
space H, containing the identity on H, then there is a *-representation

..o >AB(K)
of </ on a Hilbert space K and a bounded linear map
Vi >%(H, K)
such that, for a, b, ¢ in </,
D(a, b, c)=V(a*)*n(b)V(c) (2)
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and
V(ab)=V(a)b+ n(a)V(b). (3)

If o/ is a von Neumann algebra and is ultraweakly closed in B(H) and y is normal then

n and V can be chosen to be normal (i.e. continuous in the ultraweak topologies on
A(H) and #(H, K)).

For the remainder of the paper we assume, unless otherwise stated, that o7 is a
von Neumann algebra, considered as a weak-operator closed subalgebra of
operators on a Hilbert space H, containing the identity on H, and that y is a
complete normal dissipation on .o.

Define

Ag={n(a)V(b)c:a,b,ce o/} CH(H.K),
where 7, ¥, K are as in Proposition 1. If
x=mn(a,)V(b,)c,,y=mn(a,)V(b,)c,
are general elements in A, then
yix=c3V(b,)*n(a3)n(a,)V(b;)c,
=c3V(b,)*n(a%a,)V(b,)c,
=ciD(b%,a%a,,b))c e A .
Now let 4 be the weak-operator closed linear span of A,,.

Lemma 2. (1) y*xe .o/ for every x, y in A;
(i) m(a)x and xae A for every xe A, ac ..

Proof. Let A, be the linear span of A, and let
X=20.X, y=21);
be general elements of A4,(4; 1;€C, x;, y;€ 4,). Then
VEX = (2 Ax;)
=2, lyixed

by the previous calculation.

Now let x,yeA and choose nets (x,), (y;) in A, converging in the weak-
operator topology to x, y respectively. Since .o/ is weak-operator closed in 4(H)
and multiplication is separately weak-operator continuous, fixing f§ we have

yix=limy¥x e.o/ .
&£

Now using the fact that the *-operation is weak-operator continuous we obtain

yix= li;Ily;;‘xe o .

The proof of (ii) is similar and is omitted.
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Note. Since A is a weak-operator closed subspace of #(H, K) it has a predual 41,
and with respect to this predual it becomes a dual normal .«Z-module in the sense
of [8,p. 404]. Further, by (i) of Lemma 2 we can define an .«/-valued “inner
product” on A by

(o y)y*x (x,yed)

and A thus becomes a right Hilbert .«Z-module [6]. [t can be shown that the dual
normal module structure on A implies that it is a self-dual right Hilbert .«7-module
in the sense of Paschke [6]. By Proposition 1, V ia a derivation of .«/ into 4. In
what follows we implicitly use the .«Z-module structure on A, and in particular
the .Z-valued inner product.

2. The Main Results

The proof of the following proposition is an adaptation of the proof by Johnson
and Ringrose ([2] or [9, Theorem 4.1.6]) that every derivation on a von Neumann
algebra is inner.

The proof easily generalises to prove that every derivation on a dual normal
Hilbert module over a semi-finite von Neumann algebra is inner.

Proposition 3. Let .o/ be a semi-finite von Neumann algebra. Then with the same

notation and assumptions as in the previous section, there is a Ve A with [V <Vl
such that for a in <,

Via)= Va— n(a)f/.

Proof. We write <" for the group of unitary elements of .Z. For u in ./* define as
map

T, :A-A
by
T.(x)=n(u)xu*+ V(wu* (xeA).
For u, v in .27* and x in A,
T(T,(0) = T,[m{v)xe* + V()]
= n(u)[m(v)xv* + V(o)* u* + V(uu*
= n(uv)x(uv)* + [n(u) V(r)+ V() ](uv)*
=n(uv)x(uv)* + V(uv)(uw)*
=T,(x),
so T,T,=T,, for u, v in .o7".

uv

Let A be the collection of non-empty, weak-operator closed convex sets K of A
satisfying

1) T(K)SK  (ue.o/"),
and

2) sup{lixl:xek}<lvl.
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For u in ", I T(O)l = Vwu*l <IVI, T,(0)e 4, and
T({T(0):ve.o/*})={T,(0):ve.of"} ={T(0):ve.o/"},

so the weak-operator closure of the convex hull of {T,(0):ve .27*} is a member of 4,
and 4 is non-empty.

Order 4 by inclusion. Using the fact that weak-operator closed bounded sets in
A are weak-operator compact [since A is weak-operator closed in 4(H, K)], we
can easily see that each chain in 4 has a lower bound, namely the intersection of all
members of the chain. So by Zorn’s lemma, 4 has a minimal element K.

If x,yeK, and ue /"

n(u)(x —y)u*="T(x) = T(y)e Ko — K,
so K,—K, is invariant under the mappings
" z—m(u)zu*(ze A)

for each ue.o/".

Firstly assume that o/ is a finite, countably-decomposable von Neumann
algebra and therefore has a faithful tracial state . Define an inner product <.,.>,
on A by

Ly =ty*x)  (x,yed).
This is well-defined by Lemma 2(i). We write
Ixll, =, x> (xed).

We want to show that K, — K, = {0}, so conversely assume that there is a non-zero
c=a—b with aq, b in K,,. Let

J=sup{lixll xeK,}.

If xeK,, the weak-operator closure of the convex hull of {T (x):ueo/"} is a
member of 4 and contained in K, (by the invariance of K, relative to the T,), so by
minimality it must be equal to K. So taking x=3(a¢+5b) and ¢>0 we can find a
ue o/* such that

ot

Since I T(a)l. <2, I T,(b)I_ <4, by the parallelogram law,
14T (a)— T,(b)I2 =3I T ()12 + I T, (b)II2)
— (T (a)+ T (b))II2
S50+ 22)—(—e)
=2/e—¢?
ot
5

>/—c.

T

since L(T,(a)+ T,(b ))—R(
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But on the other hand
I T (a)— T.(b) 12 = I n(u)(a — byu* 2
=1(u(a—b)*(a— b)u*)
=1((a—b)*(a—b)) (since t is tracial)
=la—bl2,
so letting e—»0 we get llct—b\|2~0 and a—b=c=0 (since t is faithful), a con-

tradiction. Hence K, — K, = {()} and K, consists of a single point ¥ say. Since K,
is invariant under CdCh T

u’

A

[n(u)V+ VuJu*=V  (ue.o/")
and rearranging

V()= Vu— n(u)f/ (ue.o/v).
But .o7* linearly generates .o7, so

Viay=Va—n(a)V  (aet).

Note that by construction | VIl <V and Ve .

Now let o/ be any semifinite von Neumann algebra. For a countably-
decomposable finite projection e in ./ define

V., ecle—H(eH, n(e)K)
by
V (eae)=rm(e)V(eae)e.

e/e s a finite countably-decomposable von Neumann algebra, so by the first half
of the proof there is a V,en(e)Ade with 17, <1V, I <l and

V. (eae)= Veeae —ni(eae) K, (ae.of).

Now let (¢,),.; be an increasing directed set of finite countably decomposable
projections with supremum 1 (see corresponding proof in [2] for a proof of the
existence of such a net). Then for each xe thereis a V V with |7 v, I <lvil and

V, (e ae,)= V,e,ae,—mnle,ae,) V, (aeod).

Also V,en(e,)Ae,C A. By the weak- -operator compactness of bounded sets in A we
can fmd a cofinal convergent subset of (V,),,, and so we may assume that (1)), is
weak-operator convergent to an element 7 in A with [Vl <[lV] (the subnet of
projections has supremum 1 since it is cofinal).

If <o, e;=e, s0
V, (egae;)= f/,,eﬂaeﬂ — n(eﬁaeﬂ)la (ae ).

Letting z— ¢ and noting that V, (eguey) =n(e,)V(egaey)e,— Vieyaey) in the weak-
operator topology, we get

Vieyues)= IA/eﬂaeﬁ — n(eﬂaeﬁ)l} (ae ).
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Now let f—cc, so eyae, converges to a ultraweakly and in the weak-operator
topology (the two topologies coincide on bounded sets); then using the norm-
ality of = and ¥

V(a)=limV(ezae,)
B
=lim[ f/eﬂaeﬂ — n(eﬂaeB)V]
B

=Va —n(a)f/ (ae.of)

as required.
We can now easily deduce the main result of the paper.

Theorem 4. Every complete normal dissipation on a semi-finite von Neumann algebra
is inner.

Proof. With the same notation as before, put
Oa)=V*nla)V  (ac).

By Lemma 2 6(./)C.o/ and by [10] 0 is completely positive. A straightforward
calculation gives
d (a,b)=(Va* —n(a*)Vy(Vb—n(b)V)
=V(a*)*V(b)
=D.,‘(a, 1,b)
=(17,(a,b) (a,be.o),

SO

d (a.b)=d (a.b)—d (a,b)=0 (a,be/),

G =ve)

that is, y—7, is a derivation on .o/. But every derivation on a von Neumann
algebra is inner, so 7 is inner.

Note. If o/ is a non-hyperfinite type 111 von Neumann algebra we do not know
whether every complete normal dissipation on ./ is inner. However Christensen
has proved in [1] that if .o/ is considered as a weakly-closed subalgebra of Z(H),
containing the identity on H, and V:o/ —>%(H) is a derivation, then there is a
Ve#(H) such that

Viy=Va—aV  (ae.t).

Using this result we can easily deduce that if n:eo/—>%(K) is a normal
*-representation of </ on a Hilbert space K and V:.«/—%(H, K) is a derivation
(where #(H, K)is an .«/-module in the obvious way), then thereisa Ve #(H, K) such
that

Via)y= Va— n(a)f/
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[consider #(H, K) as a submodule of Z(H @ K) in the obvious way]. Combining
this result with Proposition | we obtain the following:

If y is a complete normal dissipation on a type III von Neumann algebra
o/ C A(H) then there is a completely positive map 0:.o/ - Z(H) such that vy, is a
complete normal dissipation on ./ and y—7v, is a derivation on .o/ (which is
therefore inner).
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