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jι-Point Functions for the Rectangular Ising Ferromagnet

D. B. Abraham*

Department of Theoretical Chemistry, Oxford University, Oxford OX1 3TG, England

Abstract. A new representation for the n-point functions of the Planar Ising
ferromagnet is given. Below the critical temperature the boundary conditions
are toroidal; the state is a superposition of the extremal invariant ones, with
equal weights.

1. Introduction

This paper presents the final results which are needed to write down the n-point
function of the rectangular Ising ferromagnet in an explicit way. As was explained
in the first paper [1], this can be done once all matrix elements of spin operators
between any eigenvectors of the transfer matrix have been given. In [1] and [2],
matrix elements from the vacua to any excited state were considered. The method
for completing the problem is quite obvious, but the fact that a Wick theorem still
obtains is not it is also highly significant for the truncation properties of the
rc-point functions [3]. The results of this series of papers have found application in
the rigorous determination of critical indices [4], in heuristic remarks on the
equation of state [5] and in the analysis of the density profile between phases [6].

2. Generalised Matrix Elements

Let functions associated with the generalised matrix elements be defined by

j

m+1

<Φ-|Gβn...Gβm+1GΐAn...Gί/JΦ+>. (2.1)
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By using the linear dependence relationship

with

the following recurrence relationship may be derived:

(z )\
V m/ 1 T7 ί(4\ ι/_Λ \1 -

(2.2)

(2.3)

The first summation is over distinct zm such that
limit M-+oo is given by

( 2 4 )

= 1. The relevant object in the

(2.5)

Σ (- Z / m

The solution of (2.5) will be developed separately for T> Tc and T<TC using
an inductive ansatz.

By analogy with the introduction of the operator Y+ in the previous two
papers, consider the operator Y_ defined on a dense substance of L^SJ by

(Y-
SP , dz 1

Θ(t)
(2.6)

n

This may be extended to (X)L2(St) by

0> f dt1 Θ(t)
(2.7)

Clearly the norm satisfies II Y_ II ̂ 2 .
Consider first the case T>TC: since F((z)2n) is known, when m-1 in (2.5) we

have

In

Σ<
2

1

z/ / 1

\ +
Zj)Θ(t)

(2.8)



Ising Ferromagnet 207

where the pair contraction function /_ is expressed in terms of the Wiener-Hopf
factorisation (see [1], Appendix B) of Θ(z) by

(Θ-1()ΘZ1(t)±Θ-ί(t)ΘZί(z)). (2.9)

The additional function / + will be encountered in the following. Using the
properties of the factorisation (see [1], Appendix B) it follows that

(2.10)

(Y_ f+) (£, Zj) = 2/_ (ί, Z;). (2.11)

Insertion of (2.10) into (2.8) gives

In

2

This result suggests the inductive ansatz

m - l

F((t)m\(Z)m+l 2n)= Σ {~^)j~m

1

In

+ Σ (-1V
m+1

In order to test whether this satisfies (2.5), for m^2, (2.10) and (2.11) are needed;
then (2.13) is readily verified by induction on m, for any n ^ l .

If T<TC and m=l then the expansion (4.18) of Paper I should be used with
contraction function and initial condition as follows:

(*)), (2.14)f ± ( , ) ^ ( Θ ( ) Θ

Zϊ — 1

F(z) = z6); 1 (z)β + (0)m*. (2.15)

Then from (2.5) it follows that

j=2

+Φϊii+wβϊτhΔ^A (216)

The results needed here are that

-v+v'-' zt_γ y ' Θ{z)Θ(t)j

+ 2Θ+(0)Θ-\t)zΘ+{zΓ1, (2.17)

'β)-\ (2.18)
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and

(Y_F)(z) = 2F(z). (2.19)

The terms involving F(z.) on the right side of (2.16) and (2.17) cancel in (2.15) by
appealing to the properties of Pfaffians, giving the result

F(t\{z)2t2n+1) = ΐi-^^ΠtlΛ^z)^,)
2

-F(t)F((z)2an+1), (2.20)

where F(t\A1(z)2n)=Σ(-ίff+(t,zk)F(Δlk(z)2n) (2.21)
2

the final Pfaffian being evaluated according to Paper I of the series. An inductive
ansatz analogous to (2.13) can now be made, and established for T<TC; it is (2.36)
of Theorem 2.

The matrix elements

are calculated in the appropriate limit as M-»oo by precisely the same procedure
as in Paper II.

For T> Tc we have the equation

= Σ ( - i r - '- lβ(z jr
lF(jJ(ί)1I1i(2)m+1>2lI+1)

ί|(z)

M ^ ) m + 1 , 2 n + 1 ) . (2.23)

But we have the results

y-τ ί τ β ( ί ) / + ( ί ^ ) = β-(oo)θ-1(^), (2.24)
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from which the results given in the Theorem 1 below follow. The analogous results
for T<TC are obtained by conducting the expansion of the Pfaffian in line 1 of
(2.23) according to (2.36). Using the results

*- f ~Θ(t)f+(t,z)= -zθ + \z)θ+(0) (2.26)

and

T ί ~θ(t)f_(t,z)= - - L +zΘ-\z)Θ+(0) (2.27)
X f. Z Ly\Z)Z)

together with the normalisation

(2.28)

then gives the appropriate part of Theorem 2. The results are as follows:

Theorem 1. If J(Θ) = 0(T>Tc) then for 0 ^ m ^ 2 n + l

^)ml(^)m + 1.2n + l) = 0 (2.29)

whereas

^ / z L K ^ - n ^ J (2-30)
1

with

f(zt, zj) = f+(Zi, z) [resp./_(z,, z$\ (2.31)

for 1 ̂ f ^ m , m + 1 rgj^2?i (̂ resp. l^i^m and lSJ^m o r m+l-^i^2n, m + 1 ̂ 7

(2.32)

ow the other hand

^ ( ω m ι ω m + 1 ) 2 « ) = o (2.33)
whereas

F(/ l/z ) m | ( Z ) m + l i 2 n + 1 ) , (2.34)

where the generalised Pfaffian is given by (2.30) and (2.31).

Theorem 2. Ifjf(Θ)= - 1(T<ΓC) tften/or 0^m^2n

%)J(4 + u>0 (2.35)
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whereas

the second matrix element factor on the right hand side being given by (2.22) and
(2.23) of the previous theorem, with

^ 1 ( t ) z - 1 Θ Z 1 ( z ) , (2.37)

F(z) = Θ + (0)m*z<9 \z). (2.38)

On the other hand

FX((z)m\(Z)m+l,2n+l) = ° ( 2 3 9 )

whereas

the right hand side being given by (2.22) and (2.23), with the pair contraction function
f± given by

t) 1z 1Θ_(z) x ) . (2.41)

Remarks. 1. The matrix elements are written in terms of Pfaffians which are
generalised further to include symmetric contractions. It should be noted that there
is still antisymmetry under permutations of the {t} or the {z} separately, as there
should be. It is quite surprising that a Wick theorem result holds in this case also.

2. The case T<TC, m = n = 2 was used in the theory of the interface between
phases for the rectangular Ising ferromagnet [6].

3. Representation of the w-Point Function

The following formula was developed in Paper I [1] of this series. The notation (r)n

= (rv...9rn) will be used for the location of the n particles, with r^eΈ2. The relative
coordinates are Xk==(rk+ι~~rk)'* a n c ^ Λ~( r/c+i ~ru)'J w n e r e i and j are unit
vectors for the lattice Ί? and i is the transfer direction. The points are ordered so
that XfcŜ O, fc = l , . . . ,n—1. The n-point function is

<<r(r)n>= l i m Σ e χ p - Σ (y(jk)χk-ίω(jk)yk)
M

< Φ j n . 1 K | Φ + >. (3.1)

The index j of each state \Φj) is given by a set of wavenumbers (ω) with
mJ.^0(mJ. = 0 corresponds to | Φ + » with ωe[0,2π]. The summations become
integrations in the thermodynamic limit, as can be seen by considering Section 5 of
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[1], giving the result

mi,...,mn-

•Fx((eiωi

n-1

•exp £
1=1

1 = 0

mi

Σ

0

ί - 2

1

π
j '

(3.2)
= l f c = l

where the notation

(cύj)n = ( 0 ) ^ - , . . . , ω Π J ) (3.3)

will be used.
Just as for the 2-point function, there is an illuminating graphical repre-

sentation of these results. For an n-point function consider vertex sets 01 j9

j=l9...9n-l. The feth-vertex within 01 j is labelled ωkj9 fe=l,...,mJ. with \dtj\ = mj9

Mj is the set of wavenumbers describing \Φj}. For pictorial purposes it is
convenient to arrange each 01 ̂  horizontally and then order the 0t^ vertically.

The union of the 0t^ will now be taken as the vertex set V for a graph
^ = {V,E} the contractions f± which occur in Theorems 1 and 2 of the previous
section will be assigned as edge weights on ^. Evidently there will be /_ edges
within rows 01 ̂  but /+ edges between 0ί. and 0tj+1 for j=ί, ...,n— 1. First we
rationalise the contraction functions so that the edge weights become real. By
analogy with [2] we introduce the functions

e±(ω l 5 ω2) = (sinh-^α^) ± sinh<y(ω2))/2 sin^ω! + ω2)/2), (3.4)

e+(ω l 5 ω2) = (p(ωί)q(ω2) ± p(ω2)q(ω1))/2 sinftω! + ω2)/2). (3.5a)

with

ω H ( - 2 c o s ω + Λ + l M ) 1 / 2

for the rectangular Ising model. The integration weight for each vertex is now

dμ(ω) = dω/2π sinh y (ω) (3.6)

and the factors of ί arising from the replacement of / by e can readily be shown to
cancel.

Reference to Theorems 1 and 2 shows that the graphs in the two cases will be
different. The case T< Tc is the simpler: our considerations here will apply only to
periodic boundary conditions, for which <σ(r)n>=0 whenever n is odd (This is
obviously not so with + boundary conditions: take n= 1). Allowed graphs ^ are
unions of disjoint closed cycles c€ι. Each c€ι has an even number of edges, weighted
by et( , •) if both vertex labels come from the same 0ty Within the vertical
ordering β+( , •) can only connect elements of 01 j and 0lk iίj = k±l. Closure of any
ζ€ι requires that the number of e+ weighted edges be even. The final problem here
concerns the sign factors in the expansions over permutations. This is given by
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Lemma 1. Any closed cycle has a permutation factor of(— 1).

Proof. This is analogous to that in [2]. The only difference is that a product of
2n — 1 permutations has to be handled because a cycle is permitted to intersect all
aj9j=ί9...,2n-l.

When T>TC, open chains occur. 0tί and 0H2n-i have each one chain end3

arising from the first and last matrix elements respectively in (3.2). There is one in
each MjV&j+1 for j=ί, ...,2ft —2 arising from the intermediate matrix elements.
Each chain end has an edge emanating from it the degree of all remaining vertices
is two. Thus any allowed graph is a disjoint union of n chains and any number of
closed cycles. These are weighted in accordance with the rules for T>TO mutatis
mutandis.

The permutation sign of a given chain is given by the following lemma:

Lemma 2. An open chain which has ends in M^ and 0lk has an even (resp. odd)
number of edges if(j — k) is even (resp. odd). The permutation sign is (— l)u~k).

Proof. This is an elementary extension of that in [2].

The final information required to specify the graphical representation is the vertex
weight function for a vertex label ωjk in row <Mk. This weight, denoted vk(ωjk) is
given by

υk(ωjk) = e x P( ~ \χMωjk) + %ωj/c s S n k) (3 7 )

The appearance of Sgnfc in (3.7) is a consequence of the choice of wavenumbers in
(2.1) and (2.22). All spins are translated in the direction perpendicular to transfer to
the standard position 1 in accordance with the procedures of [1].

The sums over appropriate weighted graphs for T>TC and T<TC are denoted
Q±((xn-1? (y)n-1). The vacuum scalar products required as boundary conditions for
the Pfaffian expansion of Theorems 1 and 2 are given in [2]. One obtains:

T>TC:

<σ(r)2n> = (m(Kv K2)/coshK*)2nρ + ((x)2n_ l9 (y)2n_ J ,

where

m(K1,K2) = (l-(sinh2K1smh2K2)
2)lls

and

T<TC:

where m*(Kί,K2) is the spontaneous magnetisation, given first by Onsager [7] :

Remarks. 1. A conjecture has been given on the scaling limit of the truncated n-
point functions [5] which suggests that the equation of state of the ising
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ferromagnet has an* asymptotic form

rn{h,t)~t1/8f(hΓ15/8) (2.42)

where t = (T—Tc)/Tc and h is the applied field. But the precise meaning qf the
symbol ~ is yet to be given, as well as the properties and form of /

2. Duneau et al. [3] have stressed the relationship between spanning tree decay
properties of truncated π-point functions and analyticity. It appears difficult to
establish such results rigorously. Study 4-ρoint functions indicates that the
occurrence of the contraction /+(-,-) is involved in an essential way in the
truncation.

3. The results for T<TC have been obtained with toroidal boundary con-
ditions. Messager and Miracle-Sole [8] have shown that below the critical
temperature there are just two extremal invariant states ω+ the state considered
here is just (ω + +ω_)/2. The results for ω+, and hence for any invariant
equilibrium state will be given in another paper, using some of the methods of the
last-named article in [7].
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Note Added in Proof

R. Z. Bariev [Phys. Lett. 64A, 169 (1977)] has derived rc-point functions independently.






