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Abstract. We use Ginibre's general formulation of Griffiths' inequalities to
derive new correlation inequalities for two-component classical and quantum
mechanical systems of distinguishable particles interacting via two body
potentials of positive type. As a consequence we obtain existence of the thermo-
dynamic limit of the thermodynamic and correlation functions in the grand
canonical ensemble at arbitrary temperatures and chemical potentials. For a
large class of systems we show that the limiting correlation functions are
clustering. (In a subsequent article these results are extended to the correlation
functions of two-component quantum mechanical gases with Bose-Einstein
statistics). Finally, a general construction of the thermodynamic limit of the
pressure for gases which are not H-stable, above collapse temperature, is
presented.

1. Systems of Particles Interacting via Two Body Potentials of Positive Type

In this paper we study classical and quantum continuous systems in thermal
equilibrium. These systems consist of particles the interactions among which are
described by two body potentials of positive type. We are interested in proving
the existence of the thermodynamic limit of the pressure and the Gibbs equilibrium
states in the grand canonical ensemble. We also want to discuss certain properties
of the equilibrium states in the thermodynamic limit, such as clustering. Two
classes of systems are considered :
(C) Classical particles, and
(QM) Quantum mechanical, distinguishable particles, ("Boltzmann statistics").

The particles have internal degrees of freedom which we call (generalized)
charges. They are labelled by the vectors q of some measurable vector space Q.
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When the dimension of space is 3 we may think of a particle as being some ion
with a net charge εeIR (or εeZ), a dipole moment ε_eίR3 (or ε eS2, the unit sphere
in IR3) and possibly higher multipole moments, so that typically

In this situation q = (ε, ε, ε,...). The potential between a particle with genera-
lized charge q at position xeW and one with generalized charge q' at x'eW is
given by a function V(q,x;q\x') on (Q x Rv)*2 which we require to be of positive
type, i.e., given an arbitrary sequence of complex numbers {cJJL x and a sequence
of points in Q x Rv,{(^,χ.)}^=1,

Σ c ^ t ^ x , ;«,,*,)£(>. (1.2)

We set

(1.3)

7 = 1 7 = 1 J

Here λ is some finite, positive measure on Q with the property that

dλ(q) = dλ(-q), Λ

and V is required to satisfy > (1.4)

V(q,x;q',x') = - V(-q,x;q',x') = - Ffex; - q',x') J .

Condition (1.4) is a neutrality—or charge symmetry condition.
The potential for N particles at positions (x)N and with charges (q)N is given by

U((q)N9(x)N) = Σ V(qi9xt ;qpXj). (1.5)
l<i<j<N

Examples. (A) Q = U, q = charge, dAfe) = £{δfa - 1) +

(B) Q = U\ q = ε = dipole moment, dλ(ε) = δ(\ε\ - l)d\

V(ε,x;ε\x') = {2π)-vi2l^χ-χ\ε k){έ h)W{k)dvk,

with 0<\k\2W{k)eL\W).

This is a dipole potential.
Clearly there may also be dipole-monopole potentials, (when V = W), and

we can accommodate potentials with infrared singularities such as the two dimen-
sional Coulomb potential [6], so that e.g. V{k) > 0,/or k Φ 0 only.

The grand canonical partition function for the classical system in a compact
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region A c W is defined by

SΛ/U)= Σ ^ [dλ(q)N μ(x)Ne~l>v^'^\ (1.6)

with 0 < z < o o , 0 < / ? < o o , and the term corresponding to N = 0 is defined to
be = 1. The pressure of the system in the region A is given by

1

and the correlation functions are defined by

Γ °° zM

• ^dλ(q')M ^(xV^^^^^'^^^J ί1-8)

We shall prove

Theorem C. Assume that supjdλ(q)eaV{q>x;q>x) < oo Jor all oc > 0.

Then, for arbitrary /? > 0, z > 0 and an arbitrary sequence of compact regions
{A} increasing to Uv,

(1) if V is translation invariant p{β,z) = lim pΛ(β,z) exists and is independent of the

sequence chosen, and p(β,z) has the standard thermodynamic properties of the
pressure.

(2) p(β,z',(q)N(x)N)=lim pΛ(β,z;{q)N,(x)N)

exists, for all N = 0,1,2, — It is monotone increasing in z and λ and is bounded
by

(β/2)ftV(qj,xJiqJ,Xj)
zNe J=1 '

for all z > 0.
Results of the type of Theorem C have earlier been proven for a large variety

of systems under various conditions, [25]. The existence and shape independence
of the thermodynamic limit for the pressure has already been demonstrated for a
large class of potentials of not too long range; see [25] and Refs. given there; for
results concerning the two dimensional Yukawa and Coulomb gas, see [6]. Corre-
lation functions for systems with potentials of not too long range at small z and
β have also been constructed; see [25] and Refs. given there. For the two dimen-
sional Yukawa gas above collapse temperature these results were proven in [6,8],
for the Coulomb gas in [24].

The novel aspect of Theorem C is that it does not require any restrictions on
the range of V or on the values of z > 0 and β > 0. The thermodynamic limits of
pressure and correlation functions claimed to exist in Theorem C are shape
independent and have all the symmetries of the potential V. Theorem C is an
existence theorem for systems as little explored as the classical dipole gas.
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To prove Theorem C we make use of functional integrals as in [6] and apply
some generalization of the correlation inequalities of [24]. Correlation inequalities
were first applied in [6] to prove the existence of the thermodynamic limit of the
correlation functions of the two dimensional Yukawa gas. Some extensions were
presented in [8]. But the most useful inequalities were discovered in [24].

In order to extend Theorem C to the quantum mechanical systems with distin-
guishable particles we use the conditional Wiener measure as in [12], in addition
to functional integrals of the sort applied in the classical case. This enables us to
prove the necessary correlation inequalities. We consider N distinguishable
particles with charges q19...,qN and masses m(q1\...,m(qN). The Hubert space
for these particles confined to a compact region A c Uv is defined by

N

π\= ® L2(Λ9<rxj). (1.9)

Let Af be the Laplacean in the variables x. with O-Dirichlet data at the bound-
ary dΛ of A. The Hamiltonian for these particles is given by

N AΛ

HN

Λ((q)N) = ~ Σ W~h + U((4)N>(X)N), (1.10)

with 0 < m = inf m(q) < supm(q) = m < oo,and m(q) — m( — q). (1.4)

We also assume that

sup sup V{q,x;q,x) < oo. (1.11)
qeQ xeUv

In this case i/^((g)N) is essentially selfadjoint on a natural dense domain in
Jf^[, for all (q)NeQN. Moreover exp[ — βHΛ

τ((q)N)'] is trace class, for bounded,
open A and β > 0.

Let Pj((«)N;(x)N,(x%) denote the kernel of e x p [ - βHN

Λ((q)N)l For β>0,
it is well defined, positive and continuous in (x)N and (x')N. Thus we may define

As usual, the grand canonical partition function is defined by

ΞΛ(M = Σ £i ί dλiq^Ίτ^e-O"^), (1.13)

with the term corresponding to JV = 0 set = 1. The continuity of Pβ

Λ((q)N l(x)N9

(x%) in a neighborhood of {x)N = (x% and (1.12) permit us to rewrite ΞΛ(β,z)
as follows:

ΞΛ(M = Σ 4j ί dλ(q)N f d(x)NrA(q)N,(x)N). (1.14)

The pressure is still given by (1.7), i.e.

= XlogΞJβ,z), (1.15)
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and the (particle-) density correlation functions for the system in the region A by

• J dλ(q')M J d(x^((«M«V(*M*#)M) (1.16)
QM ΛM J

In Appendix 1 we introduce the correlation—and imaginary time ("tempera-
ture ordered") Green's functions (ITGF's) for these quantum mechanical systems
and indicate how to construct their thermodynamic limit, using methods developed
in Sections 3 and 4.

Next, we briefly recall definition and properties of conditional Wiener measures
[22,12]. Let

Ω= x Rv

τ,

where Mζ is a copy of the one point compactification of Uv. Clearly Ω is a compact
Hausdorff space with σ-algebra the Borel sets. It serves as a measure space on
which the conditional Wiener measure Prβ

Λ(q,x,y;dω) can be defined as a σ-addi-
tive, finite measure. This is the path space measure for the Wiener process with
transition function Qxp[tAΛ/2m(q)~] conditioned on the set of paths in Ω with
ω(τ = 0) = xeA,ω(τ = β) = ye A. We set

N

Prβ

Λ((q)N,(x)N,(x% ;d(ω)N) = Π ^Λ^PXPX'J \dω). (1.17)

Applying the Feynman-Kac formula one sees that

β

— \ dτU((q)N,(ω(τ))N) (\ io\

•go \LΛ°)

Combining (1.15), (1.16) and (1.18) with functional integrals expressing
β

e x P [ ~ §dτU((q)N,(ω(τ))N)] and an extension of the correlation inequalities of
o

[24] we shall be able to prove

Theorem QM. Theorem C is true for the pressure (see (1.15)) and the density
correlation functions (see (1.16)) of the quantum mechanical system with Boltzmann
statistics and two body potential V(q,x;q\x'\ except that the upper bound is now
given by

f2πmY2\N Γβ «
Ά ~ηr e x P o Σ
V β ) ) l2j=i

Remarks. (1) In Appendix 1, Theorem QM is extended to the correlation functions
and the ITGF's of the quantum mechanical systems defined above. The results of
[26] then tell us that from the ITGF's a unique KMS state for the infinite quantum
mechanical system can be reconstructed by analytic continuation in the time
variables to the real axis.
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(2) Extensions of Theorem QM to systems with kinetic energies that depend
in a non-trivial way on the generalized charges are possible, provided the kinetic
energy of one particle is still the generator of a transition function for a Markov
process, so that a generalized form of the Feynman-Kac formula (1.18) applies.
(3) For previous constructions of the thermodynamic limit of the pressure see
[25] and Refs. given there, and [21] for the case of the Coulomb (matter) system
in three dimensions.

Existence theorems for the correlation functions and ITGF's of quantum
mechanical systems with correct (Fermi and (or) Bose) statistics have previously
been obtained for various classes of short range potentials and small z and β in
[12,3]. In particular, the matter system in the plasma phase (small z and β) with
Coulomb—replaced by Yukawa-potentials has been treated in [3]. In a subse-
quent article we prove such a result for two component systems with Bose-Einstein
statistics and two body potentials of positive type at all values of z and β at which
the systems are stable.
(4) More detailed properties of the pressure (all standard thermodynamic pro-
perties) and the correlation functions (monotonicity properties in z and β) in the
thermodynamic limit constructed in Theorems C and QM are studied in Sections
4 and 5. In particular, we obtain cluster properties of the Gibbs equilibrium state
in the thermodynamic limit for a certain class of potentials. We sketch extensions
of our results to potentials with logarithmic singularities at | x — x' | = 0 [6] and
prove the existence of the thermodynamic limit of the pressure for potentials that
include positive hard cores.

2. Statistical Mechanics and Gaussian Integrals

2.1. {Formal) Gaussian Integrals

In this section we briefly recall a by now well known connection between classical
statistical mechanics and Gaussian integrals.1 Our purpose is to express
exp[ - βU((q)N,(x)N)~] in terms of a Gaussian integral in case U((q)N,(x)N) is given
by (1.5). This then leads to expressions for all the correlation functions in terms
of functional integrals. In the classical case this framework has been discussed
in detail in [1, 6, 29].

Let the potential V be some function o n ( β x (Rv)x2 of positive type satisfying
conditions (1.2) and (1.4).

We define a Hubert space J"f = L2{Q x W,dλ(q)dvx) and choose a selfadjoint
operator H on Jf7 with H> 1 and such that, for some n< co,H~n is Hilbert-
Schmidt. We let Jfk be (the completion of) D{Hk/2) in the norm || Hkl2f \Jetf,
k = ... - 2, - 1,0,1,2,.... Then Sf denotes all real functions in jf°° and Sf' all
real elements of j f ~°° ίf is a nuclear space. Vectors in Sf are denoted by/,#,...
and vectors in SP by φ, ψ, χ,.... Let

/). (2.1)

1 See "Note Added" and Ref. [29]
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We choose H such that £f is in the quadratic form domain of V9 and V is conti-
nuous on Sf x £f9 hence on £f®£f9 (by nuclearity).

Consider now the functional

ZF(/) = e ~ α / 2 ) < / ' F / > o n ^ . (2.2)

This is the characteristic functional of a Gaussian measure dμv with mean 0 and
covariance V and with support contained in SP (Minlos' theorem).

For φe£f'9fe£f9 let φ(f) denote the value oϊφatf. We define Wick ordering by

(2.3)

The expectation with respect to dμv is defined by

(F}v=μμv(φ)F(φ), {2A)

for arbitrary F£l}ψ>\dμv\
Using (2.2)-(2.4) we get

) (2.5)
j=ί I

Assuming temporarily that V(q,x;q'9x') is continuous in (q,x) and (q',xf) we
may let fj tend to β1/2δ(qj Xj)J = 1,..., n, and obtain

(2.6)

If we impose condition (1.4), i.e.

V(q,x;q\xf) =-V{- q,x;q\xf) = - V(q9x; - q\x')

we conclude that

Π :e" 1 / 2 ' ^-^ :\ =expΓ- Σ βV(
j=l / V L l<i<j<«

(2.7)

with ε̂  = + 1, for all j = 1,..., n.
We define

Cβ

Λ = J dλ{q)\dvx : e^ 1 / 2 φ ( 4 ' Λ ) : (2.8)
Q Λ

Using (2.7) and the symmetry dλ(q) = d/ί( — q)—see (1.4)—we see that

Cβ

Λ = SdMq)i<rx icσsβWφiqtX):, (2.9)

μv—almost every where.
Note that

2(-e + e .) ( 2 1 0 )

= eβ/2 *'<«'*'•«'*> cos [βί/2φ(q,x)~] = : cos β1/2φ(q,x):
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From definition (1.6) of ΞJβ,z)9 (2.6) and (2.8)-(2.10) we conclude that

ΞΛ(β> z ) = Σ —} < [ C Λ \ N >V = < eZCβyi >v > ( 2 1!)

and from (1.8), (2.6) and (2.8)-(2.10)

_ / N z c \

' y (2.12)

j=l

In order to extend these formulas to the quantum case we combine Gaussian
integrals with the Wiener measure. Let

V(ς,x,τ;«',x\τ') = V(q,x;q\x')δ(τ - τ') (2.13)

where τ and τ' are in the interval [0,/?] (conveniently viewed as a circle of circum-
ference β).

Let JF = L2(Q x Rv x [O9P},dMq)d>xdτ). As above we introduce H,{jfk}keZ,
y and «̂ " and define a Gaussian measure dμy on ̂  with mean 0 and covariance
V, the characteristic functional of which is given by

Then

where Wick ordering is given by (2.3) with Zv replaced by Z v .
Foτf09x,τ) = δ(^ - ^)δ(x - ω^τ)) we obtain

= e

We set

(τ),τ): (2.15)
Q Λ Ω 0

Using (1.14) and (1.18) and repeating the arguments (2.8) — (2.10) given in the
classical case we find

ΞΛ(β,z) = ie^\ (2.16)

(which is seen by expanding the exponential in a power series and applying (2.15),
(2.14), (1.18) and (1.14)).

Moreover the density correlation functions are given by

W S , , , , 1 ldτφ(9J"°Aτ)τ) <*) (2.17)
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Similar, somewhat more complicated expression for all the correlation functions
and the ITGF's are derived in Appendix 1.

2.2. Estimates

In this section we propose to justify the somewhat formal expressions for the
partition function and the correlation functions found in Section 2.1. This is done
by means of some very simple estimates. Indeed, the following are the main
analytical estimates of this paper: As functions on 9"

\. iaφ(q,x) . I _ (a2/2)V(q,x;q,x)

' *' ' (2.18)

and
β

. ia\dτφ{q,ω(τ),τ) .

I : e ° :|
β

(«2/2)J dτV(q,ω(τ);q,ω(τ))

<e ° (2.19)
1 β

<- \dτeiβa2l2)V{q'ωiτy'q'ωiτ)) (2 20)
βo

by Jensen's inequality.
Since we have assumed that
Ka = sup$dλ(q)e(a/2)Viq>X;q>x)

xeUv Q

be finite, for all α > 0, we conclude that in the classical case

\Cβ

Λ\ < \dλ{q)\dvx\ :cosβί/2φ(q,x):\< $d
Q A A Q

<X^|yl|<oo,and (2.21)

in the quantum case

\Cβ

Λ\ < $dλ(q)μvx$Pvβ

Λ(q,x,x;dω)\ :cos Jdτφfa,ω(τ),τ):|
Q A Ω 0

β

sup jPrβ

Λ(q9x,x;dω) \$dλ(q)e «
I qeQ Ω ) Q

J dvx sup J Pr^ v(q9 x, x dω)Kβ (2.22)
A qeQ Ω

(123)

inequality (2.22) follows from inequality (2.20) and the simple fact that

Pτβ

Λ(q,x,y;dω) < Pr$Jiq,x,y;dω) (2.24)
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moreover

Ω

which, for x = y, gives (2.23).

We set z = ζ, in the classical case, and z = ζl --— ) , in the quantum case.
V P /

Then

|S^(/5,z)| < φ z C * | > F < < e l R e z C ^ > F < e'Re W ' , (2.25)

and this extends to the quantum case; see (2.6) and (2.23).
We summarize our estimates in

Theorem 2.1. Under the hypotheses of Theorems C and QM the following estimates
hold:
(1) For all complex z

(2) In the classical case,

for all real z and β>0.
(3) In the quantum mechanical case, and for all real z and β>0

(1/2) Σ J V(qj,ωj(τ),qj,ωj(τ))dτ

^ I H « (ββ)Σ Sup V(qj,x;qj,x)

<\ζ\Ne ^ *

The proof of (2) follows directly from (1), (2.12) and (2.18), and the one of (3) from
(1), (2.17), (2.20) and (2.24).

Remarks. 1. This theorem justifies all formulas of Section 2.1 completely.
2. Theorem 2.1, (1) immediately extends to the quantum mechanical system with
two body potential V and Fermi statistics. In the case of Bose statistics it remains
true for small enough \z\, depending on Kβ. These results follow from the classical
result by means of the Golden-Thompson inequality, as explained in [6, Section 4].
3. In Appendix 1 we extend the uniform bounds of Theorem 2.1, (3) to arbitary
correlation functions and ITGF's.
4. In a subsequent article the methods of Section 2 are extended to quantum
mechanical systems with Fermi—or Bose-Einstein statistics, for all positive
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values of z and β for which stability holds; see Remark 2. Theorem 2.1, (3) and this
result appear to be new.
5. The bounds of Theorem 2.1 are very crude. In certain situations much finer
estimates can be obtained; see [3, 6, 25].

3. Conditioning—and Correlation Inequalities

Let jf? be a real Hubert space, and let C be a bounded positive quadrative form on
Jf. Let φ be the (unique) Gaussian process with mean 0 and covariance C indexed
by 3^. The associated Gaussian measure with mean 0 and covariance C (defined
on some measure space (<?',Σ)) is denoted dμc; (see e.g. [23]).

Let (X,S) be some measure space and dp a positive, finite measure on X.
We choose a measurable mapping

x I >lxe^ (3.1)

from X to tf such that J dp(x)e(1/2)C{lχJx) is finite.
x

A partition function is defined by

Ξ(C,p) = Ξ(p) = $dμc(φ)Qχp{μP(x)cos φ(lχ)}. (3.2)

For FeL\^\dμcl we set
i μ μ } . (3.3)

In the following, m, n,l,g,... always denote vectors in Jf.
The main result of Section 3 is

Theorem 3.1. (1) Let pί and p2 be positive, finite measures on (X,S). Then

(2) (Conditioning) Let 0<C1<C2 and define

dp^2{x) = e ι X Xi x dpyx).

Then

Ξ(C19p)£Ξ(C29p12).

(3) (Inverse conditioning). Let 0<Cί<C2.
Then

Ξ(C
2
,p)<Ξ(C

1
,p)

I k \

(4) ( Y\ cos φ(m) ) > 0
\j=i

 J
 Ip

I k i \ I k \ / i \

(5) ( Yl cos φ(m ) [I cos φ(Πj) ) - ( Π cos φ(m^ ) ( Y\ cos </>(«;) ) > 0.
\j=l j=l / p \j=ί / p\j=l I p

Remarks. Inequality (1) appears to be new; a slightly more general version of
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the conditioning inequality (2) has been proven in [6] and is a consequence of a
general observation in [14]. A proof of the inverse conditioningjnequality (3) has
been given in [6], but it has probably been known by various people for a long
time. Inequality (4) is trivial. Inequality (5) is a somewhat more general version
of Park's inequality, [24]. An extension of inequality (5) is presented in [9] and
applied there to construct a Euclidean invariant infinite volume limit for the
"bosonized" form [4, 10] of the Yukawa model and massive QED in two space-
time dimensions.

Proof. The basic ideas (due to Ginibre [13]) of the proof of Theorem 3.1 are
1. Duplicate variables, [13]
2. trigonometric identities [13], namely
(3.a) em = cos α + i sin α
(3.b) cos(α ± β) = cos α cos β + sin a sin β

(3.c) cos α + cos β = 2

/ (oi-β

cos — — cos — —

( β\
sin — ~ - sin

(3.d) cos α cos β = ̂ [cos(α + β) + cos(α - β)~]

u /j\fc / k \

(3.e) Π
 cos α

; = U Σ
 cos
 Σ ψj b

7=1 \
Δ
/ {ej} \j=ί /

We note that (3.e) follows from cos α = cos( — α) and (3.d), by induction.

Proof of (1). Let φί9φ2 be two independent, equivalent Gaussian processes with
mean 0 and covariance C. Then

Ξ(Pί + p2) - S(Pl)Ξ(p2) =
. Γe$dρ2(x) cos φι(lx) _ e$dp2(x)cos φ2(lχ)~\ (^ ^\

(This is the duplicate variable method of [13], see also [24]).
Let φ = (φ\,φ2) be the Gaussian process with mean 0 and co variance C given

by C.j = δi}C, so that

dμc(φ) = dμc(φ1)dμc(φ2).

Clearly, RTCR = C, for all orthogonal transformations R of "field space"
R2. Hence

dμS) = dμc(R$), for all ReO(2). (3.5)
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Φ =
V2 (3.6)

This is an orthogonal transformation of field space, and therefore

dμc{φί)dμc(φ2) = dμc(ψ)dμc{χ).

The inverse of (3.6) is given by

V2'
Let

xdx)

(3.7)

(3.8)

(3.9)

Using (3.4) and (3.7)-(3.9) we obtain

Ξ(ρ1 + ρ2)-Ξ(pί)Ξ(p2) = \d,

.ejdPι(χ) sin ψx sin χ» 2 sinh{$dp2(x) sin ψx sin χ x ) .

Expanding the exponentials and the hyperbolic sine in power series we get

Ξ(ρί + P2) - Ξ(Pl)Ξ(p2) = 2 "

7 = 1

'$dμc(ψ)dμc(χ) f ] (cos φxj cos χχj)

Π2 2ίt3+l

• Π (sin φχlj sin χx )) f ] (sin ψχy sin χ x y ) . (3.10)

The dμc(\j/)dμc{χ)—integral on the r.h.s. of (3.10) is

«1 «2 2«3 + 1

M Π c o s ^ i Π s i n ^ Π sinιA^

and this completes the proof of (1).

Proof of (2). Let φ1/2 be the Gaussian process with mean 0 and covariance C 1 / 2

and φ\ the one with mean 0 and covariance C2 — Cί>0. Then

+ </>;) = \dμC2(φ2)F{φ2) (3.11)

for all dμC2—integrable functions F. To see this, it suffices to take F(φ) = exp iφ(g\
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, for which (3.11) is obvious. Thus

Ξ(C2,Pί2) = \dμC2{φ2)e^^ cos^<« = μμ^φjdμ^^iφ',) exp [jdPl2(x)

• {cos ΦSX) cos φ\{lx) - sin ΦSX) sin φ\{lx)} ]

> Idμc^φJ exp [ίdiUC2_ClW>Ί)ί</p12(x)

• {cos ^(ZJcos Φ'$x) ~ sin < W > n φ\{QU (3.12)

= Ξ(Cί,ρ), which is (2).

The equation before (3.12) follows from (3.11) and (3.b), and inequality (3.12)
is a consequence of Jensen's inequality.

For the proof of (3) see Corollary 3.2, or [6].

Proof of (4). Obviously it suffices to show that

oo J n k n

Σ ~~% Π ίdp(Xj)$dμc(Φ) Π c o s Φ(mi) Π c o s Φ(K) — ̂

Using (3.e) we see that this follows from

jdμc(φ) cos φ(h) = e-{ί/2Hh>ch) > 0,

ϊor all heJf;(h,Ch) = C(hM

Proof of (5). By (3.e) and the linearity of <—>p it suffices to show

<cos φ(m)cos φ(n)>p - (cos φ(m))p(cos φ(n))p > 0. (3.13)

Using duplicate variables the l.h.s. of (3.13) can be written as

• [cos φ^n) - cos φ2(ή)~\ exp Jdp(x)(cos φ^lj + cos

^ c o s ^ + s m ^ s i n ^ l 2 s i n ^ s i n ^ | (3.14)

J = l

This equation follows by inserting (3.7)—(3.8) and applying (3.b) to {....},
(3.c) to [....] and to (....) and expanding the exponential. As in the proof of (1)
one sees that each term in the series on the r.h.s. of (3.14) is positive. Q.E.D

Remark. Using (3.a) and the equation dμc(φ) = dμc( — φ\ we get

^ - ° ' (3.15)
cosφ(n)> - (eιφ{m)}β<cosφ(n)}p > 0;
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this is essentially the form of the inequalities found in [24].
We emphasize that most of the ideas used in the proof of Theorem 3.1 are

already in Ginibre's basic paper [13]; our applications are however new. Finally
we note that Theorem 3.1,(1) can also be obtained directly from Theorem 3.1,(5)
by expanding the exponential!

Corollary 3.2. For p1 <ρ2 and C^^C^1 (or, equivalently, C2<C1),

(1) ( Π cos0(mΛCijPi < ( Π c o s # ^ ) V .
\j=l / \j=l /

(2) <#n) 2 > C 2 ί P 2 < <Φ(m)2}CuPί < faCM

(3) Moreover, Ξ(C1,ρί)<Ξ(C2,p2);(for p1 = p2 = p this is Theorem 3.1, (3)).

Proof. From Theorem 3.1, (5) we get

-2 { < (1 - cos εφ(m)) cos φ(n) >ps

- < 1 - cos sφ(m)>p <cos φ(ή)>p} < 0.

As ε tends to 0 this yields

<(/>(m)2cos(/>(n)>p - <0(m)2>p<cos(/>(n)>p < 0 (3.16)

and, by repeating the argument,

iφ{m)2φ(ή)2yp - <φ(m)2yp(φ(n)2yp > 0. (3.17)

Similar inequalities with φ(m)2 replaced by (smφ(m))2 follow by using

(sin φ{m))2 = { - \ cos φ(2m).

We shall apply (3.16) and (3.17) at several places.

Proof of (1). We first show that for px < p2

k \ I k

cosφ(m,.) ) P 1 < ( Π cosφ(m,) ) β 2 . (3.18)
j=i I \j=i I

By (3.e) it suffices to show this for k = 1, m1 = m.

Let ps = (1 - s)p1 + sρ2, se[0,1]. Then

— <cos # n ) > p s = \d(ρ2 - p1)(x)[<cos φ(m) cos φ(lx)>Ps

- <cos0(m)> p s <cos0(g> p j > 0 , by Theorem 3.1,(5). (3.19)

Upon integrating (3.19) we get (3.18).

Next, we prove that, for C " 1 < C~1(i.e.C2 < C±\

<cosφ(m)) C u p < <cos(/>(m)>C2p. (3.20)

We temporarily assume that C2

X — C^1 is a finite rank operator on J-f.
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Let hk be the eigen-vector of C^1 — C±1 corresponding to an eigen-value λk > 0,
fc=l,...,iV<oo.

Let Cs = ((1 - s)C; 1 + sCj ιyι, and

- S-{φ,{C~2

 1 - C; ̂  J

Then

dμCs(Φ) = z;h

= Z~1e k=i dμCι(φ). (3.21)

Therefore

— {cosφ(m)}Cs>p= -- X λk{(cosφ(m)φ(hk)
2}CsP

-<cosφ(m)yCs>p<φ(hk)
2}CsJ

>0, by (3.16). (3.22)

Integration of (3.22) gives (3.20). The general case, i.e. C^1 -C^1 an arbitrary
positive, closed quadratic form, follows by a limiting argument. This completes
the proof of (1).

Proof of (2). This follows from (1) by using

φ(m)2 = lim (1/ε2) [1 - cos ε0(m)]. Note that
εiO

C^m) = (m, Cjn) = (φ(m)2 > C l f P = 0

We remark that (2) remains true if we replace φ(m)2 by (sin0(m))2 and (m,
Cγm) by ^[1 — exp( —4(m,C1m))].

Proof of (3). Clearly Ξ(C,px) <Ξ(C,p2) follows from Theorem 3.1, (1), since

Let Cs, Zs and dμCs be defined as in (3.21). Then

This is seen by expanding the exponential, applying (3.e) and using (3.16). Q.E.D.

Remarks. Theorems C and QM announced in Section 1 are more or less immediate
consequences of the bounds of Section 2.2 and Corollary 3.2. Moreover Corollary
3.2 yields monotonicity in the activity z (and in the measure dλ) and monotonicity
properties in the temperature β'1 for the correlation functions and certain
susceptibilities; see Section 4.2. This is useful in the discussion of critical properties
of these gases.
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4. Thermodynamic Limit and Cluster Properties

4.1. Proofs of Theorems C and QM

Proof of Theorem C, (7). In order to apply the inequalities of Section 3 to the
proof of Theorem C we must choose

* = β χ R V > j (4.1)
and to lx (defined in (3.1)) there corresponds δqδx. )

Let g'Λ(q9x) = expl^V(q,x;q,x)\Λ(x\ (4.2)

(with χΛ the characteristic function of A) and gβ = gβ

Λ= Rv. We define

dplj2 = zgβ

Λi/2(q,x)dλ(q)dvx,z > 0. (4.3)

d{px + p2) = zgβ

ΛiκjΛ2(q,x)dλ(q)dvx.

We now recall that
β ) l (4.4)

See Equations (2.3), (2.10), Section 2.1.

From Equation (2.11), Section 2.1, (4.4) and Theorem 3.1, (1) we obtain

ΞΛl^Λl(β,^ΞΛi(β,z)ΞΛ2(β,z), (4.5)

hence

l°&ΞAluΛ2(β9z) > log3Λl(β,z) + \ogΞΛ2(β,z). (4.6)
This inequality asserts superadditίvίty of logΞΛ(β,z) in Λ. Inequality (2.25)

and the trivial inequality ΞΛ(β,z) > 1 show that

I—rlog ΞA(β, z) is bounded uniformly

in/1.
Standard facts about superadditive functions (see e.g. [25]) show now that if V

is translation invariant

lim γ—ΛogΞΛ{β,z)= lim pΛ(β9z)

exists if A tends to IRV in the sense of van Hove, [25].
We also claim that the limit lim pΛ(β,z) exists and is independent of {A},

ΛJUV

whenever Λt(Rv, by inclusion. This is seen by considering

γPΛiβ,z) = ̂ -Λdλ{qWxpΛ{β,z;q,x) > 0. (4.7)
0 2 \Λ\Q Λ
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We shall prove shortly that, for all x,z > 0 and β > 0

lim ρΛ(β,z;q,x) = supρΛ(β,z;q,x)
Λ t l R v A

exists and is independent of {A} if A ΐ Uv by inclusion. A standard argument [14]
shows then that the same is true for (d/dz)pΛ(β,z% for all z < oo, and hence, since

0

also for pA(β9z).
As in [6,25] one sees that pΛ(β,z) is convex in z and /?, and this remains true

in the limit A = IRV. Theorem 3.1,(1) (or, alternatively, (4.7) and convexity in z)
also shows that

pΛ(β9Zl + z2) > pΛ{β,zγ) + pΛ(β9z2). (4.8)

It is easy to see that

ίl2 , (4.9)

where < — } v is the expectation with respect to the Gaussian measure dμv

introduced in Section 2.1. (It suffices to prove (4.9) for F(φ) = eiφ(g\ge^, for which
it is obvious).

Equations (4.9), (4.4) and Theorem 3.1,(2) show that

pΛ(β,z) is monotone increasing in β (4.10)

(this and convexity show that pΛ(β,z) is also convex in β~1 = T).
This completes the proof of Theorem C, (1).

Proof of Theorem C, (2). The proof is given in four steps.
(1) Express the correlation functions pΛ(β,z;(q)N,(x)N)in terms of the functional
integrals given in formula (2.12) of Section 2.1.
(2) In order to apply the inequalities of Theorem 3.1,(5) and Corollary 3.2,(1)
we must choose X = Q x Uv and

dp = zgβ

Λ(q,x)dλ(q)dvx.

We set CX = C2= V9dp1/2= zgΛί/2(q,x)dλ(q)dvx. If Λ± <Ξ A2 then P l < p2.
(3) Applying now Corollary 3.2,(1), resp. (3.15), we see that pΛ(β,z;(q)N,(x)N) is
monotone increasing in A (and also in z).

(4) Convergence, as A T1RV, now follows from the uniform bounds of Theorem
2.1, (2), Section 2.2.

By now standard arguments of [14] show that the limiting correlation functions
have the same symmetry properties as the potential V. Q.E.D.

Remark. The kind of reasoning employed in the proof of Theorem C, (2) has been
introduced in the context of Euclidean field theory in [23, 14] and applied in a
context similar to the above one in [6]. Presumably it goes back to Griffiths.

Proof of Theorem QM. To prove that the thermodynamic limit of the pressure
exists and has the standard properties we repeat the arguments given in the proof
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of Theorem C, (1), but we now define

X = ΩxQxU\

where Ω is the (Wiener) path space. We set

R, χ (1/2)1 V(q,ω(τ);q,ω(τ))dτ , ,

gβ

Λ(ω,q,x) = e ° χjx)
dp = dpΛ = zgβ

Λ(ω,q,x) Prβ

Λ(q,x,x;dω)dλ(q)dvx, z > 0.

Define

ΩΛ = {ω£Ω:ω(τ)eΛ,τe[0,β~]}.

Then

Prβ

Λ(q,x,x;dω) = χΩA(ω) Frβ(q,x,x;dω), (4.10)

with P r ' = Pr£ = R V see [22, 12].
From (4.10) we see that Prβ

Λ(q,x,x;dω) is monotone increasing in Λ9 for all
q and x. Moreover, for Aγ and Λ2 open sets whose closures are disjoint

XΩΛluΛ2

 = ZaΛι + XaΛ2> (4.H)

on the support ofPvβ(q,x,x;dω\ a well known decoupling property of Dirichlet
boundary conditions.

From (4.10) and (4.11) we get

Lemma 4.1. (1) For Λ1,Λ2 as in (4.11),

dpΛluΛ2 = dPΛ1+dpΛ2.

(2) ForΛί <=Λ2

dpΛi<dpΛi.

(Note that, in the present context, the distribution lx introduced in (3.1) is
defined to be

Given Lemma 4.1 and (4.11), the rest of the proof of Theorem QM is essentially
identical to the one of Theorem C, (with the exception that the discussion of the
properties of p(β, z) as a function of β is different see [25,21]). Q.E.D.

For more details concerning the quantum case see Appendix 1, and [21, 3,9].

4.2. Symmetry—and Cluster Properties of Correlation Functions

Let <—}Λ(β,z) denote the equilibrium expectation of the classical, resp. the quan-
tum mechanical systems considered in Theorems C and QM confined to a region Λ,
at inverse temperature β and activity z. In the classical case,

PΛ(β,z;(q)NAx)N) = ( ft z:eiβl/2*^ : ) (β,z) (4.12)

see Equation (2.12), and a similar identity holds in the quantum case: Equation
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(2.17). (The expectation < — }Λ(β,z) is given by a probability measure on the dual
Sf' of a nuclear space Sf see Section 2).

Proposition 4.2. For a

exists. The limit is the characteristic functional of a probability measure on Sf\ so
that <F>(β,z) is defined for any measurable function F on 9?l.

Proof Clearly \(eiφif)>Λ(β,z)\<l.
Using Theorem 3.1, (5), resp. (3.15) one shows as in the proof of Theorem C (QM),
(2) that

is monotone increasing in Λ. Hence the limit exists and is shape independent.

Moreover it is obviously a functional of positive type on 5^, and (eίφ(O)}(β,z) =

Λψ

Finally

uniformly in A. This is the inequality of Corollary 3.2, (2). Hence, (eiφif)}(β,z)
is continuous in/on y , (a standard argument). The proof is completed by applying
Minlos' theorem.

By (4.12) and Proposition 4.2 the classical correlation functions in the thermo-
dynamic limit are given by

ftf,z;(q)N9(x)N) =(f\ z:eiβl/2φ^ : J(β9z) (4.13)

and the quantum mechanical density correlation functions by

β(β9z;(q)N9(x)N) = ( Π Amqj,xj,xj;dωj) .J*"**"*™ \ β Λ (4.14)
\j=l /

See (2.17). Let ξ = x9 in the classical case, and ξ = (x, τ), in the quantum mechani-
cal case. The expectation

) (4.15)

is called "effective potential function".
We define a susceptibility χ by

χ{q^z)= \im\B\-1 f dξdξXφ(q,ξ)φ(q9ξ')}(β,z). (4.16)
B->oo B x β

Theorem 4.3. Under the hypotheses of Theorems C, resp. QM the following is true:
(1) The expectation <—)(β,z) (in particular, all correlation functions in the thermo-
dynamic limit) has all the symmetry properties of the potential V: If Vis translation-
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invariant, rotation-invariant, (resp.-covariant,...) then so is <—)(β,z). The correla-
tion functions are monotone increasing in the activity z and in the measure dλ.
(2) The effective potential function (φ(f)φ(f)y(β,z) is monotone decreasing in z
and λ, and

for arbitrary complex-valued f In particular

χ(q,β,z)<χ(q,β,0).

Proof The first part of (1) follows from monotonicity of (eίφif)yΛ(β,z) in Λ, as
already noted in the proof of Theorem C, (2): see [14]. The second part of (1) follows
from Corollary 3.2, (1) and (3.15). Finally, (2) is Corollary 3.2, (2). Q.E.D.

Remark. The effective potential function (resp. the susceptibility) is often a reliable
measure for the rate of decay of arbitrary correlations (see e.g. Theorem 4.4 below).
In such a case the upper bound of Theorem 4.3 can often be used to show that there
is no long range order ("absence of phase transitions").

Next we consider a classical, neutral two-component gas such as introduced
in Section 1, Example (A):

V(q,x;q\x') ==

with $<V{k)eL\W). (4.17)

We define Γ(x) = - (2π)~ v / 2jjk xV(ky xdvk, (in the distribution sense).

Theorem 4.4. Suppose that Γ(x) > 0, for xψQ (in the distribution sense).

Then the expectation < — >(β,z) is clustering. In particular,

lim p(β9z;(q)N,x19...9xM,xM + 1+a,...,xN + a)
|α|-*oo

= p{β,z;(q1,x1),...,(qM,xM))p(β,z;(qM+1,xM+1\...,(qN,xN)).

Proof There is a minor cheat in the statement of Theorem 4.4: What we really
need is that < — >(/?,z) satisfies the FKG correlation inequalities [5,14]. These
inequalities are usually proven for classical lattice systems. In the case of a classical,
neutral two-component lattice gas (with configuration space εZ v ,ε>0, rather
than IRV) the hypotheses of Theorem 4.4 guarantee that <—>(/?,z) satisfies the
FKG inequalities [14].

Next, one must show that the lattice expectations converge, as εiO, [14]. For a
large class of potentials V this "convergence of the lattice approximation" can be
checked; see e.g. [6,8]. The formal limiting condition on V guaranteeing that
<—}(β,z) satisfies the FKG inequalities is then just Γ(x) > 0, for x φ 0. Once the
FKG inequalities are proven for <—}(β,z\ a theorem due to Lebowitz [17] and
Simon [27] says that the expectation <—}(β,z) clusters if and only if the effective
potential function clusters. So we are left with showing

<0(O)0(x)>(i8,z)->O,as|x|->oo.
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By Theorem 4.3, (2)

for all/with/eL°°([Rv). Hence

0<<$(k)φ(-k))(β,z)<V(k),

in the sense of measurable functions. Together with (4.17) this implies that

By the Riemann-Lebesgue lemma,

tends to 0, as I x I -» oo.

Remarks. 1. Theorem 4.4 proves that in the sense that the expectation < — }(β,z)
is clustering (and hence is ergodic under translations) there are no phase transitions
in those gases that satisfy the hypotheses of Theorem 4.4. We conjecture that, for
these gases, < — )(A Z ) *s the only Gibbs equilibrium expectation in the thermo-
dynamic limit. A partial result in this direction may follow by adapting the methods
of [19,20,11], certainly for the lattice gases. Our conjecture ought to be true for all
the classical gases with two body potentials of positive type converging to 0,
as \x-x'\ -• oo which satisfy the neutrality condition (1.4).

2. Theorem 4.4 applies to the classical, neutral two-component Yukawa gas
in two dimensions studied in [6], for all β and z, besides a large class of lattice gases,
including lattice Coulomb gases in v > 3 dimensions [7], already mentioned in the
proof. These lattice gases are of considerable interest for the theory of higher order
phase transitions and gauge quantum field theories; see [7,9].

Next, suppose that the potential Fhas the property that

V(q,x;q,x) = v(q)

is independent of x.
We then define

dλβ(q) = e-(β/2)v(q)dλ(q).

Theorem 4.5. In addition to the hypotheses of Theorem C, resp. QM assume that,
in the definition of\—)>(β,z\ the measure dλ is replaced by dλβ. (This amounts to
undoing Wick order). Then β(\φ(f)\2y(β,z) is monotone increasing in β. In parti-
cular

β<φ(q,k)φ(q, - fc)>(j8,z) and βχ(q,β,z)

are monotone increasing in β.

Proof This follows immediately from identity (4.9) and Corollary 3.2, (2).

Q.E.D.

Remarks. The monotonicity properties of βχ(q,β,z) in β and z (see Theorem 4.3)
are useful in the theory of higher order phase transitions, in particular in the
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discussion of Debye screening [2] and its breakdown [7, 9] in Coulomb-type
lattice gases.

The following result, valid under the hypotheses of Theorem C, resp. QM, is
an inequality for an Ursell (connected) function "inverse" to the well known
Lebowitz inequality for Ising models [18].

Theorem 4.6. ("Inverse' Lebowitz Inequality). Let h((q)A ;(x)4) be some measurable
function on (Q xUv)x4 with the property that (Kf®f®f®f)> OJor all real,
measurable functions f on Q x Uv. Then

ί Π dλ(qi)d%h((q^ (x)4)( Π ΦiqpXj) V θ M > 0,
ί=l \j=l I

where <—}c(β,z) denotes the connected (truncated) expectation.
The proof of this theorem is sketched in Appendix 2. Although this inequality

can be used, in both case C and case QM, to derive upper bounds on (d/dβ) \_βχ(q,
jSjZ)]"1 and other quantities involving the effective potential function, it might
not be much more than a curiosity. Some applications of it are made in [9]. (Note
that first order perturbation theory in z predicts Theorem 4.6).

Remarks. In the case of lattice gases (W replaced by Zv) the limit z -» + oo is
of considerable interest, as it yields important, classical lattice spin systems. As
an example we mention that the z = + oo limit of the lattice Coulomb gas is the
dual Villain ("integer bed spring") model which in two dimensions is closely related
to the classical rotator model [16] and the abelian Higgs lattice gauge theory [7].
For these limiting systems all the correlation inequalities of Sections III and IV
and their consequences hold and provide information about the thermodynamic
limit and the critical behaviour of such lattice spin systems. In this connection it
is of interest to note that exponential Debye screening in the lattice Coulomb gas
breaks down, and χ(β,z) is infinite, for all those β for which the limiting dual Villain
model has infinite susceptibility: A consequence of Theorem 4.3, (2). See also [9].

5. Generalizations and Comments

In this section we sketch generalizations of the results of Sections 1-4. We content
ourselves with giving the main ideas only, omitting full details.

First, we consider a class of two body potentials of positive type satisfying a
Dirichlet type decoupling property and we add a positive potential to them. We
are interested in constructing the thermodynamic limit for the pressure. Let
V(q,x;q'9x

f) be a translation invariant two body potential of positive type. Let A be
an open region in Rv. We assume that we can impose Dirichlet type boundary condi-
tions on V :V -> VΛ9 with the property that VΛ still has all the properties of V
stated in Section 1 (positive type, neutrality condition (1.4), etc.) and, in addition,

VΛ{q9x;qf

9x
f) = 0 (5.1)

if x and x' are separated by dΛ; and

¥-'>¥/' (i.e. Vλ>VΛ) (5.2)

if dA => dΛ, (in the sense of quadratic forms). Let V+(x — x') be an additional, trans-
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lation invariant, positive potential (e.g. a hard core type potential), and set

V VΛ + V+. (5.3)

Let ΞΛ(β,z) denote the partition function of the (classical or quantum
mechanical) system of distinguishable particles confined to the region A, interact-
ing via two body potential J^ot>and with a self interaction^(V - VΛ)(qpx ;qj9Xj).
Finally pA(β, z) is the pressure of this system.

Theorem 5.1. If A^ Rv, in the sense of van Hove,

lim pΛ(β,z)^p(β,z)
Λ-+Mv

exists.

Remarks. Again no assumption on the range of V and V+ have to be made to prove
the existence of the limit of pΛ(β,z% as ΛW. However, in order to show that
ρ(j5,z)= lim pΛ(β,z)> 0 (i.e. p(β,z) is non-trival) an additional argument, not

ΛΪW

discussed here, is required. This yields restrictions on the range of V+, e.g. temper-
ing, [25]. Theorem 5.1 applies e.g. to the classical, two component Coulomb gas
in any number of dimensions, provided the particles have a hard core which makes
the system stable. (For the case of two dimensions see [6]). Theorem 5.1 is of some
interest, because it gives a construction of the thermodynamic limit of the pressure
even for systems with long range interactions that include positive potentials.
Such systems are expected to have phase transitions (formation of crystals, etc.)
which do not seem to occur in the systems considered in Sections 1-4, (see Theorem
4.4!). Another (possibly more satisfactory) version of Theorem 5.1 appears in [9],
where no use of Dirichlet boundary conditions is made.

Proof. First we recall the estimate

l<ΞΛ(β,z)<e^ΛK (5.4)

where z and ζ are positive, and Kβ is independent of A. The lower bound is trivial,
the upper bound is proven as follows: Clearly ΞΛ(β,z) increases if we set V+ = 0.
When V+ = 0 (5.4) is Theorem 2.1, (1) which is still true in this case, because we
have assumed VΛ to share all properties of V. Some standard arguments that we
do not reproduce here (see [25,21,15]) show that estimate (5.4) reduces the proof
of Theorem 5.1 to the following problem: Let A be an open cube and An = {x:

-xeΛ},n = 2,3,.... Show that
n

pAn(β,z) converges, as n -» oo. (5.5)

To prove this, we cover An with nv disjoint copies of A. The resulting open
set is denoted Άn. With Λn we associate the partition function Ξχn(β,z) of the
system in An which has the property that particles located in different copies of
A do not interact with each other. This means that

ΞΛ(β,z) = ΞΛ(β,zΓ. (5.6)
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«v

Let Uχn(m19...9mnV) denote the potential of £ m. particles with two body

potential V+ ,m. of which are located in the fh copy A. of the cube A, subject to
the restriction that all interactions between particles in different copies of A are
omitted; the total potential without this restriction is denoted U+(mί,... ,raπV).

Since V+ is positive, we have
+

e-U + (mi,...,mnv) < e-l/^(mi,...,mnv)^ /̂ j\

pointwise.
Furthermore,

f] Π
by Corollary 3.2, (1).

Hence

ΞΛβ,z)<ΞΆβ,z\ (5.9)

by (5.7), (2.3) and (5.8). Combination of (5.6) and (5.9) implies that pΛn(β,z) is mono-
tone decreasing in n, i.e. we have proven (5.5). Q.E.D.

Our last generalization concerns extending our construction of the
thermodynamic limit of the pressure to classical or quantum mechanical systems
of distinguishable particles interacting via translation invariant two body potentials
of positive type with logarithmic singularities at 0 distance. For simplicity we
only consider the case

where q{) = ± 1,

\V(x)\ < const, log Λ + 2 , (5.10)
Llxl J

and

VeL\U\dvx). (5.11)

For such potentials we prove some sort of stability (see [6]) at high enough
temperature.

Theorem 5.2; For the systems introduced above the thermodynamic limit of the
pressure (with boundary conditions as in Theorem C, resp. QM) exists and is finite
for all β < βo{V\ where βo(V) is some strictly positive, but generally finite constant.

Remarks. (1) If the upper bound on V(x) assumed in (5.10) is saturated for small
\x\ then there exists some βo(V) such that eβV(x) is not integrable at x = 0, for all
β > βo(V). In this case the system collapses at some temperature β^1 > /^(F)" 1 .
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The estimates on β0 = βo(V) obtained in the proof of Theorem 5.3 are rather
crude and give βo(V)< βo(V), whenever v > 2.
(2) We have also proven that the "correlations"ζYlΦ(qi9Xi)yΛ(β9z) (in the nota-
tion of (4.12) and Proposition 4.2) converge as Λΐ ΪRV. This follows from Theorem
5.2 and the observation that (eφ{f)}Λ(β,z) is monotone decreasing in A (another
simple correlation inequality) and bounded for Λ = 0, for all f e£f. For the standard
correlation functions an analogous result requires a proof of uniform upper bounds
which is non-trivial and not attempted here.

Proof. Using Theorem 3.1, (1) we see that Theorem 5.2 is true, once we have proven
stability in the form of an exponential upper bound on the partition function for
small enough β; see [6]. The Golden-Thompson inequality shows that it suffices
to prove stability in the classical case. (This also implies stability for the correspond-
ing quantum system with Fermi statistics, for arbitrary β, [6]).

The basic idea is now to reduce the proof of stability to the one for the two
dimensional, two component, classical Yukawa gas given in [6]. Simple considera-
tions show that, given a potential V satisfying (5.10) — (5.11), there exists a potential
Woϊ finite range R with the properties
(1) W is of positive type,
(2) W{k) > V{k\ for all fee ίRv (i.e. W > V in the sense of quadratic forms),

(3) I W(x) I < const' fog (y-ί- + 2 ).

Let Ξ^(β,z),Ξ^[(β,z) denote the grand canonical partition functions for poten-
tials V, W, respectively.

If we apply Wick ordering (see Eq. (2.3)) on both sides of the conditioning in-
equality (Theorem 3.1, (2)) we obtain

Ξv

Λ(β,z)<Ξ%(β,z); (5.12)

see [6] for a detailed discussion of such inequalities. Hence it suffices to prove
stability for Ξ^(β,z). By monotonicity of Ξ^(β,z) in Λ, proven in Theorem 3.1, (1) -
we may assume A to be a union of cubes Δ. with sides of length 4R. We divide each
cube Δ. of this cover of A into 2V disjoint cubes Δι

j91 = 1,..., 2V with sides of length
2R; clearly dist (Δι

j9Δ
ι

jf) > 2R, for φf, (independently of /). By Equation (2.11)
of Section 2 we have

(5.13)

and, by definition (2.9) of CP

A,

Cβ

Λ=ΣΣCβ

A} (5.14)
i = i J

We now apply the Holder inequality with respect to the Gaussian expectation
< — } w to separate adjacent cubes:

w
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ι-i / w

1=1

(5.15)

(The idea of separating adjacent cubes and using inequality (5.15) in the proof of
stability is taken from [6]). Next we recall that

for all / and j ψj\ but that the range of Wis R. Hence

w \ j I w>

lVzC^>w> (5.16)
j

by inspection.
By translation in variance the factors on the r.h.s. of (5.16) are independent of

j and /. Thus stability is proven if we can show that (e2VΣCβA}w is finite, where

For v = 2 this follows from [6], for small enough /?, (temperature above
collapse temperature). The same methods that were developed in [6] for v = 2
also work for v = 1. For v > 3, we note that

2vz\dxιdx2 Π dxK;cos βί/2φ(x):

e Δ «=3

,_ _ _L. 2vz(2R)v~2 ί dx\dx2. cos β1/2φ(x):

<{2RΓ+2 J Y\dx,e " - ί M

0<x<x^2R α=3

by Jensen's inequality. Using the linearity of <— }w and translation invariance
we conclude

-2 f 1/2 \
0<~xl/2<-2R XldXr'C0* ( / (5.17)

/ w
By applying conditioning (Theorem 3.1, (2)) once more the r.h.s. can be domi-

nated by the partition function of a two dimensional Yukawa gas in a square with
sides of length 2R, at activity z' = 2vz(2R)y~2 and inverse temperature β' = Cβ,
where C > 1 is some finite constant. The latter has been shown to be finite for
(βf < 4π; see [6]. This proves stability for β2 < 4πC~2( < βo(V)2).

Q.E.D.
Remarks. As noted, the estimates used in the proof of Theorem 5.2 are rather
crude, in particular (5.17) is a bad estimate. It yields stability only when β is such
that
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whereas the correct condition should probably be

eβVix)<0(\x\-v)Jor\x\<l

as is the case for v = 1,2.
(2) Uniform estimates on the correlation functions haye been proven in [6,11]
for v = 2, and the techniques developed there also work for v = 1. For v > 3
new methods are needed. It would suffice to show that <—}Λ(β,z) is locally LP
with respect to < — } w , with an U norm bounded uniformly in A. For v = 1,2
this can be shown using a "transfer matrix", [11]. For v > 3 such transfer matrices
do not exist.

Note Added. After completion of this paper we learned of work by A. J. F. Siegert, Ref. [29], which
contains most of Section 2. We thank A. Lenard for informing us of Ref. [29]. We also thank E. B.
Davies for several helpful comments.

Appendix 1

In this appendix we indicate briefly how to construct imaginary time Green's
functions (ITGF's) for the gases of distinguishable, quantum mechanical particles
considered in this paper. The hypotheses of Theorem QM are adopted throughout
this appendix.

In a system of infinitely many particles we single out N specific particles.
A "configuration" cj of the j t h particle is a collection {x\^i}I{L1 of space points x\
and imaginary times τ\ with 0 < τ{ < ... < τJ

L < β.
We propose to construct the joint probability

ρ(β9z;c19...9cN) (A.1.1)

of the configurations c 1 9 . . . 9 c N o f N p a r t i c l e s w i t h g e n e r a l i z e d c h a r g e s q ί 9 . . ^ q N

in the Gibbs state at inverse temperature β and activity z, in the thermodynamic
limit, defined by the condition that the imaginary time path ω. of the j t h particle
obeys the restrictions

for aΆj=l,...,N.
First we derive an expression for this probability in the case where the system is

confined to a bounded, open region A c W. It has an obvious definition in terms
of the kernel

of the Hamiltonian semigroup exp [ — τH^((q)N)~]: Let {sα}^= 1 be a permutation of
N

the set (J {τ/}fi ± with the property

0<sί<s2< ... <sL< β.

Let πk be a permutation of {1,..., N} such that

T π k ( l ) _ _ πk(Nk) _
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for some l19...,lNk9 and τ* k ( m ) =/= sk9 for all m> Nk and all / = 1,... , L π k ( m ) .
Then

ρΛ{β9z;c19...9cN) = ΞΛφ9z) x Σ — —

M = 0 m *

L-l

We propose to reexpress the r.h.s. of (A. 1.2) in terms of functional integrals.
Given a configuration c = {x/,T/}/L

=1, let Prβ

Λ(q,c;dω) be the conditional Wiener
measure concentrated on all paths ωeΩ with the properties

ω(τ)eΛ,forallO<τ<j5

determined by the Laplacean with O-Dirichlet data at dΛ.
Let Σ[τi t2] denote the σ-algebra on path space Ω generated by all functions
( l ) , . . . Msn)\feC(Uvn\ n = 1,2,..., with τt < st < ... < sn < τ2.

Lemma A.1.1. Let Fί be a Σ[τi ^-measurable function on Ω and F2 a Σ[τ2/C3]-
measurable function on Ω.

Then

J Λ C J Vxγτ^x1,x'4ω)F1{ω) J Prτ

y l

3"τ%x?x2 ;dω)F2(ω)
A Ω Ω

= I PrτΓτi(q,Xι ,x2 ;dω)F1(ω)F2(ω).
Ω

Remark. This equation is well known, so that we omit the proof.
From the Feynman-Kac formula (1.18), definition (A. 1.2) and repeated appli-

cation of Lemma A.1.1 we obtain, upon comparison with (2.14)-(2.17).

T h e o r e m A . 1 . 2 . p A ( β 9 z ; c 1 9 . . . 9 c N )

j=lΩ

By construction of the Wiener measure for the Laplacean with O-Dirichlet
data at dΛ it follows immediately that

Prβ

Λ(q,c;dω)

is monotone increasing in A. This permits us to apply the correlation inequalities
of Section 3 to show that ρΛ(β,z\c1,..., cN) is monotone increasing in A.

Assuming that sup V(q,x;q,x) is finite, the methods of Section 2 yield uniform
q,x
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upper bounds on pΛ(β,z;cίy...,cN\ and this combined with monotonicity in
A proves the existence of the thermodynamic limit.

Remark. From the collection {p(β,z cx,...,cN)}, for arbitrary cϊ9...9cN arbitrary
N = 0,1,2,..., one can reconstruct a β—KMS state by analytic continuation in
the time arguments; [26].

Appendix 2

Here we prove the "inverse" Lebowitz inequality of Theorem 4.6, i.e.

J Π dλ(qi)d%h((q)4 ;(x)4)( Π φ(qj,xnC(β,z) > 0,
i=l \j=ί I

for all h, for which

ί Π dλ(qi)d\h((qUx)4) Π fiq,,xd * °>
ί = l i = l

for arbitrary real functions/ on Q x Uv.
Our proof of this inequality is presented within the general framework

introduced in Section 3, and the notations used there are kept throughout this
appendix. Following [18] and [28] we introduce four independent copies of our
system, i.e. we make use of four independent random fields φ,χ,φ' and χ' with
identical distribution given by the probability measure

dμ(φ) = Ξ(C,p)-' exp{Jdp(x) cos φ(lχ)}dμc(φ), (A.2.1)
x

where dμc is the Gaussian measure with mean 0 and covariance C; see Section
3 for definitions.

Next we define four new random fields α,β,y,σ by the equations

χ = i(Φ + χ + Φf + χ'lβ = UΦ + x-Φ'-x') j

These equations define an orthogonal transformation of IR4; (see [28]). By
the arguments given in Section 3 we have therefore

dμc(φ)dμc(χ)dμc(φf)dμc(χf) = dμc(a)dμc(β)dμc(y)dμc(σ). (A.2.3)

The inverse of (A.2.2) is given by

i(α + β-y-σ), )
y (A 2 4)

±(a-β-y + σ) j .

Equations (A.2.4) and the trigonometric identities used in Section 3 give

cos φ + cos χ + cos φ' + cos χ'

± I sin ( -

(A.2.5)
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as is verified on three lines.
We define

and

j ( f ) ( f i ! ) ( f ) ( f ) (A.2.6)
From (A.2.1), (A.2.3) and (A.2.5)-(A.2.6) we conclude dμ(φ)dμ(χ)dμ(φ')dμ(χ')

= Ξ(C,pΓ4ezΓezΣdμc(a)dμc(β)dμc(γ)dμc(σ). (A.2.7)

Next, let {f}) be some sequence of vectors in the real Hubert space ffl (see
Section 3), and let h(ίJJ,m) be a function with the property that

Σ hdJJMcfjCf^O, (A.2.8)
ij,l,m

for all real sequences {cj}. Furthermore, let <—> be the expectation given by the
measure defined in (A.2.7). Expanding ezΓ and ezΣ in the measure defined by the
r.h.s. of(A.2.7)wefind

00

= s(c,p)-4 Σ

• Σ Ki,hlm)<«(φ({χ)k(y\)

•ΐβ{φ((A(y\
:re<α(/)>((x)t();y

= J^c(α)α(/)Πco;
i=ί

k.)< */ , )>((*

/-./I \\ fe'

,)(y)i

sinί

χh>

t.)< σ(/J>(Mk(y)k')!

^)=<A/)XC

(A.2.9)

κ\iy\) = .... (A.2.10)

By (A.2.8) and (A.2.10) the integrand of each term in the sum over k and k!
on the r.h.s of (A.2.9) is non-negative. Hence

Σ HUUmKocifMfMfMfjy * 0 (A.2.11)
i,j,l,m

Using the fact that <—> is even in φ,χ,φ\ and χ' we verify easily that

H^mfMfMfjy=<Φ(fmf)ΦUι)Φ{fjyc

c,P (A.2.12)

by reexpressing α, β9 γ and σ in terms of φ, χ, φ\ χf by means of (A.2.2) and using the
fact that φ,χ,φ' and χ' are identically distributed. Inequality (A.2.11) and (A.2.12)
give the "inverse" Lebowitz inequality, so that Theorem 4.6 is proven.

We leave it to the reader to apply (A.2.2), (A.2.5) and (A.2.7) to the proof of many
other inequalities of the type of the "inverse" Lebowitz inequality.
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