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Abstract. A characterization of monotone continuous linear functionals on
tensoralgebras which arise in QFT is derived and some consequences are
investigated. Then we look for necessary and sufficient conditions on a set

7iv) = {l,7i,T2,...,Tw} TnεE'n

of "n-point-functionals", which guarantee the existence of at least one mo-
notone continuous linear functional

S = {1,S19S2,...} on E=@En, En = E, (g)^ ®π ... ®Λ£1,
n = 0

N
E1 a special nuclear space, such that SI 0 En = T(N)9 with special attention to

n-O

QFT. A first application is a characterization of all monotone continuous
linear extensions in the case N = 2. The notion of minimal extensions is
introduced. Its relevance is discussed. Necessary and sufficient conditions on
7^2N) for the existence of minimal extensions are presented. Some properties of
minimal extensions are derived. In the simplest case E^C the concept of
minimal extensions allows to answer the extension problem completely for
arbitrary NeM For the case of general E = E1 and N = 2 it is shown that the
known examples of monotone continuous linear extensions are minimal
extensions or a special generalization of it.

Oβ Introduction, Notation

Up to now the main concern in axiomatic QFT has been that of the linear
program [1,4,8]. The nonlinear constraints of QFT (positivity condition and
uniqueness of the vacuum) have been treated much less [15, 17, 19]. But
nevertheless these nonlinear constraints are as important as the linear constraints
are. One step of incorporating the positivity condition into QFT is the program of
Bros and Lasalle [20]. It relies on additional technical assumptions.
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140 E. Brϋning

It is well known [12, 13, 4] that an axiomatic QFT in the sense of Wightman
can be characterized in terms of some monotone continuous linear functional

on the Borchers-algebra 5? =
n = 0

This is a characterization of a QFT in terms of infinitely many vacuum
expectation values ifn9 n — 1,2, ____ Monotonicity is a restriction which connects
the set of all 77-point-functionals of a given theory at the same time and makes it
thus hard to analyze.

We will try to do a step in the analysis of the positivity condition in QFT by
characterizing the monotone continuous linear functionals on tensoralgebras such
as the Borchers-algebra but forgetting for the moment the linear constraints and
the uniqueness of the vacuum (Section 1).

As we think it to be adequate to use eventually other testfunction-spaces as
£P = Sf (IR4) or Q) = ̂ (IR4), for instance Gelfand-spaces, in particular Jaffe-spaces
[1,2, 10] we will formulate our investigations in terms of some abstract complete
HLCTVS (Hausdorff locally convex topological vector space) E = Eί over the field
C of complex numbers.

Denote by En the completion of the n-fold tensorproduct
E®n = E®πE®π... ®πE with respect to the projective topology τπ, induced by the
given topology τ1 on E. τn is again a Hausdorff locally convex topology. Equip

00

E = © En, E0 = (£ with the topology τ of the locally convex direct sum with
n = 0

respect to the topologies τn and with the product

(a-b)n= Σ av®bμ, n = 0,l,2,...
v + μ = n

Q = {a09al9...9aN(a)9Q9Q9...}eE (1)

Then E is an associative algebra with unit 1 = {1,0,0, ...}. Call it the complete
tensoralgebra of E. By [7, Theorem 11.6.2] E is again a complete HLCTVS.
The tensoralgebra of E is

it gives by completion just E.
We assume that there is a continuous involution * on E\ it has a unique

extension, which is a continuous involution on E, and satisfies

1* = 1 (Q b)* = b* a*.

As a positive wedge E+ in £ we take the set

=ι

E is then generated by this wedge:
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This follows from the fact that the algebra E has a unit, using a polarization
identity. The space of continuous linear functionals on E is denoted by E' and is

00

given by E' = Y[ E'n, e.g. E' is the topological product of the dual spaces E'n of the
n = 0

spaces En [7;IV.4.3.1].
We want to investigate the set

E'+={TeE'\T\E+^0}

of monotone (e.g. non negative) continuous linear (m.c.l.) functionals on E and in
particular the structure of its elements. To do this effectively (in the sense of
possible application to QFT) we clearly have to assume some additional structure
of E. This will be done later.

For the moment we note some easy consequences of monotonicity : For TeE'+
we have a positive semi-definite sesquilinear form on E :

and thus by Schwarz-inequality

\T(a* b)\ ̂  T(a*-a)1/2T(b* b)1/2 (2)

in particular

\T(a)\2^T(l)T(a* a) (2a)

and thus

Γ(1) = 0=>Γ=0. (2b)

Therefore E'+ is a convex cone with a basis

E'+il = {Γe£'+|Γ(l) = l}.

A further immediate consequence of (2a) is the following: If TeE'+ ί then

τ(a, b) = T(α* - b) - Γ(α*)T(&) (3)

is again a positive semidefinite sesquilinear form on E. This gives by well known
criteria an infinite set of inequalities connecting all Tn, rceN, of
T={l,T 1 ?T 2,...}e£ /

+ > 1; some of the simplest one's are

l(TB+m-ΓΛ®ΓJ(α*<^^ (4)

for all anεEn, all bmeEm, w,m=l,2,3, . . . ; where we defined (ΓB®ΓJ (an®bj
= Tn(an)Tm(bm) and Tnn = T2n-Tn®Tn. Our further assumptions are mainly moti-
vated by the application in QFT, which we have in mind.

Assumptions.
(a) E (all En) is (are) barreled [7],

(b) £ is a nuclear space [5, 7] .

These assumptions are known to be true for the proposed testfunction spaces of
QFT : ̂ (IR4), ^(R4) and some Gelfand(-Jaffe-)spaces ^(IR4). This has been stated
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4) in [13] and can be done similarly for the others using standard results in
the theory of LCTVS [2, 6, 7, 9, 10]. If E is nuclear, then all spaces En are nuclear

[7,111.7.5] and thus E= 0 En is nuclear [7,111.7.4].
n = 0

The nuclear-theorem [5, 2, 7] tells us in which way each TneE'n is constructed
out of certain equicontinuous sequences of elements in E' :

TneE'n iff Tn(Xl®...®Xn) = f W λtcn(Jl, .,tiή?(xl) 1%!(xJ
jι,...,j»=l

(6)

with the following specifications

(i) J μy>|<oo v = l, . . . ,n
7=1

(ii) |cnO\,...,Λ)l^l
jveJN, v = l, . . . ,n

(iii) |^(x)|gpv(x)

pv some continuous seminorm on E, v = 1, ..., n.
We call the representation (6) a nuclear representation of TneE'n.
In Section 1 we show that for TeE'+}1 these nuclear representations of the

various Tn fit together in such a nice way that characterizes monotonicity
conveniently. The tool we use is that of representing unbounded symmetric
operators by infinite matrices. By [18] it is known that this representation is not a
very helpful method for the investigation of unbounded operators, because there is
no uniqueness relation, and they have complicated transformation properties
under unitary matrices. But as we are interested only in representations of the
functionals TeE'+.i an<i not i° tne associated representation operators Aτ(a\ aeE
in the GiVS-construction, this nonuniqueness does not produce any additional
difficulties.

We use the nuclear representation for TeEr

+>1 to investigate some structural
aspects of £'+jl, thus getting a slight generalization of some results of [13] and
some convenient recursion formulae for TeE'+ r

Section 2 treats the following kind of extension problem :
Given

T(K) = {1,T1,...,TW} TneE'n

which conditions guarantee the existence of some Te£'+jl such that

τr0£ B =r w .
H=0

Clearly a practicable answer to this problem would be of considerable importance
in QFT. It would be an essential step in proving the existence of nontrivial QFT's.
In Part II the case of a continuous linear functional T(2N} which determines exactly
one relativistic QFT is isolated. To answer this problem in the context of QFT in
the general case is much harder because the linear constraints of QFT have to be
taken into account in addition to monotonicity.
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We propose a strategy to attack this kind of extension problems (Section 2).
This helps

(i) to understand why the extension problem for N ^2 is trivial but not for
N>2 (Sections),

(ii) to characterize the set of all extensions for N^2 (Section 3),
(iii) It leads to the concept of minimal extensions (Section 2).

A discussion on the relevance of this concept follows and necessary and sufficient
conditions on T(2N} for the existence of minimal extensions are derived (Section 2).
In Section 4 the concept of minimal extensions is applied to the simplest case
£ = <C. This allows to answer the above extension problem completely for
arbitrary N.

1. On the Structure of TeE'+tl

The aim of this section is to give a complete characterization of a given m.c.l.
functional T on E in terms of its nuclear representations. By construction
αt-»c* a - b is a continuous linear map E-+E for each fixed c, be E thus given Te E'
and b, ceE at-*Tb tC(a)= T(c* -a-b) is again a continuous linear functional on E. For
m.c.l. functional on a barreled space E one can prove much more [16].

Lemma 1.1. Given TeE'+)1 define

qτ(a)=T(a* a)112. (7)

Assume E to be barreled. Then for each fixed beE

defines a continuous seminorm on E.

Proof. It is immediate that qτ( - b) defines a seminorm on E. To prove continuity
we define for fixed beE:

Using Schwarz inequality (2) we get for all Tb)£E^b \T^(a)\^qτ(a-b) that is ̂
is weakly bounded in E' and therefore equicontinuous thus there is a continuous
seminorm qb on E such that \T^c(a)\^qb(a) for all

Tb>c_E^b; but ίτ(α-fe) = sup{|7;f£(fi[)|;7if£e^;}gftte)

which proves the assertion.

In order to get a convenient formulation we have to introduce some more
notation. Let us denote by 9ϊl(2) the set of all square summable infinite matrices of

00 00

complex numbers, e.g. (0vμ)Vfμ6Ne9W(2) iff £ |αvμ|2<oo, £ |αvμ|2<oo. Then define
v=l μ-ί

S0l(2)(E') to be the set of all *-homomorphisms m from E into 9#(2) such that for all
μeN

/ oo \ l / 2

Σ Kμ(x)|2 =qμ(x) (8)
\ v = l /
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is a continuous seminorm on E. m, being a *-homomorphism satisfies

mvμ(x) = mμv(x*) (9)

and thus

oo \ l / 2

Σ KMI2 =*μ(χ*). (80
.μ=l /

Next we introduce the set Wf£\Er) of all me9K(2)(E') which have the following
property

(a) m(E) generates an associative *-algebra ίί(m) in 501(2)

(10)
\ l / 2 V '

(b) A x,® . . . ® X Π H >
«sN

is a continuous seminorm on E®", called q^\
We think these matrices to act in some Hilbertspace I2 of square summable

sequences z of complex numbers (zv)veN. Then the subspace I2

e of terminating
sequences is always in the domain of all these matrices. Our interest in this set
W^\E') results from its intimate connection with monotone continuous linear
functional on E :

Theorem 1.2. Let E be the complete tensor algebra of a HLCTVS E, which has the
properties (5). Then a continuous linear functional T on E is monotone if and only if
there is a m = mΓe9JΪ(

0^
)(E/) such that the restriction of T to $~(E) has the following

representation in terms of m. For all neN and all x7 eE we have

Tn(xl

These series have to be evaluated successively in arbitrary order; In each step we
have absolute convergence.

The matrix m = (mvμ)vμe^ is not uniquely determined by Equation (11). The most
general such matrix is obtained from a given m in terms of a unitary transformation u

(12)

Tn(xί (x) . . . (x) xn) = (ue_0, mίXi) . . . m(xn)ueoy2 . (1 1;)

Remark. Dealing with infinite matrices the transformation (12) causes some
difficulties. These transformations have to be understood in the sense of
v. Neumann [18], which essentially means that u*en is in the domain of m(x) for all
77 e Nand all xeE sharpened by the requirement that the transformed matrix m has
to be again in W^(E') and uen is in the domain of all m^) ... m(xn), x7 e£, neN.
{enι n = 0, 1,2, ...} denotes the standard basis of/ 2 .

This theorem is essentially known. Therefore we do not prove it but comment
on it introducing by this way some notation which is used later.
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At first one realizes that each TeEf

+>1 has a canonical pre-Hilbertspace
realization

KT = (ΦΓ(£),< , >T) (13a)

where Φτ:E->E/qτ 1(Q) = ΦT(E) is the canonical quotient map onto the factor-
space of £ with respect to the closed subspace q^1^),

qτ(x)=T(x* x)1'2 xeE, (13b)

and where the scalarproduct is defined by

(13c)

The completion of Vτ gives a Hilbertspace fflΎ = Vτ whose scalarproduct is also
denoted by < , >τ. The nuclearity of E implies the nuclearity of ΦΓ and thus the
separability of jfτ [2, 27. 4.3].

Then one sees that by Schwarz-inequality (2) q? ί(0) is a left ideal in E so that a
weakly continuous cyclic ^-representation with cyclic vector Φ0 = ΦΓ(1)

is welldefined by

As usual we denote by L(VT, Vτ) the space of linear functions from Vτ into Vτ. By
assumption (5a) and L. 1.1 we get that x^\\Aτ(x)Φτ(y)\\τ==qτ(x y) is a continuous
seminorm on E for each fixed ye£; e.g. the representation Aτ is strongly
continuous.

By definition of E one realizes that the above representation Aτ of E on Vτ is
fixed in terms of a linear map (a 'field')

®AT) (15a)

( 00 \ 00

f f i £ f " = I I 2\_L/ 1 / w n
n = 0 / n = 1

(15b)

such that

Γ(x*) t^τ for all xeJ^ (15c)

=MΓ(x1)...^Γ(Λ;ΪI)Φ0||Γ (15d)

is a continuous seminorm on EfM, n= 1,2,....
Again &AτQΦτ(E) is dense in J^Γ. By construction we have

Γ π (x 1 ®...®x π ) = <Φ0,>4τ(^ι)-^rWΦo>r a11 X j e E l 9 neN (16)

and we know that all ^4τ(x1)...^4Γ(x l l) = 4τOn(;x:ι® ••• ®x«)) ̂ ave an extension
defined on ΦT(E) (jn:En->E denotes the natural injection, n = 0,1,2,...). Therefore
we may choose any orthonormal basis {^<7 }j=o,ι,2,...£^r( E) oί J^fτ starting with
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φQ = Φ0 and then define the matrix representation of Aτ(x) with respect to this
basis, e.g.

m(x) = mτ(x} = (mvμ(x)) v, μ = 0, 1, 2, . . .

This m then belongs to aR^E') and has the properties as claimed.
The converse that each meW!^\E') and each cyclic vector ze I2 for m defines an

element

according to

g). . .(8)x l l ) = <z9m(x1)...m(xΛ)z>2 (18)

is fairly obvious.
The transformation properties (12) express the possibility of choosing different

orthonormal basis in ΦT(E) for the definition of a matrix representation of Aτ.
Theorem 1.2 says that each state (normalized continuous monotone linear

functional) TεE'+ 1 is given in terms of a certain matrix meSDΪ^E') with
coefficients in E' and a certain vector zinl2. Therefore we may rephrase Theorem
1.2 to say that each state Γ on E is a matrix-state Tm>r Thus a detailed knowledge
of aR^E') is equivalent to a detailed knowledge of E'+ t. In particular one would
like to have a convenient characterization of the structure of elements in yjl(2\E').
This can be done for the simplest case (Section 4, Proposition 4.3). The result then
is that each such matrix m is equivalent to a Jacobi-matrix. But this is not known
to hold in general. Therefore we discuss some vectorspaces of elements in
which are dense in a sense which we will specify in a moment.

First we introduce the vectorspace

or μ>N(m)}

of all finite dimensional matrices with coefficients in E', embedded in $R(2)(E')
Clearly for meSOΐ(co)(F) we have for any ze/ 2, weN, X j t E

thus aR^EOgaR^E') and each ze/ 2, ||z||2 = 1 each me9Jί(oo)(F) give rise to a state
Tm^ on E. We call the set

{TMJmeaR ( o o )(E /),ze/2, | |z| |2 = l}

00

the set of finite order matrix states on E. Restricted to φ E®n a matrix state of
n = 0

order N is of the form
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By Theorem 1.2 it is almost trivial that the set of all finite order matrix states is
dense in the set E'+fl of all states on £, indeed we have

Corollary 1.3. Assume E to be as in Theorem 1.2. Then each state T on E is the limit
of a sequence of finite order matrix states {T(N}}Ne]N.

Proof. By Theorem 1.2 each TeE'+,ι *s a matrix state, that is there is a
such that we have on

Define Pn to be the orthogonal projection onto the subspace of I2 spanned by
{e.Q,e^...,en}. Then one proves that

PNm(xί)PNm(x2)PN...PNm(xn)PNe0- - >m(xί)m(x2) ... m(xn)e0I\ — »• co

in I2 and thus

TΓ(*ι ® . . . ® xπ) = <e0, PNm(x1)PN . . . PNm(xn)PNeQy2 -^ Tn(x,®...® xn] .

Therefore the sequence T(N} = {T^N); n = Q, 1,2, ...} of finite order matrix states
converges weakly on &~(E) to T\F(E) and we know T(N)eE'+^ and TeE'+tί.

Remark. The above result generalizes Theorem II. 3.8 of [13] where for E =
it is proven that each state on E = ¥ is the limit of a net of finite order matrix
states.

For explicit constructions of elements in E'+tί starting from elements in
Wl(£\E') the following vectorspace D(Ef) in W^\Ef) seems to be more interesting
than 2R(CO)(£') : We define D(E') to be the set of all m in Ώl(2\E) such that for each
VG N there exists JV ve N with

(i) mvμ = 0 for all μ>Nv

(ii) Nv+1^n, + Nv

e.g. D(E'} is the set of all infinite matrices whose coefficients are different from zero
only near the diagonal v = μ. Clearly D(E') is a vectorspace contained in 9Jl(2)(£').
Furthermore each raeD(E') generates an associative *-algebra H(m) in 9Jl(2):
mεD(E'\ x,y<=E imply

Nv^Nμ

(m(x)m(y))vμ= Σ mMvjm(y)jμ
j=ι

e.g. (m(x)m(y))vμ = 0 if μ>max{JV l 5 ..., AΓv}=JV(,1);thus m(x)m(y) is a matrix of the
same class as m(x), therefore all products m(x1) ... m(xn) are well defined and are
associative and satisfy the right continuity properties (10) :

>*B^(Σ \(m(x1)...m(xa))vμ\
2}

\ v = l /

is a continuous seminorm because there are really only finite sums involved. The
same holds if different m eD(E'} are considered. Well known examples of this class
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are the matrix realizations of the canonical commutation relations, multiplied by
feE>:

m(x) = a(x) + a*(x) , a(x)vμ =f(x)δv + 1 > μv1 / 2 , v, μe N.

This shows that the class D(E'} contains matrix representations of unbounded
operators.

As a last immediate application of Theorem 1.2 we treat a recursion relation
connecting various rc-point-functionals Tn for a given T={1, T15 T2, ...}eF+ r By
the theorem we have for some

T^rooo, T π + 1 = X m0jί®mjίh®...®mjn0 n=l,2,3,... (11")
J ' l . . . j n = 0

with convergence properties specified above. These convergence properties allow
to resum these expressions to get

71 = 7;
(20)

Tn = fn+Σ Σ t v i ®...®t v k =t n + 7;(0) n = 2,3,4,...
k = 2v keP k(n)

where
00

^1+1= Σ mQh®mhh® ... ®m jn0 n=l,2,3,.. .

This yields

T= T(0) + f = {1, Γ1? 750), Tf }, ...} + {0,0, T2, T3, ...}

and implies a lot of inequalities for T, in particular those corresponding to (4) and
the most simple one's are

I tn+m(xϊ ® x J|2 g T2B(x* ® xj - T2m(x* ® x J (210

for all xπe£π, xmeEm, n ,m=l,2, . . . .
A useful application of these relations is a condition on Te£+ t to be trivial in

the sense, that all Tn (n>N) are determined by Tl5 ..., TN. We treat the case N = 2.

Corollary 1.4. TeEf+tί is uniquely determined by Tx and T2 if for some neN the
equation T2n = 0 holds.

Proof. Suppose T2π = 0, then by (21') fn+m = 0 for all m-1,2,... that is if n = l,
t m -Oforal lm = 2,3,...andthusby(20)Tm = T1

@m,m-l,2,...
for all m = 3, 4, . . . and thus for all m = 3, 4, ...

m

?> Σ Σ t v ι ®...®t ϊ f c .
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Remark, (a) A natural generalization of Corollary 1.4 would be to answer the
question when a TeE'+>1 is uniquely determined by T19T2,...,TN,N>2. We will
discuss this problem in Part II.

(b) Within a QFT in the sense of Wightman such a statement as in Corollary
1.4 is known to hold [11,14]. There one has to use the truncated 2n-point-
functionals W2n instead of T2n.

2. On a Special Kind of Extension Problems for Monotone Continuous
Linear Functionals

The kind of extension problems we have in mind has been described in the
introduction we ask which conditions make a given set T(2N) = {1, T15 T2, . . . , T2N},
TneE'n, n = l,...,2N, of rc-point-functionals to be the first 2N+1 n-point-
functionals of a m.c.l. functional T on E. Obviously a necessary condition for the
existence of at least one TeF+>1 such that TtE(2N] = T(2N} is

T ( 2 ] V )r£+n£ ( 2 J V )^0 (22)

e.g. monotonicity of T(2N} on that part of E+ where it can be such. We use the term
T(2N}^0 to characterize monotonicity of T(2N}eE'(2N} according to (22).

The most general criterium for monotone continuous linear extensions is that
of Bauer and Namioka [3, 7]. It seems to be not very useful in this context. The
first step in attacking these extension problems is to exploit the above monoto-
nicity condition as much as possible. This can as we think be done best by deriving
a representation for T(2N} which is as close to those for m.c.l. functional as it can
be. The method we use therefore is very similar to that in Theorem 1.2.

Theorem 2.1. a) Assume the hypotheses of Theorem 1.2 on E. Then a continuous
2N

linear functional T(2N} = {1, Tl5 . . . , T2N} on £(2jv)

 = © ^n *s monotone in the sense of
n = 0

inequality (22) if and only if there is a nuclear linear function Φ(N) from £(]V) onto
some separable pre-Hilbertspace VN = (Φ(N)(E(N)), < , >(]V)) such that

all x,yeE(N} (23)

and Φ(jv) satisfies the following consistency relation

<Φ(JV)felλ Φ(JV)0?l)>(JV) = <Φ<Λλ Φ(JV)0?2)>(ΛΓ) (24)

for all xp ^e£(JV) such that x* -yί =χ* y2.
b) Any other such realization of T(2N^ is obtained from a special one by means of

a unitary transformation. In particular there is such a realization (τ(N}(E(N}), < , >2)
in which τ(N)(£(Λr)) is a dense subspace of some Hilbertspace I2 of square summable
sequences (nuclear representation of T(2N)).

Proof, (a) The sufficiency of the above representation for a continuous linear
functional to be monotone is obvious: Each ξeE+nE(2N) has a representation
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m

ξ= ]Γ xj -Xj, X j G E ( N } ; thus we get by Equation (23)
7=1

W£)= Σ W** sj)= Σ <*M>*w(xj»(
7=1 7=1

e.g. inequality (22).
(b) For the converse note that by (22) and L. 1.1

= T(2N)(x* x)112 (25)

defines a continuous seminorm on the nuclear space E(N) therefore the canonical
quotient map

Φ(N) : E(N)-^E(N)/q^(Q) = Φ(N}(E(N}) (26)

is nuclear and (Φ(N)(x},Φ(N}(y)\Nϊ = T(2N}(x* y) defines a scalarproduct on
Φ(N}(E(N}) such that (23) holds. By definition Φ(N} is linear and satisfies the
consistency relation (24).

(c) If (*F(N)(E(]V))5 ( . , . )(N)) is another such realization of 7^2]V), define a linear map
according to

^w(x)=!Pw(x) for all

Because of Equation (23) C7 is well defined, surjective, and isometric and thus
extends to a unitary map (of the completions of the above pre-Hilbertspaces).

(d) Again there is an orthonormal basis φ. = Φ(N)(x^ 7 = 0, 1, ... in Φ(JV)(E(JV)).
Therefore we get

Φ(N)fe)= Σ τ/x)^ in ^ (21 a)

in (£(jv)><W (27b)

\N) all xe£(]V). (27c)

Define

l(N)te) = {τι(^τ2feλ...} (27d)

then clearly ι(jv)(x)e/2 and

thus UΦ(N)(x) = l<N)(x) defines a unitary map U :Φ(N)(E(N})-+τ(N}(E(N)) and thus
τ(]y) = UΦ(N) is again nuclear.

It is convenient to introduce the following abbreviation.

Definition 2.2. Suppose T(2N}eE'(2N} satisfies TJ2jV)^0. If Φ(N} denotes the canonical
quotient map according to (25) and (26) we call the representation

such that (23) and (24) hold the canonical pre-Hilbertspace realization of T((2N}.
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Proposition 2.3. a) The canonical pre-Hilbertspace realization of a given T(2N)eE[2N)

^2N) = 0' allows to define a linear map A(N_-L}:E1-*L(VN_2,VN_ί\ Vn = Φ(N)(E(n)\
n = ί,...,N such that

i) A(N_ί}(x)Φ(N}(y) = Φ(N}(x'y) all xe£ l 5 all y^E(N_2}

b) // 7J2]V) satisfies in addition

\T(m(y_* x}\^q(f<+v(ϊ)T(m(x* xγ>2 (28)

for all x_£E(N_ 1)5 α// yeE(N+ ί},q(N+1} some continuous seminorm on E(N+ 1)5 ί/ze map
A(N_1} has a linear extension A(N):E1-+L(VN_ί, VN) such that (i) and (ii) of part a)

/ίoW on VN_l and in addition

iii) Φ0 = Φ(N)(1) is cyclic for A^E^ in 3f(N) = VN.

Proof, a) We show that (i) can be used to define A(N_ιγ For this we have to show
that Φ(#)()>) = 0, ye£(]V_2), implies Φ(JV)(x y) = 0 for all x in Er By (24) we easily get
for all xeEί :

llφ(N)(* ί)ll(^

Thus A(N_i)(x) is well defined on VN_2 by Equation (i). The properties of Φ(N}

easily yield those claimed for A(N_lγ The consistency relation again yields (ii).
b) If inequality (28) holds the definition

works on VN_^ because Φ(N}(y) = Q, y<=E(N_1}, implies

^Clearly A(N) is a linear extension of A(N_1} and satisfies (i) and (ii) above. By
definition of A(Ή} we get

which is dense in VN and thus in 3?(N}. Therefore (iii) holds.

Remark. Clearly there are some other obviously necessary conditions on T(2N} for
the existence of at least one m.c.l. extension :

I T(2N}(yfn]x(m})\ ^ q(n](y(n}) T(2N](x*m) - x(m))
1/2 (29)

all x(w)e£(m), y(n]eE(n}, m = l, ..., JV, n = 2N — m, q(n} some continuous seminorm on

- •
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The validity of these inequalities is equivalent to the existence of some continuous
linear functions Ψ($):E(n)-+3ί?(N)9 n = N,...,2N, such that

(ϋ) !Pgϊj = Φ<*> (30)

(iϋ) ll«1^0?)llw^ί(»)0?)

for all

ye£(n), all xε£(m), n = N,...,2N, m = 2N-n.

Suppose that a given T(2N}<= E'(2N}, T(2]V)^0, with canonical pre-Hilbertspace
realization VN = (Φ(N)(E(N)), < , >(jv)) nas a m c l extension TεE'+ Λ. This Thas a
canonical pre-Hilbertspace realization VT = (ΦT(E\ < , >Γ) and thus a canonical
isometry J:^f(N)^^fτ from Jf(Λr) into J^Γ is well defined by continuous linear
extension of

JΦ(N)(x) = Φτ(x) all xεE(N} (31)

because of

μφwfe)ll^n** *HW
In terms of the 'fields' Aτ and the 'candidates for the fields' A(N) we may formulate
the extension problem as follows :

T(2N)ε E'(2N), 7J2ΛO=0' has a m.c.l. extension Tiff there exists

(i) a separable Hilbertspace J^ = .J4fτ in which a 'field' A = AT:

Eί^>L(@A,@A) acts according to Equations (15) and

(ii) a canonical isometry J J^^— »Jf such that

JA(N)(Xl) . . . A(N}(xn)Φ(N}(l) = A(xl)... A(xn)JΦ(N}(l) (32)

holds for all x^E^ and w = 0, 1,...,N.
Thus we see that the construction of a m.c.l. extension of T(2N}^0 requires two

main steps :
1. The construction of some separable Hilbertspace 3ff in which we can embed

Jf (jv) isometrically.
2. The construction of some linear function A :E1 -+L(@A, @A), @A dense in Jf ,

which satisfies Equations (15) and (32).
In this generality an enormous amount of freedom is involved in this problem.

So we propose first to look for a special kind of extensions thus making the
extension problem much more definite. In order to do this we introduce

Definition 2.4. TeE'+ x is called a minimal extension of T(2N}e E'(2N), T(2N}^0, if and
only if

(i) TlE(2N) = T(2N}

(ii) The Hilbertspace jj?T = Vτ of the canonical pre-Hilbertspace realization
VT = (ΦT(E\ < , >Γ) of T and the Hilbertspace J^(N) = V(N} of the canonical pre-
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Hilbertspace realization V(N) = (Φ(N)(E(N)\ < , >(7V)) are canonically isomorphic (e.g.
J as defined by (31) is a unitary map from j^(N) onto j^τ).

A second step then has to treat the case of more general extensions using the
knowledge of minimal extensions.

Remark. Some comments on the relevance of this special kind of extensions seem
to be in order.

a) To look for minimal extensions seems to be the only way to get necessary
and sufficient conditions on T(2N} for the existence of (at least minimal) m.c.l.
extensions. We will show this in this section.

b) The known examples in relativistic QFT (generalized free fields) are
constructed according to the strategy proposed above. This will be shown in
Section 3.

c) For the simplest case £^C all m.c.l. extensions can be constructed
according to this procedure (Section 4).

d) There are cases of T(2N} where only minimal extensions exist. This is shown
in Part II.

e) In application to QFT the construction of minimal extensions is the easiest
way of constructing m.c.l. extensions which are Poincare-covariant and satisfy the
spectral-condition (Part II).

f) The notion of minimal extensions allows to specify a case where a relativistic
QFT is fixed in terms of finitely many vacuum expectation values (Part II).

g) If the usual coupling of fields and additive quantum numbers is assumed
(for instance the case of charged fields) one easily sees that minimal extensions do
not describe the situation one expects (this has been pointed out by O. Steinmann).

Now we want to give arguments which support statement a) above. If we look
for minimal extensions Tof T(2N} we can always identify #?τ and 2? (N) e.g. Step 1.
of the general case disappears and thus we get

Proposition 2.5. A functional T(2N}eE'(2N^ which satisfies inequalities (22) and (28)
has a minimal extension TεE'+ti if and only if the linear function
A(N}:Eί^L(VN_1,VN) which realizes T(2N) according to Proposition 2.3 b) has a
symmetric linear extension A\E^L(2A, @A) such that

(i) Φ0 = Φ

^= 0 Dβ>D1=€Φ0,Dn+1=lm(Da
n=l

(ii) A(x)*tSA = A(x*)ί&A,

(iii) pn(x1®...(g)xn)=\\A(x1)...A(xn)ΦQ\\(N) are continuous seminorms on E f n ,
H = l,2,...

(iv) A(xi)...A(xn)Φ0 = A(N)(x1)...A(N)(xn)Φ0for all x^E^ n=l , . . . , JV.

Proof. If TeEf

+ 1 is a minimal extension of 7J2N) we know ffl τ and %? ̂  to be
canonically isomorphic. Thus the identification of #CT and 3?(N} yields a linear
function A:E1-^L(^A,^A) which has the properties as specified above.
Conversely suppose we are given a linear function A'.E^L^^^^ as above.
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This then defines a TeE'+Λ according to

for all xjeE1 and all n= 1,2, ... .
By (ii) and (iv) we see T \E(2N} = T(2N). 3fτ is canonically isomorphic to 3?(N) by

construction. Therefore this TeE'+Λ is a minimal extension of T(2N).

Remark. Even the case of minimal extensions includes in general the problem of
extending a not densely defined operator A^N)(x) to a densely defined operator
A(x), xeEί. This is definitely the case when V N _ 1 is not dense in ^(N}. Later
(Part II) we will discuss necessary and sufficient conditions on T(2N} such that VN_ ί

is dense in 34?(N}.
A natural question is to ask how many minimal extensions a given T(2N}^0

may have and how these are specified. In order to give a preliminary answer we
proceed as follows. Suppose O^T(2N}eEf

(2N} has a minimal extension Te£'+>1.
Then there is a "field" A :Eί-^L(^A,^A) according to Proposition 2.5 and in
particular we may define a chain of linear functions (Dn as in Proposition 2.5 (i))

Dn+1)

A(n}x) = AxDn n = l,2,....

Then for suitable Me { 1, . . . , N} and n ̂  M + 1 A(n)(x) is densely defined in .^(N} and
thus has a unique adjoint in J^(]V) such that

because of A(n)(x)QA(n+^(x)QA(x) for all xeE1 and ft = 1,2, ... .
Property (ii) of Proposition 2.5 then implies

4w(x*) = AM(x)* \Dn n^M + ί (34a)

° A(n+ί)(x) = A^(x*Y\Dn+ί n^M+ί (34b)

By property (iii) we have in addition that

PΠ(X! ® ... ® xπ)= ll^ίXi) ... A(Π )(xn)Φoll(]v) (34c)

defines a continuous seminorm on Ef " for all n = M + l, M 4- 2, ... .
This essentially shows

Corollary 2.6. Suppose T(2N^eEf

(2N^ T(2N^Q, has minimal extensions. Define
Me{l, ...,N} to be minimal such that VM = Φ(N}(E(M^ is dense in ^(N}. Then each
minimal extension of T(2N} is fixed by the definition of A(M+ί)(x) on DM+1

I M \

= Φ(jv)( ® E f n \ . In particular if M<N T(2N) has at most one minimal extension
Wo /

and if M = N each minimal extension of T(2N) is fixed by fixing a 2N+l-point-
functional T2N+i appropriately.

Notice that the relations (34) express a construction procedure for the
functions A(n}. These relations yield a chain of inequalities which are in principle
inequalities for T^2N^ respectively T2N+ί. This is used to prove
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Theorem 2.7. For a given T(2N}e Ef

(2N}, 7J2jV)^0, let us distinguish

Case A. VN_ί is not dense in .&(N).
Case B. VM is dense in ^(]V), M^N—1.

Then in Case A T(2N} has a minimal extension which is fixed by a given 2N+l-point-
functional T2N+1 = TfN+1eE'2N+1 if and only if

a) there is a continuous seminorm q^N+1) on E(N+i^ such that

)(^^)1/2^(N+1)(^^) (35)

for all x,yeE(N) and all zeE^ T(2N+i) = {l, T15 ..., T2N, T2N+1},
b) the following successively defined chain of inequalities holds

for all x, x7-e£1? all Ψ(n}eDn,pn are continuous seminorms on Efn, k = n and

k = n—l, n = N + 1, N + 2, ... the A(n) are defined according to Equation (34).
In Case B T(2N} has a minimal extension if and only if the inequalities (Kn>k) hold

far n = N,N+l>... .
By straightforward insertion of an orthonormal basis {φ,-}̂  C VN of %f(N} into

(Knk) these inequalities are inequalities for T(2N) respectively T(2N+1y

Proof. By Proposition 2.5 and Corollary 2.6 it is immediate that the inequalities
(35) and (Kn fc), n^N+ 1 respectively (Kn^, n^ N are necessary.

Conversely assume that in Case A there is a T2N + 1 = T£N + 1eE2N+l such that
(35) holds; then by Riesz-Frechet there is exactly one linear function

ψN + 1 . p -ϊ-ff
*(N) '-^(N+l) '^(N)

such that

T(2N+ υ(y* z x) = <Φ(JΪ)0;), Ψ^ \z x)\N) = < Ψ^ \z y\ Φ(N)(x)\N)

(36)
l l P^Hz ϊJ l lw^ίt jv+Dίz ϊ)

holds for all x,yeE(N^ and all ze£1. Using (36) we see that a linear map

is well-defined by

^(W+i)WΦ( iy)0?)=*'w1(* ί) X^E^ yεEm (37a)

and satisfies

(37b)

Obviously ^(]γ+1) is strongly continuous. In particular A(N+l](x) is a densely
defined linear operator in 2?(N) for all xeE1. By inequality K^+1 N+ί we see

thus
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is welldefined and satisfies

because of (37b). According to KN+lίN+ί

0 (N)

is a continuous seminorm on £®(N + 2). Inequality KN + 2tN+1 implies
i and therefore

A(N+2}(x*)*tDN+2=A(N+1)(x*)*tDN+2=A(N+2}(x) for all

Similarly we get by induction using the whole chain of inequalities Knfk,
k = n,n—l; n^N+1 a chain of linear functions A(n}:E1^L(Dn,Dn+1\
n = N+l9N + 2,...,DN+ι = ̂ +1, such that Equation (34) and

A(N+i)(x)£A(N+2)(x)gA(N+3)(x)g ... all xe^

hold. This allows to define

A) (38)

^ and all n = N+l, N + 2, ... .
By construction this A is the symmetric linear extension of A^N) which is fixed

by T2N+1 and which has the properties (i)-(iv) of Proposition 2.5 and thus defines
the minimal extension of T(2N} which is fixed by T2N+ί.

To prove the corresponding statement in Case B is even simpler because then
we know that A(N)(x), xe£1? is already densely defined in J^(N).

Remark. According to Corollary 2.6 and Theorem 2.7 one expects that in Case B of
Theorem 2.7 there should be conditions on T(2N} such that there is exactly one
(minimal) extension of T^2N). This is proven in Part II.

3. Applications to the Extension Problem for T(2) = {1, T19 T2}

The purpose of this section is threefold :
a) Using the results of Section 1 and 2 we want to characterize all monotone

linear continuous extensions of T(2) (Theorem 3.1).
b) We want to substantiate remark b) following Definition 2.4 by showing that

the generalized free field associated with a given two-point-functional T2 is the
(minimal) local extension of a special minimal extension of 7J2) = {1,0, T2}.

c) We want to discuss why the extension problem for T(2N} is rather trivial for
N^l but not for N>1.

To begin with we formulate

Theorem 3.1. Suppose that the complete tensor algebra E of E has properties (5).
(a) A given functional T(2} = {1, T1? T2}e£J2) has a m.c.l. extension if and only if

T(2}tE+πE(2)^V (220

holds.
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(b) // 7^2) e E(2) satisfies the monotonicity condition (22') the set of all m.c.l.
extensions of T(2} can be characterized in terms of their nuclear representations (23)
in the following way: Take a nuclear representation (τ(1)(E(1))X , >2) of 7J2)

according to Theorem 2.1 b). Then TeE'+>1 is an extension of T(2) if and only if a
matrix representation meSDt^E') of T has the following form:

< x)

αu(x) α12(x)

α21(x) <z22(x)
(39)

vv/ί/ί some αeSOΪ^E') such that
(i) τ(1)(x) = {τ(f\x\ τ(

2

1}(x), . . .} is m f/ie domain of all a(xl) . . . a(xn\ x^E^ ne N,
for all xeE1 ? where we used the notation I(1)(x0,x1) = x0i

(0) + l(1)(x1) and

(ii) qn(x1 (x) ... ®xw)= ι) ... Φπ-ι)ί(1)W)vl

l/2

continuous semi-

Proof, a) Condition (22') is clearly necessary. Suppose now that (227) holds. Then
by Theorem 2.1 7J2) has a nuclear representation (23):

for

We may identify τ(0) = {τ(

0

0), τ^τ^, ...} and f 0 = {1,0,0,...}. Now any
a(x)e9Jl(

c^
)(E/) which satisfies condition (i) and (ii) of Theorem 3.1 (b) gives rise to an

element meϊR^E7) according to Definition (39). Thus by Theorem 1.2 there is a
m.c.l. functional Tm e eE'+ 1. By construction we have

mix, )m(x2)e 0 = T2(x, ® x2)e0

Therefore this matrix state 7^ eo defines a m.c.l. extension of T(2). This proves (a)
and the sufficiency part of (b).

b) If TeE'+ 1 is any extension of T(2} then by Theorem 1.2 T is a matrix state

Tm,z> e.g.

= (z,m(x1) ...m(xn)zy2 for all x^eEj^ and neN.

and

£(2) = i;2) implies

® 3;) = <z,

e.g. eventually after some unitary transformation in τ(1)(E(1)) we may assume z = e_0

and τ(1\x) = m(x)z. This shows that a matrix representation m of any extension
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T<=E'+ ί of T(2} has the form specified in (39). Clearly meSDl^CE') implies conditions
(i)and'(ii)of(b).

Remark, (a) Theorem 3.1 shows that a given 7J2)e£[2) which satisfies (22') has a lot
of m.c.l. extensions. This follows easily from the fact that any finite order matrix a
satisfies the conditions (i) and (ii) of Theorem 3.1 (b).

(b) One can use formula (20) and Theorem 3.1 to split off explicitly that part of
an extension TE£'+>I which is fixed by 7J2).

(c) It seems that in the literature only three m.c.l. extensions of T(2} are known :
(i) the trivial one described according to Theorem 3.1 by Equation (39) with

a = 0,
(ii) for 7^=0 that extension of T(2} which is constructed in QFT via the Fock-

space construction over the canonical pre-Hilbertspace Vl = (Φ(1)(£(1)), < , >(1)),
(iii) for Tx = 0 a special class of extensions by means of certain scalarproducts

on En using rough estimates [21].
The next topic of this section is to show how the best known examples of m.c.l.

extensions of 7J2)5 e.g. case (i) and (ii) of remark (c), fit into the scheme of minimal
extensions.

Given 7J2)e£('2) such that (22') holds there is the canonical pre-Hilbertspace
realization (Φ(1)(£(1)), < , >(1)) = TΊ of T(2}. Define Φ0 = Φ(1)(1) and Φ1(x) = Φ1(x)
- T MΦo for all xeE^ Then

Φ(1)(x0, xj = (x0 + TKxJJ

and thus Φ(1)(£(1)) is the orthogonal direct sum

According to this decomposition we define linear operators in Φ(1)(£(1)):

Φ^x)

and (40)

A (x] A (
^-OOv / O l v

A (x} 0

for all x.yeE^ This definition yields A(1}(x)Φ0 = T1(x)Φ0@Φ1(x) = Φ1(x) and a
simple calculation shows ||^4(1)(x)|| ^(T2(x*(S)x)+ T11(x®x*))1/2 e.g. A^(x) is a
bounded linear operator in Vl such that xι->||^4(1)(x)|| is a continuous seminorm on
Ex. The symmetry Tf = ̂  and T* = T2 of 7^2) implies the symmetry (A(ί)(x))*
= A(1)(x*) of A(lγ Therefore a minimal extension of T(2) is welldefined by

Tn(xl ® . . ® xπ) - <Φ0, ^(i)(*ι) - ^(i)WΦ0>(i) - (41)

Using Definitions (40) one can express Tn explicitly in terms of Tx and T2. The
result is given in the proof of Corollary 1.4.

Knowing this special minimal extension one can easily construct a lot of other
minimal and non minimal extensions. Details are contained in Part II, Section 4,
Corollary 4.3-4.5.
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Another way of generalizing the minimal extension of 7J2) = {1,0, T2} as-
sociated with

Am(x) =
0

0

is obtained by the wellknown Fock-space construction :
We embed Vl into the much bigger pre-Hilbertspace 3F which is the locally

convex direct sum of the tensorproducts of Φ 1 ( E ί )

and construct a symmetric linear extension A of A^ on &. To this end we define
as usual for all x, xj9 ye£1? ne N

α-(x)Φ0 = 0,

and get bounded linear operators (Sn = symmetrization operator on

such that

and

This implies that

A(x) =

0

tioM

0

0

Ό1(x) 0

0Λ12W

0 A23(.

A32(x) 0

0

0

is a welldefined linear operator ^-^^ such that A(x*) = A(x)* \3F and A(x)Φ0

= A(1}(x)Φ0 = Φ1(x) hold. v4(X) is unbounded but all A(xί)... ^4(xM) are welldefined
and xi ® ... ®xπH>||y4(x 1)... A(xΛ)Φ0||^ are continuous seminorms on Ef" for all
ne N. The reasons for this simply are the special form of A(x) (the form of a Jacobi-
matrix) and the continuity properties of χh->||^4πm(x)||. Thus A(x) defines a m.c.l.
extension of T(2} according to
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If Eγ =^(R4) and if T2 satisfies in addition the linear constraints of QFT it is easy
to see that the minimal extension of 7J2) = {1,0, T2} defined in terms of

A Λ Λ = / ° AlW\( 1 ) V ; UioW o
satisfies Poincare-invariance and the spectral condition of QFT but not locality.
To construct a m.c.l. extension which is local one could try to construct a minimal
extension in terms of

*•' •'•••MI \'v r \ / i / \ \
appropriate).

But this would mean to fix in addition at least a three-point-functional appropri-
ately. In principle it is possible to proceed in this way (Part II, Section 3). But such
a kind of extension is not applicable if one wants to have the usual association
between particles and fields.

The extension of T(2} that we get by restricting the above A \EV^L(2F, $*} to
GO

3)A = (J) Sn2Fn to get A : E1 -+L(βA, @A) is the well-known Fock-space extension of

T(2} = {1,0, T2} it is a local extension of the minimal extension of T(2} which is fixed
by T3 =0. This Fock-space extension of T(2} is minimal in the sense that only the
given two-point-functional T2 and some combinatorial objects which take care of
locality are involved.

Another way of constructing the Fock-space extension is to use in Theorem 3.1
a special matrix meD(E'}\

00

τ(ϊ\x) as in Theorem 3.1 {a(j\ a(j] + } a suitable matrix realization of the canonical
commutation relations.

As a last point of this section we indicate the main differences of the extension
problem of T(2N} for N ̂  1 and N > 1:

(α) For N ̂  1 the obviously necessary continuity conditions on T(2N) of type
(29) are implied by monotonicity T(2N}^0 but not for AΓ>1. For N>1 these
continuity conditions are independent restrictions.

(β) For JV^l the linear function A^:E1-^L(V0, V±) which yields 7J2) in the
canonical pre-Hilbertspace realization is always a bounded operator valued
function [realization (40)]. Therefore a lot of minimal and thus also non minimal
extensions always exist in this case. For N>1 this is not necessarily true (see
examples of Part II).

(γ) The possibility (C) of Theorem 1.4 of Part II (e.g. there is no extension at
all) is excluded in a trivial way for N^l.

4. The Problem of Monotone Extensions for £^(C (Moment Problem)

This section is intended
a) to illustrate how the idea of minimal extensions works in the simplest case,

e.g. in the case where E1 is one-dimensional: El = (Le1.
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b) To show how one can construct all m.c.l. extensions in this case knowing all
minimal extensions and

c) to determine the structure of elements in SDl̂ C).
Of course it would be very helpful to know the structure of elements in Sϋt^E')

for general E. This analysis gives a hint what one can expect.
For £1 =<Ee1 we have En = <Een, en = e1 ® ... <g)e l 9 n-times and the topology of

the locally convex direct sum

is defined by all sequences {cn^O}neN according to the definition of continuous
seminorms

«c»ω= Σ cjzj.
n=0

With the definition of the product (ζ-z)n= Σ ζv

z

μ

 and the involution
v + μ = n

00 \ ίfc 00

Σ Wλ = Σ ϊ,en

E becomes a *-algebra with unit. Clearly all En are barreled and nuclear; thus our
general assumptions on E are fulfilled, e.g. £ is a barreled nuclear locally convex
* -algebra with unit.

Clearly the normalized m.c.l. functional ί = {l,ί l5ί2, ...}e£'+ ί on E and the
sequences c = {l5c l 5c2, ...} of positive type, e.g. those sequences c such that for all
TVeNand all {z0,zl5 ...,zN}e<CN+1 we have

Σ zncn+mzm^0 (42)
n,m = 0

are in a one to one correspondence according to cn = tn(en) for all neN. Therefore
in the case E^ ^C Theorem 1.2 is a characterization of sequences of positive type:

Corollary 4.1. 4 sequence c = {l,ci9c29...} is of positive type if and only if there is
an element m in S U l C ) such that

and
00

n+ 1 L-ί Ojl J1J2 ' ' ' jnO '
jl, . Jn=0

But this is nothing else than the well-known [23] result :

Corollary 4.2. A sequence c = {1, c1? c2,...} is of positive type if and only if there is a
symmetric operator A in some separable Hilbertspace Jf which contains a cyclic
unit-vector e0 for {An\n = Q, 1,...} such that

This in turn can be used to show (see Appendix):
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Proposition 4.3. Each meSDΪ^C) is unitarily equivalent (in the sense of von
Neumann) to an element αeSOt^C) in standard form

a =

0̂0

a
ιo

0

0

a
oι °

a
il

 a
ί2

a
21
 a

22

0 a
32

0

0

α
23

«33

0 ...

0 ...

0 ...

α
34
 ...

Knowing the standard form of elements in SDt^C) we can determine all m.c.l.

extensions of a given t(2N) = {l,cl9 ...,c2N}<EE'(2N}^1R2N+1 such that
(2N)

(2N}^Q, e.g.

N

Σ (44)
= 0

To solve this problem we have to find all real numbers cn, n = 2N±l9 2N + 2,...
such that c = {1, cί, c2,...} is a sequence of positive type in the sense of relation (42).
According to Theorem 2.1 we know that by assumption (44) there is a continuous
linear map Φ(N) from £(N) onto some pre-Hilbertspace VN = (Φ(N}(E(N}), < , >(JV))
such that

(45a)

(45b)

(45c)

= / z ζ, (Φ (e ) Φ (β )/*/
n,m = 0

.g. cn + m = <Φn(en), Φm(em)y^N) for all n, me {0,1,..., j

FN is spanned by {Φ0(β0),..., Φjv^)}.

To apply the idea of minimal extensions we have to construct a symmetric

operator A(N} in VN such that

Φn(eJ = A»(N)Φ0(e0) n = 0,l,...,N (46a)

holds, and then the definition

cn = <Φ0(β0), ̂ ?N)Φ0(β0)>(N) n = 2ΛΓ + 1, 27V + 2,... (46b)

yields a minimal extension. The following proposition says that this always works.

Proposition 4.4. Given a sequence ί(2]Y) = {l,c1? ...,c2N} of real numbers which
satisfies condition (44) there exist minimal extensions of t(2N} which are constructed
according to Equation (46).

a) // VN is spanned by {Φ0(e0)9...,ΦM(eM)}, M<N (notation of relation (45))
there is exactly one m.c.l. extension and this is a minimal extension of t(2N}.

b) // dim(VN) = N+l the cardinality of the set of all minimal extensions of t(2N}

equals the cardinality 0/R The most general m.c.l. extension of t(2N} is obtained
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according to Corollary 4.1 by an element meSϋΐ^C) such that
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α
00
 α

01

α
10
 α

u

0. α
21

0

0

α
12

α
22

o.
o

0

α223

aN+l,N N+l,N+l

w/iβrβ αnm

arbitrary.
^m^JV-l is fixed by t (2N} and = a s

We prove Proposition 4.4 in the Appendix.

Remark, (a) In Part II we derive explicit conditions on ί(2JV) (for general E) which
allow to distinguish case a) and b) of Proposition 4.4.

(b) Another version of the existence and uniqueness part of Proposition 4.4 is
for instance contained in [22,23].

(c) Notice the simple connection of the extension problem for El ^(C with the
extension problem in the case of a general HLCTVSE^ Given T(2N}e E'(2N},
T(2N} = Q> and x* = xeE1 define

then ί(2jv) = {l5c1, ...,c2jv} is a sequence of real numbers which satisfies relation
(44). Thus for each fixed x* = xeEί we know all the solutions of the extension
problems. Therefore to solve the extension problem for T(2N} means to find
conditions which imply that these various extensions fit together in a proper way.

Appendix

This appendix contains the proofs of the statements of Section 4.

Proof of Proposition 4.3. According to Corollary 4.1 and 4.2 an element m in
SPΐ^C) can be thought of as the matrix representation of a symmetric operator in
some separable Hilbertspace ffl with respect to an orthonormal basis
{en;n = o,ι,2,...} °^ ^ in tne domain D(A) of this operator A: mίj^=(eί,Aej)
z,7 = 0, 1, ... such that e0 is cyclic for {An\n = 0, 1, ...}. Then we know that
{Ane0\n = Q, 1,2, ...} contains a basis of 2tf contained in D(A). By orthonormali-
zation of this basis we get an orthonormal basis {/0 = ^o?/i'/2? •••) of J^ in D(A}\

fn= Σ Σ
7 = 0

= Σ (A.1)
7 = 0
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If we calculate now the matrix representation of A with respect to the basis
[ f o , f ι , . . . } C D ( A ) we obtain

m i+ 1

(fn,Afm)= Σ« m i Σy ; +ι,A; (A 2)
i=0 7 = 0

and therefore (/„, Afm) = 0 whenever n ̂  m + 2 and thus by symmetry of A

(fn,AfJ = 0 if |n-m|^2.

This shows that (m^ ) and (atj = (fb Af^j) are unitarily equivalent in the sense of von
Neumann and that a = (atj) has standard form.

Proof of Proposition 4.4. If ί(2JV) satisfies (44) it has a canonical pre-Hilbertspace
realization FN such that the relations (45) hold. Let us denote fn = Φn(en),
n = 0,...,JV.

a) If VN is spanned by {/0, ...,/M} we obtain

M
f n = Σ β n J f j M+ί^n^N. (A.3)

.7 = 0

Therefore the definition of A(N} is already fixed by condition (46a) :

Amfn-,=fn n=ί,...,M
M

The relations (45b) imply that with this definition A(N) is a well-defined symmetric
operator in VN. These relations also imply that the Equations (46a) are also fulfilled
for n = M+l, . . . ,ΛΓ:

If M = N—1 this is the case according to definition (A.4). If M<N— 1 we
calculate for arbitrary

using (45b) and the definition of ^(]V)<^/M+2>(]v) = <^^(2]v)/M>(]v) thus

Λ2N)/M = /M+2 If M<N — 2 a finite number of similar steps yields the result.
Therefore there is a minimal extension of t(2N) in case a) of Proposition 4.4.

Suppose now that ί = {l,c l 5c25 ...} is any m.c.l. extension of t(2N). It has a
canonical pre-Hilbertspace realization Vt = (Φt(E\(', yt) and we may assume
ΦtlE(N) = Φ(N). Otherwise we had to do a unitary transformation in VN. Then we
have vectors /„ = Φn(en), n = 0, 1, 2, ... in Vt and a symmetric operator A:Vt-*Vt such
that fn+ι=Afn w = 0, 1 5 . . . holds. Together with (A.3) this implies /MeFM for all
n ̂  M + 1, e.g. Vt=VM=VN; that is ί is a minimal extension of ί(2N). Then it is clear
that A is fixed by its action on VM, e.g. by A^ therefore there is exactly one m.c.l.
extension of t(2N).

b) If VN has maximal dimension N + 1 the condition (46a) defines the operator
A(N) in FN we are looking for only on the proper subspace V N _ 1 =lin{/0, ...,/N_1}.
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If we orthogonalize the basis { f 0 , . . . , f N } of VN we get an orthonormal basis

{9o=fo,9i,~;dN} such that

n n

9n= Σ *njfj> fn= Σ 7n A" - (A.5)
j = o j = o

A calculation just as in the proof of Proposition 4.3 shows that all matrix elements
of A(N} with respect to the basis {g09...9gN} are fixed with the exception of

(N)= Σ ^mi Σ ^+l,Aj
i = 0 7=0

m = 0,l,...,N-l; n = 0,l,...5 J V . (A.6)

Each choice <gN9A(N)gNy(N) = aNN is possible and fixes c2]V+1 = <fN9 A(N)fN\^ and
is in turn fixed by choice of c2N+1. Thus each choice of c2]V+1eIR defines a
symmetric operator A(N} in F^ such that (46a) holds. This proves the first part of
Proposition 4.4b).

Each infinite matrix of the form described in Proposition 4.4b) where the anm

n = 0, . . . , JV; m = 0, . . . ,JV— 1 are calculated as in (A.6) yields according to
Proposition 4.3 and Corollary 4.1 a m.c.l. extension of t(2N). Again by Proposition
4.3 and Corollary 4.1 we see that any extension of ί(2jv) can be realized in this way.
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