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Abstract. We study some properties of the time evolution of an infinite one
dimensional hard cores system with singular two body interaction. We show
that the Liouville operator is essentially antiselfadjoint on the algebra of local
observables. Some consequences of this result are also discussed.

1. Introduction

In the last years the time evolution of infinite classical particle systems has been
studied by various authors [1-8]. The main problem to solve was to give an
existence theorem for the infinite equations of motion which formally read as:

(1.1)

where q(ή={qi(t)}i

ί=^ and Jp(ί)Ξ{pf( ί)}ί=ΐα are respectively the positions and
momenta of the particles and Fi(q(t)) is the force on the "i-th" particle induced by
the others, and pi,qi are the initial data. A trajectory (p,q)-*(p(t),q(t)) satisfying
Equations (1.1) for all ίelR may be found if we make suitable hypothesis on the
interactions and on the regularity of the initial conditions (p, q). The set X of these
couples (p, q) (phase points) is large enough to have full measure with respect to the
equilibrium measure v, and this allows to construct a triple (X, St, v) where 3£ is the
phase space and St is a v-almost everywhere defined one parameter group of
v-invariant transformations satisfying Equations (1.1). Nevertheless till now very
little is known about the physical properties of the dynamics; for example it is
possible to exhibit explicitely the initial conditions xeX for which SjX is defined
only in the one dimensional case [1,7] and, by the choice of particular interactions,
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at most in two dimensions [8]. In the other cases [2-6] one may show that a v-full
measure set of initial conditions can evolve, but it is not possible to characterize
explicitely the initial phase points.

A Cauchy problem which is related to the dynamical problem (1.1) is the
following:

-f=^r
at

(1.2)
/f = o = / /eL2(£,v)

where <g, the Liouville operator, is defined as:

(1.3)

and makes sense as an antisymmetric operator in L2(X, v) on a suitable algebra of
functions 9lcL2(3£, v). Each function in 91 depends only on the coordinates of
particles that fall in a fixed bounded region (see Section 2 for a precise definition) so
that the series in (1.3) contains only a finite number of elements different from zero.

It is possible to show [9] that if <£ is essentially antiselfadjoint (e.a.s.) on 91, there
exist a dynamical flow (3£, 7J, v) such that :

(Utf)(x)=f(Ttx), ίGR, xeS, /eL2(S,v) (1.4)

where Ut = eP* is the unitary group generated by the closure of <£ and Tt = St if St is a
solution of the problem (1.1). In this paper we study the essential antiselfadjointness
of & on 91, starting from a solution of Equations (1.1) for a particular interacting
system. Such problem was discussed in [10] and solved for the free gas case.

The most relevant consequence of being 3? e.a.s. on 91 is the essential locality of
the motion.

For finite systems in open bounded regions, the knowledge of the vector field
(forces and momenta) at any point of the phase space is not sufficient to determinate
the motion, since we have also to specify the boundary conditions in fact each of
them give a different generator for the motion, which reduces to the usual Liouville
operator on the algebra of the differentiable functions with compact support.

In analogy with the finite case we may conclude that the antiselfadjointness
property means that the "boundary" effects which arise from the infinity will occur
with probability zero. An example of these effects may be found in [4, p. 50].

Finally we remark that the e.a.s. property implies also a particular kind of
unicity for the motion. In fact, if 5£ has different antiselfadjoint extentions, it could
be possible to have other dynamical flows different from Sr A result in this direction
has been obtained by Lanford [4, Proposition 3, p. 60], who proved the unicity of St

in the class of the v-preserving a.e. defined flows that satisfy the equations of
motion.

In this paper, we study a one dimensional infinite hard cores system interacting
via a singular two body potential with finite range.

Using a recent result of Dobrushin and Fritz [7] we prove the e.a.s. of 5£ on an
algebra of local functions. The crucial point is the knowledge of the time growth of
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the mean energy in order to obtain an estimate on the derivatives of the position and
momentum of the particles w.r.t. the initial data.

We shall consider a class of invariant states, containing the equilibrium ones, on
which we impose some technical requirements. In Section [5] we use the results of
this paper, together with those of [11], and we prove that the only stable (w.r.t. local
perturbations) state in the class under consideration, which also satisfies some
ergodic properties, must be an equilibrium state.

In Section [2] notation, definitions and results are stated, in Section [3] we
derive the estimates on the derivatives in order to prove in Section [4] the main
result of this paper. The Appendix is devoted to the short proofs of substantially
already known results that we report for sake of completeness.

2. Notation, Definitions and Results

Definition 2.1 (Phase spaces). Let A ClR be a Borel set; we will denote by X(zl) the
phase space of finite or countably infinite hard cores in A :

= [x = (q(x), p(x))\q(x) = {fc}, p(x) = {pj, ie Z

-qi<qi+1,qieA,\qi-qj\>o if i Φ Λ f t e l R } .

Here qi denotes the position of the "z-th" particle (the particles are ordered denoting
by q0 the first one on the right of the origin) pt its momentum and δ the hard core
length.

In what follows we will put 3E = 3E(R). If A is bounded, then X(A) may be thought

as U ίj „, where XA n is the subset of the symmetrization of (Δ x 1R)" satisfying
» = o

the hard core condition, and ϊ j>0 consists of only one element which describes
the vacuum in A. A mapping ΠΔ:X->X(A) is defined, where ΠΔ(x) = xΔ

= {(pi,qi)\qieq(x), q^A}. Furthermore 3E may be canonically identified with the
subset of 3E(J) x H(ΔC] (Δc = R— A) consisting of all the couples (x, y) = xu_y, xe3E(/4),
yeX(Ac}, compatible with the hard core condition.

Definition 2.2 (Topologies and σ-algebras). A metrizable topology is given on each
%(Δ\ specified by means of the following convergence : a sequence {xn} C X(A) is said
to converge to xeX(A) iff for all open bounded sets Ac A such that q(x)ndA = 0
then:

i) q(xn)r\A-*q(x)r\A point by point in IR and

ϋ) P(xn)\q(Xn)nΛ -+P(χ}\q(X}πΛ poίπtwise .

In the sequel we will consider measures defined on the σ-algebras ΣΔ of all Borel sets
of X(zl). W e p u t Σ s Γ R .

For any Borel bounded set A ClR let us denote by ΣΔ>n the σ-algebra of the Borel
sets in XA n then ΣΔ may be defined alternatively as :

It is not hard to see that the ΣΔs generate Σ.
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Definition 2.3 (Interaction). The interaction is described by a two body potential φ,
φ:(δ, + oo)-»IR satisfying :

i) lim φ(r) = + oo

ii)

in) φ(r) = Q if r^Ri

iv) there exist constants A, Aί9 A2, Bί9 B2, λ, σ, λ>0, 2>σ>l, such that:

we note that the above conditions are fulfilled iϊφ(r) ~(r—δ)~δ near r = δ, with λ > 2.

Definition 2.4 (States). A state μ is a probability Borel measure on 3£. £ is regular
enough so that there exist the conditional probabilities μΔ(dx\y) of μ w.r.t. any
ΣΔC μΔ(dx\y) may be thought for μ^-almost all yeX(Δc) as a probability measure
on 3£(/d). μΔC is the probability measure induced by μ on X(AC) via the projection ΠΔC.

Furthermore μΔ(dx\y) is concentrated on the configurations xeΐ(zl) compatible
with y, and it results, for any bounded measurable function / on £ :

Sf(x)μ(dx)= J μΔC(dy) j μ(dx|j;)/(xu3;).
X 3(je) 3e(J)

Definition 2.5 (Equilibrium states). A state v is called an Equilibrium State for the
potential φ with inverse temperature β and chemical potential μ [12], if its
conditional probabilities are : (A Borel bounded set)

dx

where: (m is the mass of the particles)

H(xΔ\y)= Σ PΪ/2

dxΔ is the measure on X(A) given by:

^
dxj = l+ 2,

n= 1 ^'

and ZAC(v) is a normalization factor.
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Definition 2.6 (The reduced phase space 3E). We define:

β(x;μ,σ)= £ —^ + - £.ΦJ.
\ql-μ\<σ 2m 2 l^-μ <σ

\qj-μ <σ

Bis a constant such that Q(x μ, σ) ̂  0, for technical reasons we fix B = B 1 R/A 1 δ (see

[7])

Q(x)= [(sup sup (β(x;μ,σ)/2σ)Wl
[\ μ σ>log + μ /

is a Z-measurable function and hence the following set

is measurable.

Definition 2.7 (Regular states). A state μ is called a regular state if:

i) μ is locally absolutely continuous with respect to the Lebesgue measure i.e. its
conditional probability μ(dx\y) as measure on X(A) is absolutely continuous with
respect to the measure dxΔ (see Definitions 2.4 and 2.5).

ii) There exist positive constants bί sufficiently small b2 sufficiently large, and
b3, such that:

μ({xe 3E|g(x)n [η - σ, η + σ] = 0}) ̂  exp - b3σ .

It is an easy consequence of Definition 2.5 that every equilibrium state is regular [7].

Lemma 2.1. Let μbeα regular state. Then there exists a constant a (depending only on
μ) such that:

and hence μ(X) = 1.

Proof. See the Appendix.

Definition 2.8 (Partial dynamics). A function:
p"(f))|!ϊ ί ̂ , αeIR is called a partial dynamics if it is the solution of the following
integral equations :
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where

5ίfα(*) = ° ifeither 0 j+1£[-α,α] or ^--^[-^α]

= 1 otherwise .

Definition 2.9 (Dynamics). A function:
with values on 3£ is called a solution of the motion equations i f :

We shall use the following version of a theorem due to Dobrushin and Fritz [7].

Theorem 2.1 (Dobrushin, Fritz). There exists a one parameter group of continuous
transformations :

S(ί):£-»ί, teiR such that x(t) = S(t)x

is a solution of the motion equations. Furthermore :

i) For all teR

lim xα(ί)= lim S*(t)x = x(ή;
α-> oo α— > ex)α-> oo

where ξ = 31 — : — I and JΓ(ί) is a continuous function of t.
\ λ /

Proof. See the Appendix.

Definition 2.10 (Koopman unitaries). Let μ be a regular, invariant state [i.e.
μ(StA) = μ(A)) for all Borel sets A, and ίeIR]. For all /eL2(£,μ), we define:

(Utf)(x)=f(Stx)

It is easy to verify that Ut is a strongly continuous one parameter group of unitaries

Definition 2.11 (The class $). We will be interested in the following to a particular set
of regular invariant states with an additional regularity property with respect to the
partial dynamics.

We define :

^ = {μ\μ is a regular time invariant state for which there esists a real bounded
function t->Hμ(t) not depending on α, such that μ(S"(t)A) ^Hμ(t)μ(A) for all
AeΣ}.

If μe^?, the operators :
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are uniformly bounded operators in L2(£, /Ό and furthermore :

L2- lim UΛ(t)f=V(t)f

as consequence of Theorem 2.1 and dominated convergence theorem. We observe
that & is non void because it contains at least the equilibrium states that are 5α(ί)-
invariant as a consequence of Definition 2.5 and the Liouville theorem.

Definition 2.12 (The algebras 91 and 91). We define the algebra 9I(/L) of the functions
/: £-»C described in terms of potentials {F(m)} via the formula:

/(*)= Σ Σ F(n\X"), xeϊ, Xnε(ΛxK)T
n ^ O X n cx

where F(n) are C°°, complex functions symmetric and with compact support in

(Λ xR)Λ. We call 91 = (J 9I(Λ) the algebra of local observables. Note that, 91 is a
Λ

complex algebra of bounded functions because of the hard core condition. We
consider also the algebra 91 of the functions generated by potentials F(n) that are C°°,
complex symmetric functions in (IR x R)" with compact support in the region in
which \qi~q j\^δ and possibly diverging, together with all the derivatives, at
kί ~~ 4/1 = <5 at most as a power. If μ is a regular state, then 91 C 91 C Lp(3E, μ) (p ^ 1). We
finally remark that 91 is L2(ΐ, μ)-dense. It follows by observing that the Σ^'s
generate Σ and that any bounded measurable function on X(Λ) (thought of as
function on 3E) may be pointwise approximated from below by a sequence in 9ί(/l).

Definition 2.13 (The Liouville operator). We introduce an operator ^:9Ϊ->9ί
defined by

The above sum is finite since / depends explicitely only on a finite number of
coordinates.

For any μe^ we consider the antiselfadjoint operator J^ that generates U(t) in
L2(3£,μ). Then

Definition 2.14 (Poisson bracket). A bilinear form {•, •} :9I x 9I-»9Ϊ is defined

As in Definition 2.13 one realizes that the above sum is finite. The main theorem of
this paper is the following

Theorem 2.2. // μe^2 then 91 (and hence 91 J is α core for in L2(3£,μ). TTiαί is
dβnoίes the closure of the restriction to 91 of £.)



120 C. Marchioro et al.

3. Estimates on the Derivatives

In this section we derive some estimates crucial for the proof of Theorem 2.2. Let us
first define the quantities we want to estimate. We shall consider derivatives of

q*(x, t\ p"(x, t) with respect to some coordinate qjt We note that — l—- - — , — * ' .

exist only for those configurations xeί such that ^-(x)Φ ±α. Otherwise q*(x, t) as
function of g, will not be continuous. Let us fix ^elR and y e [ — η, η], and put α(n, 7)
= n + y, ΠE TL^ . In the sequel we will put α = α(n, y). The set 3Ey = {XE 3E|g(x)n ± α = 0}
has μ measure 1, if μ is a regular state, as follows by Definition 2.7, i), and

- , t) δpα(x, t)
furthermore for all xe£v, — r— ̂  — , — — - — make sense. For any t >0, xejL let us

39j 3«j
put

</x,.)-^ <A.)-^ (3.1)

< /x, ί) = (K/x, ί)l v K/x, ί)|) (3.2)

(3.3)

where the suprema are taken on the set of indices i for which q*(x, t)eΛ = [ — λ, λ]
and on the set of indices j of the frozen particles.

Finally we define

φa(x, t) = sup sup φ£/χ, ί) (3.4)
i J .

where the suprema are taken without any condition

Proposition 3.1. Let μe& for all t, λ,η,b>0 and p^l we have

sup \\φn

λ

+*( ,t)\\p = Q
n- αo yet-1,1]

where \\ \\ p denotes the Lp-norm.

Proof. By Definition 2.8, 3.1, and 3.2

(xeXy) = u^(x,t) = δί j + 9t β(x)}ds«f /x,s)

(3.5)

^/x,ί) = θ(β(x)Jds/-Fί(x«(s))
o 0<fy

where F;(xα(s)) is the force on the i-particle induced by xα(s). Then

J.(x,s)|

(3.6)
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, ί'Φ/C

(3.7)

fcφi

Then by Definitions 2.3 and 2.6

Σ(B2+A2)φ(q«(s)-q«k(s))
/ c φ i

and hence here exists a constant c l s not depending on x and s such that:

and therefore there exists c2 such that:

u*(x,t)^l+ $dsva(x,s)
0

, s)

(3.8)

(3.9)

(3.10)

where :

ua(x, t) = sup sup |M*/x, ί)|

Therefore :

φ«(x, ή^]/^ (β(xα(ί)) log+ α)σ/2 exp |/^ } ds(Q(x«(s)) log+ α)σ/2

o
and hence by Theorem 2.1

On the other hand by (3.6) and (3.8) we obtain :

0

«fj.(x, 5)

(3.11)

(3.12)

(3.13)

(3.14)

where £ means we sum on the indices of those particles that interact with the "f'
it

particle at the instant s. Now we consider those configurations belonging to the set

n
r1 and

Since we are interested in those φ* j in which the "Γ particle is in [ — A, λ] at the
instant ί and ̂  is frozen, ^ .̂ = 0 in (3.14) if α is large enough. We may iterate the
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inequality (3.14) with δkj = 0 until the index k may be equal to j. Successive
iterations will not give any substantially better estimate than the a priori one (3.13).

With a fixed energy density Q(x\ any particle may not move too much because

of Theorem 2.1, and so the number of admissible iterations is greater than — -
2(Vt + R)

where V is the maximum of the velocities. Since:

V^ sup l/-β(xα(s))log+α (3.15)
o^s^t ]/ m

we may find a constant c3 depending only on m, ί, λ, such that the number k of the
iterations may be chosen :

k = integer part of cλ - , v 1 . (3.16)
'

So we have, by (3.13) and (3.14):

φl(x, t)^~ c* (β(xp logoff JίT(ff(2R/δf

•exp J / { ( u T ( 0 + l)(2Mw2(log+αr/2} . (3.17)

And hence there exist constants c4 and c5 not depending on x such that:

~ ~

^2} . (3.18)

We shall use this inequality to estimate φ\ for Q(x) not too large. Otherwise, as we
shall show below, we use the inequality (3.12).

Combining (3.15) and (3.18) one has:

φa

λ(x, ί)^exp<c3αlogc4/β(x)^/2(log+α)1/2

I

7log+ log+α

(3.19)

with c6, c7 not depending on x.
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Putting Q(x)ii(loga)z, where / will be fixed later, we obtain for n large enough
and suitable constant c8(l) < 1 :

(3.20)

On the other hand by (3.12)

<χ|CW><iogsθ'}
\φl(x,

(f)) log+ αΓ/2 ds[_Q(x«(s}) log+ α] (3.21)

where χ is the characteristic function of the set {x|βW>(logαy}. By the Jensen
Inequality and Fubini Theorem the above quantity is bounded by :

α(ί)) log+ αΓ/2 expp α(5) log+ (3.22)

Finally using the Schwarz inequality and Definition 2.11 :

sup
o

>c)exp4p

^c9(log+αpσ exp-αr

-ar}1/4

J
(3.23)

where c =

c10 and

sup Hμ(s)
1/2 ) Hence there exist two positive numbers

not depending on α and x such that

ί \<P*λ(x, t)\pχ(x)μ(dx) ^ exp { - c10(logny + c
2 -σ)} . (3.24)

We now fix / > σ/(2 — σ) so the above quantity goes to zero for n-> oo more rapidly
than any power of logrc and hence:

(log n)bp\\ φ\( . , ί)||̂  (log nfb f |φ«(χ,

+ sup MCx, ί)plβW^(logαy

+ sup {<#(*, ί)p|β(^) ̂  (log α)' , xe

α = ft + y ye[-j/,ί/]. (3.25)

So the thesis in Proposition 3.1 is easily obtained by the use of the estimates (3.20),
(3.24), (3.13), and Definition 2.7.
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4. Proof of Theorem 2.2

We shall use the following Criterion :
Let § be a complex Hubert space, U(t) = exp (iHt) a strongly continuous group,

and ^C^(H) a dense set.
Then S> is an essentially selfadjointness domain for H if U(t)Ψ'e@)(H[g) for all

ίeIR, Ψe@.
The criterion may be proven by adapting Theorems VIII. 11 or X.49 of [13].
In virtue of the above criterion, the proof of Theorem 2.2 will be achieved if we

show that for all /e 21, ίeIR it is possible to find a sequence {!„}£= 1 C2I such that
\n-*U(t)f,&\n^&V(t)fm L2(X,μ) for π^oo.

A natural candidate for {!„} would be {Un(t)f}, but Un(t)f, neZ+ does not
belong to 2ί because is not continuous, so we must regularize the sequence { Un(t)f}.
Let us fix fe!R,/e2I([-Λ,,λ]) and define for n>λ:

(Vn(t)f)(x) = I (Un + 7(t)f)(x)g(y)dy , xeX (4.1)

where 0 ̂  0 e cj^ [ — 77, 77], J gdy = 1 , and 2η<δ. Then for all x e £, n e Z + , there exists at
most two values of y, denoted by yn

+(x), 7~(-x)C[ — η,η] (one for side), for which

4iM = 7n (χ) i n f°r some ϊ» and hence — ̂ -^/ M does not exist. So we have:

', 1-

= I dyg(j) -^(un+7W/)(χ) + s* (n, x) (4.2)

where :

S±(n,x) = ̂ (7±(x)) lim

-0 if ζf(x)n[±n-f/, ±n + η = φ. (4.3)

It is easily seen that Fπ(ί)/e2I.
Defining

we see that K[ y(x) exists for almost all y and it results

l&(Vn + y(ί)/)] W = ί K1,,, 7(x¥v)dy + H((x, n) (4.5)

where we have posed :

Ht(x, n) = Sr

+ (π, x) 4- Sf" (n, x] . (4.6)
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For all y for which -—(Un + y(t)f)(x) exists we have:

dq. W)/M=Σ*£
df

(4.7)

where £* means that we sum on the indices of the moving particles. So:

cpi

=y*y*

f(t>

Spi x- .w ύci,i

where '̂ means that we sum on the frozen particles.
ί

The first term in r.h.s. of (4.8) is just [/n + y(ί)^/so, calling

the second term in r.h.s. of (4.8), we have:

(4.5) = I ([/„ + ,{t)^f)(x)g(y}dγ + $ F'n + ,, (x^(v)dy + Ht(x, n) .

If heB, then:

- Va(t)h\\ 2 = I μ(dx)| j dγg(γ)(U(t)h)(x) -(Un + y(t)h)(x)\2

£ I μ(dx) I dγg(γ)\(U(t)h)(x) -(Un + Jι}(x}\ 2

.0

(4.8

(4.9)

(4.10)

in virtue of Theorem 2.1, so the proof of Theorem 2.2 will be completed if we show
that the last two terms in r.h.s. of (4.9) go to zero as n-* oc in L2(£, μ) norm. On the
basis of Theorem 2.1 Ht(x,n) - »0 for a.e. xe% with the following bound:

f(jc,«)|^ sup (4.11)

so by dominated convergence theorem Ht( , π)->0 in L2(3£,μ). Finally, because ]Γ*

and ^7 contain respectively no more than 2λ/δ and R/δ terms, if {/fe^~ is a constant
greater than any derivative of/; we obtain: [Vy such that q(x)nn + γ = &]

(4.12)

with fc2 a suitable constant.
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But, with similar arguments leading to (4.10) one obtains:

_sup< \\bn+y\\*2

^2ηk2\\g\\aΰlog+n\\Q\\2 suP< \\φ»λ

+*( 9 t ) \ \ l . (4.13)

Therefore, using Proposition 3.1, we conclude:

L2 - lim & Vn(t)f = & U(t)f. (4.14)
W-* 00

5. Concluding Remarks

In this section, we discuss a consequence of Theorem 2.2. Before this, we make some
comments about the result obtained. The same techniques used in this work may be
applied to the dynamics of some anharmonic systems whose existence and unicity
was discussed in [14]. The crucial point of our proof seems to be the good estimate
(see Theorem 2.1) of the growth of the particles velocity in time and besides some
technical difficulties, our approach seems applicable when one has a behavior not
faster than a polynomial.

We conclude by applying Theorem 2.2 to the problem of characterizing the
Equilibrium States in the class of all the stationary ones by means of a notion of
stability [15, 16, 11]. We call a regular state μe& stable if:

i) For all/eSΪ there exists a state μλf formally invariant for the time evolution
generated by j£? + /l{ ,/} i.e. μλf(£?g + λ { g , f } ) = Q for all

— 1
exists in L2(X,μ).

iv) The derivatives iii) is continuous in / in the L2(3£, μ) sense.
Then:

Theorem 5.1. Let μ be a stable state in &. Let us suppose ££ such that 0 is a simple
eigenvalue of 3? (ergodίcity), and Sp^ = R Then μ is an equilibrium state.

Proof. One easily verifies that all the hypothesis in Theorem 2.1 in [1 1] are satisfied
so μ is K.M.S. The equivalence between K.M.S. and the equilibrium condition has
been recently proven fully [17].
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Appendix

Proof of Lemma 2.1. By Definition 2.7 and Tchebyshev inequality we have:

b^seb2* (A.I)
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But:

U U ί*\Q(x 11, V ̂  2σ(s -1)} .
η σ>log+η

And so

Σ Σ en(b<-b5S}^μ({x\Q(x)^s})
k = — oo n > log + k

127

(A.2)

(A.3)

where b5 and b4 are constants, b5 taking in account that we sum over integer
numbers. Hence there exists a constant α for which the statement in Lemma 2.1
holds.

Proof of Theorem 2.1. The proof of Theorem 2.1 is essentially contained in [7]. Here
we sketch only the proof of ii) and iii) that may be obtained by a slight modification
of the ideas contained in that work. Let us define:

sup ? v l (A.4)

where :

mvf+ (A.5)

(A.6)

with/Xy,cr)ec°°(IR2), yelR, σ>0 satisfying the conditions:

i) f(y,σ) = ί if \y\^σ,f(y,σ)=Q if \y\^<
5 _ 8

d

:, and

yi = q{-io (A.7)

qt being the coordinate of the "Γ particle.
W^is a smooth version of β which takes in account the presence of the excluded

volume
The comparison between Q and W is given by the following Lemma:

Lemma A.I. There exist two constant aί9 a2 such that Q(x)^q^co implies W(x]

if σ > R and y^u^z^

Proof. It is sufficient to explicit the proof of Lemma 2 in [7]. Now we are able to
prove Theorem 2.1. It is shown in [7] that Wm does not increase to much in time
uniformly in partial dynamics (Definition 2.8) :

Wm(x«(t\ σ) ̂  Wm(x, r(0)), x = (A.8)
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where r(t) is defined by the following integral equation :

r(t) = σ + 2(A1 + ί ) ] Vm(x«(s\ r(s))ds ( A.9)
ί

where :

Vm(x\t\ σ) = \_ΊW(x\t)) log + (\qm(t)\ + σ + 3Λ)] 1/2

(A.lψ

Because r(0) = l°g+#m if σ^log+(g-(ί)), it results:

Mxa(T))^Mx) sup j^H. (A. 11)
σ^iog + («m(Γ)) [ σ J

Using the subadditivity of log+, Equation (A.7) and the fact that:

we have (with α3,α4 constants large enough):

r
r(0) ̂  σ + 23/2(>l1 + 1) J W1/2(xa(s)){\og+ r(0) + α3σ

o

3

o
log+ r(0) + α3 Wll2(X

x(s))ds σ .
I (σ

Putting

L= sup j- |̂ (A.14)

then for all ε :- >ε>0, there exists a5 such that:

\T Ί l / d - ε )

^(α5)
1/(1"ε) \$Wll2(x«(s))ds+l\ (A. 15)

Lo J
Using (A.8) one obtain:

m^(Γ))^(α5)
1/(1"ε)[ί

Lo
W(x). (A. 16)

This is an inequality, which bounds the grow of W(T)

W(x"(t)) ^ 3Γ(t)W(x)(2 ~ 2ε)/(1 ~ 2ε) (A. 17)

with jΓ(ί) continuous function on t. By Lemma A.I, ii) proven. Then we have found
an a priori bound on the grow of Q(xa(t)) (uniformly on α) and so the possible
displacement of every particle is bounded. The whole Theorem 2.1 is then proven
following [7] or using an iterative method like [3, 5].
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