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Power Spectra of Nonlinearly Coupled Waves

J. Sherman and J. McLaughlin
Department of Physics, Clarkson College of Technology, Potsdam, New York 13676, USA

Abstract. Swinney et al. (1977) have found that turbulence in rotational Couette
flow results from a small number of instabilities. They have raised the question
of whether these instabilities conform with the ideas of Ruelle and Takens
(1971). We show that a simple model of the Couette flow yields power spectra
similar to those seen in the experiments. The model is consistent with the Ruelle
and Takens picture.

1. Introduction

Recent experiments on circular Couette flow by Gollub and Swinney [1] and
Swinney, Fenstermacher, and Gollub (SFG) [2] have revealed a series of transitions
in the power spectrum of the radial component of velocity at a point midway
between the two cylinders. At low Reynolds numbers, these investigators find
spectra consisting of spikes. The spectra correspond to periodic or quasiperiodic
motions of the fluid. At a well defined Reynolds number, the spikes disappear
leaving a series of broad humps in the power spectrum. (Only one hump was visible
in the earlier experiment.) It has been asked whether these broad power spectra
might be produced by a "strange-attractor" [3,4] solution of the governing
equation. We have constructed a simple model of nonlinearly coupled waves which
has stochastic solutions when three or more waves have sufficiently positive growth
rates. The power spectra of these systems is qualitatively similar to those observed
by SFG.

2. The Model

A realistic theoretical study of the Couette flow transitions observed by SFG would
require solution of the three-dimensional Navier Stokes equation. However, it is of
some interest to investigate whether nonlinear coupling between a small number of
waves could yield broad power spectra similar to those observed by SFG.
Photographs of the flows studied by SFG reveal phenomena similar to those
observed by Coles [5]. At low rotations speeds, the flow is azimuthal. As the
Reynolds number is increased, Taylor cells appear in the flow. The next instability

0010-3616/78/0058/0009/$01.80



10 J. Sherman and J. McLaughlin

4.00

3.60

3.20

αu

o
Q_

0.40-

0.00

0.00 0.25 0.50 075 1.00 Ί.25
Frequency

1.75 2.00

Fig. 1. Power spectrum for α/2=0.4, α/3=0.3, ωί=0.5

leads to '"wavy" Taylor cells. The waves propagate in the azimuthal direction. The
waves show up as a spike (and its harmonics) in the power spectrum.

The humps in the broad spectrum are centered on fairly well defined
frequencies. This suggests that a finite number of coupled waves may be broadening
their spectra through the type of motion discussed by Ruelle and Takens [3]. To
investigate this possiblity, let us construct a two-dimensional (radial and azimuthal
variations) model of the Coles waves. The fluid motion can be calculated from a
stream function which obeys the nonlinear Orr-Sommerfeld equation [6].

(1)

V>2). (2)
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In Equations (1) and (2), ψL is the stream function for a laminar flow between the
circles, ιp is the stream function for the time dependent flow, and 5f{ are linear
operators. Schensted [6] has shown that the eigenfunctions of the linearized Orr-
Sommerfeld equation for a given boundary value problem form a complete set.
Thus, one can make the following decomposition:

ψ(ϊφ)= (3)

A set of ODE's for the amplitudes AmιΛ can be projected out by taking inner
products of Equation (2) with the eigenfunctions of the adjoint linearized Orr-
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Fig. 3. Power spectrum for ω2=0.6, α>3=0.5, ωl
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Sommerfeld equation [6], ψ*n(r,φ\

dAmn y

dt P)q,r

γ(m,n,p,q,r) = \ψln^3(ψpqιpr>n-q). (6)

Let us now introduce some simplifications. First, let us eliminate all branches of the
dispersion relation except the lowest (m = 1). Next, instead of trying to calculate the
y's, let us set them equal to i, and investigate the behaviour of the following systems

dAn _.y _. , ,

This svstem will be truncated to include onlv 0<n<4.
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Fig. 4. Power spectrum for ωl
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3. Choice of Parameters

The frequencies in Equation (7) were chosen to facilitate numerical calculation, and
to produce humps centered on frequencies which have roughly the same ratios as
those measured in the SFG experiments

(8)

n2. (9)

It was found that choosing one or two of the growth rates to be positive while the
others were negative always resulted in periodic or quasiperiodic power spectra.
However, by choosing three of the growth rates to be sufficiently positive, we were
able to obtain broad power spectra similar to those measured by SFG. In all of these
runs, we took ωl

Q = — 1 and ω\ = 0. Thus, there were only three "active" modes.
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Fig. 5. Power spectrum for ω'2=0.8, ω'3=0.7, ω'4 = 0.9

4. Numerical Results

In order to emulate the effect of increasing the Reynolds number in our system, the
growth rates for waves 2, 3, and 4 were chosen as follows

ω<2=0.4 + /(0.1),

ω'3= 0.3 + /(O.I),

ω\ = 0.5 + /(O.I).

(10)

(11)

(12)

For each choice of /, the equations were integrated using a fourth order
predictorcorrector scheme. Three different time steps (0.05, 0.025, and 0.0125) and
two time record lengths (600 and 1200) were used for each value of /. The power
spectra obtained were insensitive to time step and record length. The logarithm
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of the power spectrum for 0^/^4 is graphed as a function of frequency in
Figures 1-5. The frequency axes were scaled by a factor (1/3.2) in order to
facilitate comparison with the SFG results.

The power spectrum, P(ω\ of the system was defined as follows :

\An(ω,T)\2,

T/2

-Γ/2

(13)

(14)

It will be noticed that the humps in the power spectra tend to broaden as the
growth rates increase. The center frequencies change very little. These random
solutions are stable in the sense that they exist over wide parameter ranges. The
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relative locations of the humps can be adjusted by varying the coefficient of the
quadratic term in Equation (9).

It is of interest that the lower frequencies tend to become more energetic as the
growth rates increase. This trend was also noted in the SFG experiments.

We also made runs with smaller growth rates. In Figure 6 we show the results for
/= — 1 in Equations (10-12). It will be seen that a series of spikes is obtained
despite the fact that three distinct frequencies are distinguishable. This result may
support the theory of Kidachi [7] who maintains that strange attractor behavior
occurs only after the waves have achieved a certain threshold amplitude.

Power spectra similar to that in Figure 6 were not seen in the SFG experiments.
However, by setting ωl

2=0, ωl

3=0.25, and ω^=0.4, we were able to obtain a
quasiperiodic spectrum with spikes in roughly the same relative locations as in the
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SFG experiments for preturbulence Reynolds numbers. This power spectrum is
shown in Figure 7.

Of course, the above choices of growth rates are purely ad-hoc. However, all
calculations were done using the same dispersion relation for the real part of the
linear frequencies [Eq. (9)]. The results suggest a possible interpretation of the
SFG results. As the Reynolds number is increased, the four-cycle wave appears first.
This corresponds to ω\ > 0 and ωj, < 0 for n Φ 4. Then ωl

3 becomes positive and leads
to a new set of spikes in the power spectrum. Thus, in this regime two different
wavenumbers and their sums and differences are present in the flow. This spectrum
corresponds to Figure 7. Finally ωl

2 becomes positive and the spectrum begins to
broaden. These spectra are shown in Figures 1-5. It should be possible to check this
suggestion by studying the equal time spatial correlations of the flow.

5. Conclusions

The results reported above demonstrate the possibility of generating power spectra
similar to those seen experimentally through the nonlinear coupling of a small
number of waves. This may make it worthwhile to study the spatial variation of the
SFG flows in the azimuthal direction. If a small number of waves dominate the
power spectrum, there should be a strong spatial correlation in the velocity field.

Acknowledgment. We would like to thank R. Fenstermacher, J. Gollub, and H. Swinney for stimulating
discussions and helpful suggestions. This research was supported by NSF Grant No. MPS 7501443 and
Research Corporation Grant No. 7552.

References

1. Gollub,J.P., Swinney,H.L.: Phys. Rev. Letters 35, 14, 927 (1975)
2. Swinney,H.L., Fenstermacher,?. R., Gollub,!.P.: Paper presented at Symposium on Turbulent Shear

Flows, April 18-20, 1977
3. Ruelle,D., Takens,F.: Commun. math. Phys. 20, 167 (1971)
4. Lorenz,E.N.: J. atmos. Sci. 20, 130 (1963)
5. Coles,D.: J. Fluid Mech. 21, 385 (1965)
6. Schensted,!.: Contributions to the theory of hydrodynamic stability, Ph.D. Thesis, University of

Michigan, 1961
7. Kidachi,H.: A comment on a proposition of D. Ruelle and F. Takens on the nature of turbulence.

Preprint, Kyoto University

Communicated by J. L. Lebowitz

Received May 3, 1977






