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Abstract. In the relativistic quantum field theory the representation for the S-
matrix elements is obtained for any coupling constants g in the case of a one
component scalar field φ(x) with nonlocal nonpolynomial interaction

when the causal function is bounded in the Euclidean region
0)< oo and the function \U(u)\ ^ 1 for real u. It is proved that the

two point Green function is bounded in the physical region of momenta variable

P2.

1. Introduction. Formulation of the Problem

Summation of the perturbation series in quantum field theory is now an
outstanding problem in elementary particle physics. Summation of different classes
of the Feynman diagrams does not solve the problem. Really we do not know the
behaviour of total amplitudes for large coupling constants or high energies beyond
the perturbation theory for any interaction lagrangians.

In the given paper we will obtain the representation for any matrix elements of
the S-matrix for arbitrary coupling constants in the quantum field theory with
nonlocal interaction for nonpolynomial interaction lagrangians. Moreover we will
prove that the two point Green function is bounded for high energies. This
conclusion is valid for other amplitudes of physical processes.

Earlier (see [1]) it was proved that in this quantum field model the S-matrix is
covariant, finite, unitary and causal in each perturbation order. In this paper we will
prove that for this model the total S-matrix satisfies the same conditions beyond the
perturbation theory and its matrix elements are bounded for high energies.

We will consider the theory of a one component scalar field φ(x\ described by
the following Lagrangian:

) . (1-1)
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Here g is a coupling constant. The function U(u) describing the interaction is real
and analytic in a vicinity of the real axis, and such that

max |l/(w)| = l;
— 00 < W < 00

U(u)= ] dβU(β)eί'lu , ] dβ\U(β)\ef'M<aQ (3d>0). (1.2)

Below we will consider two types of functions

(a) U(u)= — U( — u) — odd functions

(b) U(u)=U( — u) — even functions

We assume that l/(w)^0 for w^O. The examples of such functions are

U - 2 U

and so on.
The operator K(Ol2) in (1.1) is nonlocal. It means that the function K(z) is an

entire analytical function of a finite order ρ^- in the complex z-plane and

decreases rapidly enough when z = p2 -> — oo (in the Euclidean direction). The
constant / has the dimension of length and defines the scale of the nonlocal
interaction.

All questions connected with the quantization of this system (1.1) and the
construction of the S-matrix, which is co variant, finite, unitary and causal in each
perturbation order, are expounded in [1].

The S-matrix as a functional of the scalar field can be written in the Euclidean
metrics in the following way

xU(φ(x))} . (1.3)

This representation should be understood as an expansion in the coupling constant
g. Here D(xί — x2) is the nonlocal causal function in the Euclidean metrics

where all integrations are performed over the Euclidean fc-space. The function D(x)
satisfies the conditions

(a) D(x) is real and positive,

(b) D(0)<oo, (1.5)

(c)
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The S-matrix in the representation (1.3) contains volume divergences connected
with the translation invariance of our theory. Therefore we have to introduce the
integration over a finite volume Fin (1.3). We will consider that it is a sphere of the

radius L so that V= ^π2L4.

Besides it is convenient to introduce the function

Sί(x)=-^^dk^(k2)eίkx (1.6)

such that

Let us define the function

x2). (1.7)
V

When F— »oo we obtain

because D(x)~e~mV/** for x2->oo.
Then the regularized ^-matrix can be represented in the form

1 , , , , , . δ2

~ Σ βίDv(xίίxj}β. (1.10)
( Zi,j~l

Having introduced the notations

(1.8)

expϊg$dxU(φ(x))\ (1.9)
I v J

The perturbation series for the ^-matrix (1.9) can be written

co ~n

wy = wv(βlβj xt, Xj) = exp { - ββjDy&t, x,.)} - 1 (1.11)

the series (1.10) can be rewritten in the compact form

Sv[jg,φ]= Σ g~\dμι.....\dμn Π (l+wy). (1-12)
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The product Π(l + vvu) ^n (1-12) can be interpreted as a sum of all possible
connected and disconnected ordinary diagrams with n vertices when the function
wtj corresponds to the edge of the diagram joining the points i and j.

In the representation

£,φ]} (1-13)

the functional Bv \_g, φ] contains the connected diagrams only

By\S,φ\= Σ ίί^Γ- ίΦU Π

= Σ -^ldx1 ... $dxmBm(V;x1,...,XJφ(x1) ... φ(xm) (1.14)
m = 0 mi

where {77(1 + wίj)}c means that we have to keep only the connected diagrams from
all the product.

The vacuum energy is defined by the expression

E(g)=- lim -lnSF[0,0]=-lim -Bv[jg,0]
v^oo y v-*ao y

= ~ Σ

(1.15)

Now let us consider a physical process of the interaction of m scalar particles.
Then the connected part of the amplitude of such a process is defined in the
Euclidean region of momenta variables by the following expression:

D (n n ϊ — fJy f JY pKpixi + ' + pmXm) li™ D (y.Ύ γ \r>m\t'l > •"> Pm)~ JUX1 "' )axm^ 11Π1 Dm\ V 'Λl ' "> Xm) ">
F^oo

BB,(Pι,. ,Pj = (2π)4ί(p1+... + pJTm(p1,...,pJ> (1.16)

In the perturbation theory we obtain
00 ΠH °° ~ --/

rm(Pl,...,Pj= Σ ί 2

k = l \ j = l

In papers [2, 3] it was proved that in the class of theories under consideration
the perturbation series (1.15) and (1.17) converge in the Euclidean region of
momenta variables (p l5...,pn) for

\g\<9o (1.18)

where gQ depends on the parameters of our theory and is essentially defined by two
conditions (1.2) and (1.5), i.e. D(0)<oo and max|F(φ)| = l.
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Position of singularities

(b)

Fig. la and b. The position of singularities in the complex 0-plane for add (a) and even (b) functions U(φ)

Our aim is to find the location of singularities of amplitudes in the complex Q-
plane and to do analytical continuation to the region \g\>gQ.

We will prove that the singularities of amplitudes are on the imaginary axis in
the g-plane for the odd interaction functions U(φ) (Fig. la) and in the left part of g-
plane for the even interaction functions U(φ) (Fig. Ib).

Our proof is the following:
(1) we obtain the representation for the S-matrix (1.10) in the form of a

functional integral and prove that this integral exists for any finite V\
ζ

(2) we introduce the function Fv(ζ, φ) = Sv v>φ and prove that this function is

an entire analytical function of the first order in complex C-plane
(3) the Hadamard representation in the form of infinite product with respect to

zeroes of an entire function is written down for the function Fv(ζ,φ) and the
functional Bv = lnSv is found in this new representation;

(4) we prove that there exist different limits when F-> oo for the zeroes of entire
function Fv(ζ,φ) making use of the Jensen and Carleman formulas;

(5) the obtained limiting correlations together with the results of perturbation
theory give new representations for physical amplitudes under consideration for
any g\

(6) the two-point Green function is continued in the physical region of momenta

2. Representation of the S-Matrix in the Form
of a Functional Integral

Let us consider the functional integral

Df
(2.1)

Here the integration over x is carried out over a four-dimensional sphere of the
volume V. The normalization is chosen in such a way that

: 1 . (2.2)
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The function 2f(κ) is defined in (1.6) and (1.7).
The functional integral in (2.1) will be defined in the following way. Let the

system of functions {gs(x),s = 09 1, 2, ...} be complete orthonormal in the volume V:

$dxgs(x)gs,(x) = δss,
v

Σ gs(x)gs(x') = δ(x-x'). (2.3)
s = 0

Then the function Λ(x) can be represented in the form

Λ(*)= Σ "&(*) (2 4)
s = 0

from which

$dxΛ2(x)= |χ,
V s = 0

$dy@(x-y)Λ(y)=Σus®s(x) (2.5)
V s = 0

where

v

So far as the function ^(x) is smooth

lim\@s(x)\=Q (2.6)
s-> oo

uniformly for all xe F and

The differential δΛ in (2.1) is defined as

CO 00 Λ..

(2-7)

Then the functional integral (2.1) will be defined as the limit

Sv[g,φ}= limS^^φ], (2.8)
N-+OO

1 N

< e xP^-ό Σ u2

s+g\dxU\φ(x)+ £ us9s(x)\\. (2.9)
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The normalization is the following :

N °° du ( 1 N }
*] = Π ί T=exp -i Σ f f h l (2 10)

Let us prove the existance of the limit in (2.8). We consider the difference

>[g,φ ]-S™[Jg,φ ]

ί / N + M\] { I N\}]

e x p j 0 f t / L + σ -exp Uc/L+σ (2.11)
N+M \ o

with notations

ί=Π ί

σ = σ(x)= Σ ^SW
Ni N! S = NI

After simple transformations one can obtain

1 N+M I N N+M

g $ d λ J Jώc σ (x)l/' φ(x)+σ(x) + λ σ (x)
0 N + M V

N N + M

σ+λ σ
v \ o

i i

o -1

'N + M \2

σ (x) U"[φ(x)+σ(x) + λv σ (x)
N+l / \ 0 7V+1

N + M I N

σ (x)U'[φ+σ
\ o

r / N N+M\]
exp\g\U[φ+σ+λv σ } \ . (2.12)

[ V \ 0 Λ Γ + l / J

The following estimation can be obtained using the obvious inequalities

ί^ ^(x). (2.13)
V u I } V V s=N+l

According to (2.6) and due to the convergence of the series ^^(x) the right hand

there exists a number N0 that for all M > 0 and N>NQ

side of (2.13) can be made arbitrary small when JV-»oo. It means that for any ε>0

(2.14)
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i.e. the sequence S(y}[g,φ~\ is fundamental. Further, one can obtain easily the
following estimation for any JV>0 from the representation (2.9)

(2.15)

Thus, the limit in (2.8) does exist and does not depend on the choice of the basis
{gs}. This limit defines the functional integral (2.1).

Now let us obtain the perturbation series from the representation (2.8). We have

N °° du
= lim Π ί

oo ~n n oo

' Σ ~τ Π lax, ί dβjU(βj)eίβjφ(Xj} exp
π = 0 n- 7=1 F -oo

co ^ » oo (2.16)

= Σ r̂ Π f r f x , ί dβ
'_~n Yl ' _ ι

r ί ! v / v
-hm^ e xP1~2 Σ ( Σ

In the limit JV—»oo we have

JV / n \2
lim Σ Σ ^/c^s(

:

n N

= Σ ^Λ lim Σ =
ί, j=l N^oo s = o

= Σ A^ί^®(^-^(y-^)= Σ βtDv(xi9Xj)βj.
ij=ί V i,j=l

Finally from (2.16) we obtain the representation (1.10).

3. Properties of the 5-Matrix in the Finite Volume

In the previous section we obtained the representation of the functional integral
(2.1) which is well defined. In this section we will investigate in detail the properties
of the S-matrix in the complex g-plane using the representation (2.1).

Let us introduce the following function of complex variable ζ\

(3.1)

The function Fv(ζ, φ] is an entire analytical function of the first order in the ζ-plane
because the integral (3.1) exists for any complex ζ = ξ + ίη and the following
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estimation is valid :

dΛ
exp --Λ2 + ξU(φ(x) + Λ } D x j ) ^ . (3.2)

V v -oo |/2π

In order to obtain the estimation (3.2) we make use of the inequality

) (3.3)

which is valid for any convex downwards functions (/z"(s)^0) and any real
functions Ψ(x) (see [4]).

One can see that this estimation (3.2) does not depend on the volume V.
Besides the function Fv(ζ,φ) is analytic with respect to φ in a vicinity of the

point φ = 0. It should be noted that

lim i f d x <»'«*<*> = 1
F^oo V v

if §dxφn(x)<ao for any rc>0, and this limit does not depend on φ(x). We are
interested in the coefficients of the ^-matrix expansion in the vicinity of the point
φ(x) = 0 because these coefficient functions determine any matrix elements of
different physical processes. Therefore we shall estimate all limits F->oo for
φ (x) = φ = const where φ is sufficiently small.

Consider the function

Fv(ζ,φ)= J (5/1 exp - J Λ2 + ζ- J uφ+ f ®Λ\ . (3.4)
I L v v v \ v /}

Because Fv(ζ9φ) is an entire function of the first order the Paley-Wiener
representation is valid for it :

Fv(ζ,φ)= dtφv(t,φ)e« (3.5a)
-1

for the odd interaction functions U(φ)= — U( — φ) and

t,φ)^ (3.5b)

for the even functions U(φ)=U( — φ). The functions φv and Ψv are defined by the
integral

~ 2 (3.6)
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The functions φv(t, φ) and Ψ v(t, φ) are summable functions for which the following
correlations are valid :

φy(±ί,φ)=Ψv(0,φ)=Ψy(ί,φ) = 0,

$ dtφy(t,φ)=ldtΨv(t,φ) = ί . (3.7)
-1 0

It follows from the representation (3.5) that for ζ = ξ + iη, ξ>0 ana |(|-»oo

(3.8)

Now let us obtain the behaviour of the function φv(f) = φv(t90) near the point
ί = + 1. We consider the expression

(3.9)

where the point φ0 defines the maximum of the function U(φ), i.e. U(φ0) = l. Let
τ->0, then

.δ(τ-\U"(φ0)\±-$dx(φ0- f dy®(x-y)Λ(y)}'}.
\ V \ V I I

This functional integral can be calculated in the explicit form for the sufficiently
large volume V:

I-IΊ-
1 + — vαD

-τ; J

where

α = \U"(φ0)\,D=$dxD(x).

When τ^O this function tends to zero as

φv(l-τ} = 0(τvl2}. (3.11)

V]
Therefore the function φv(i) is — times differentiate and for

Fv(ζ,0)= dtφv(t)# = θ . (3.12)

Let us calculate the behaviour of the ratio

F'v(ξ)/Fv(ξ)
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for ξ~+oo and any V, where the function Fv(ξ) = Fv(ξ,ϋ) is defined by (3.4). For
F'v(ξ) we have

V V

(3.13)
v v v

The function Fv(ξ) can be represented in the form

Fv(ζ) = <*fv(ξ) (3.14)

where

v v \v

Making use of the inequality (3.3) we obtain

2π

from which

(3.15)

(ξ-* + co). (3.16)

This estimation is too low in contrast with (3.12) but it is sufficient for our aim.
The function F'v(ξ) can be represented in the following form

(3-17)

where

v I.

v V v l \v

Consider the function h(u) — ue~u, for u^.2 we have

The function Ψv(ξ) can be transformed

where fv(ξ) is defined by (3.14) and

9 . . 1\
(318)
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Making use of the inequality (3.3) and

we can obtain the following estimation

-

from which

Finally we have for Fκ(ξ) when ξ-> + oo

ί+0{-ξ\\.

Then we obtain for the ratio

F'v(ξ)

ιv«Γ1+0<.

(3.19)

(3.20)

(3.21)

(3.22)

when ξ-^ + oo. It should be noted that this estimation is valid for any K
Now let us obtain the estimation for Fv(ζ, φ) when ζ is fixed and 7-> oo. For this

aim we consider the perturbation series (2.18). We represent this series in the form

oo rn n

M= Σ Π Sdμj

e x p -
K j

Making use of the identity

i
,-λΔ

(3.23)

(3.24)
0

where A = Σ βiDv(xi,xj)βj the function Fv(ζ,φ) can be written as

(3.25)
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where

Qv(ζ, φ) = ζ2 -2 j" <*X! 1 dx2DK(x l 9 x2)y v v

• £Λ [φ(x2)+ ]/λ\dy^(x2-y)A(y)}. (3.26)
\ v v I

Here (u = Q,λ)

7 ~ ί 1-w 2 - 1

In the limit F-> oo for Qv we obtain the estimation

I Y\ 2 1

ISκ(C, Φ)l ̂  ̂ ri dx/)(x) j dλmax \U'(u}\ β^lReζ (3.28)
V o "

from which

lim βF(C,φ)-0. (3.29)
F^oo

Then we have

F(ζ,φ)= lim FF(ζ,φ)
F->oc

2
d β ( β ) e x p (3.30)

where φ = const as it was mentioned above. The limiting function F(ζ, φ) is an entire
analytical function of the first order in the complex ζ-plane.

4. Hadamard Representation

The function FF(ζ, φ) in (3.1) is an entire function of the first order in the ς-plane and
it is real for real ζ = ξ. Therefore the Hadamard representation is valid for it (see, for
example [5]):

Here a j ( V , φ ) ( j = l , 2 , . . . ) are zeroes of our function Fv(ζ,φ). Let us denote

f\ ( j = l , 2 , . . . ) ,

(4.2)
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Every zero 0y(K ψ) is an analytic functional of the field φ(x) at the point φ = 0. Let us
represent this functional a (V,φ) in the form of functional decomposition

(4.3)Σ
m = 1

Then the following representation for the functional Bv[g, φ] (1.13), describing
connected diagrams only, is valid

V

The comparison with the perturbation series gives

(4.4)

(4.5)

Now let us obtain in the framework of the representation (4.4) the expressions
for the vacuum energy E(g) in (1.15) and the amplitudes (1.17).

The vacuum energy can be written in the form

E(g)=- lim — l = - K m -
V^ao V

where

00

α(0)= lim a(V,Q)= J
F-»oo - oc

1

(4.6)

(4.7)

'«= lim TT Σ

2_ ~ cosn0χ7)

7 ̂

r/F)
(4.8)

As stated above, from the analysis of the perturbation series it is known that Sn is
finite, i.e. the limit in (4.8) does exist, and

lim
ι i / π

(4.9)

where g0 is the convergence radius of the series (4.6).
Let us consider now an amplitude of m interacting particles. The connected part

of this amplitude is determined by the formulas (1.16). Substituting the repre-
sentation (4.4) in (1.16) and taking into account the symmetry of the function
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Bm(V;y1,...,yJ one can obtain

249

= 2Re
V

α<m>V "
(4.10)

Here the summation is carried out over all positive solutions of the equation

P(l,...,m) is an operator which symmetrizes a function over variables (y l 9... ,ym).

Let us extract several first coefficient functions

)
K 7 =1

j = l \aj\V )

κ j = l

(4.11)

and so on.
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According to the results of perturbation theory there exist the finite limits for
any n and m :

«>(xl9...9xj = lim Bfi>(V;xl9...9xJ.
F-+OO

The functions B(^)(xί,...,xm) are translation — invariant functions and

(4.12)

(4.13)

since the perturbation series converges for \g\<g0.
The following problem is to investigate the properties of the limiting functions

in (4.8) and (4.12) when F^oo.

5. Jensen Formula and the Limit V -> oo

The entire function Fv(ζ,φ) in (4.1) has zeroes at the points
aj(V9φ) = r j ( V 9 φ ) e i θ J ( V > φ ) ( j = l 9 2 9 . . . ) . Let nVf<p(R) be the number of zeroes of this
function in the circle \ζ\ ^R. We apply the Jensen formula (see, for example, [5]):

N(R)

where

With the estimation (3.2) it is easy to obtain

and this estimation does not depend on V.
It follows from (5.2) and (5.3) that

(5.1)

(5.2)

(5.3)

(5.4)

Let us put R — AVm (5.1) where A is a positive number. Making use of (5.1) and (5.4)
we get

ι N(AV)

*,?,' rj(V,φ)
V

(5.5)

for any A. It means that there exists the limit

ι N(AV) A 9
ΛV j "»<* /i

= πrj(V,φ)'
V

(5.6)

We would remind that φ = const.
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The sum in (5.5) can be written in the form of an integral

A _ - ΛT - A

0

\ N(AV)

v Σ ]
V 7=1

V

rv(u9φ)
(5.7)

Here we define the summable function rv(u,φ) such that

τ .(Kφ) 7"-^ 7

rv(u9φ)=— for —

and

(5.8)

(5.9)

Now, first, the integrand in (5.7) is positive and bounded from above due to (5.7) for
any K Second, the limit for F-»oo exists for any A>Q. Therefore, by the theorem
about majorant convergence in the functional analysis (see, for example, [6]) there
exists the limit

lim In ,
rv(u,φ) r(u9φ)

(5.10)

where

lim —
F-^oo V F->oo

Then the formulas (5.6) can be written in the following form

o r(u,φ)

where

(5.11)

It follows from the correlations (5.6), (5.10), and (5.11) that the function r(u9φ) is
positive monotonically increasing function such that for w-»oo

r(u, φ)->const u .

Besides the function r(u,φ) is analytic in a vicinity of the point φ = 0.
It is known that there exist limits

V
and

lim
I In

(5.12)

(5.14)
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It follows from these conditions that the following limit

must exist.
Then we obtain, by the Fischer- Riesz theorem (see, [6]), that

lim θVu(V) = θ(u) (5.16)
F^oo

where θ(u) is a summable function. Thus we have

lim ^P-=r(u)^θ(u) = a(u) (5.17)
F^oo V

where r(u) and a(u) are summable functions.
Moreover the function r(u) is bounded from below r(u)^.g0 as it follows from

(5.14).
Finally, the function r(u) is a positive bounded from below, monotonically

increasing function which increases linearly when u-*oo :

r(u) -> const u. (5.18)
H— » oo

Thus the correction to the vacuum energy in an n-ih perturbation order can be
written

du ^^ ducosnθ(u) /e 4^

Now let us consider the limits when F-> oo in the expressions for the coefficient
functions B%\V'9xl9...,xm) in (4.10) and (4.11). Because of analyticity of all
expressions under consideration in a vicinity of the point φ = 0 and existence of the
limits in (4.12) and (5.11) when 7->oo, we can conclude that

V-+QO
(5.20)

where a(m\u ;x1? . . ., xm) is a summable function which increases linearly when u-> oo.
Then we obtain

B < « > ( x , . . . , x = ton BM(V;X,...,X

Finally let us write down the formulas describing the vacuum energy and the
coefficient functions

«.)- -

= -βfl(0)- d« l n l - cosθ(u)+ + cosθίu) (5.22)
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where
00 -— ΰ2

0(0) = j dβU(β)e * 0>;

where

j = l

These representations are valid for |g| <g0. Owing to (5.12) and (5.20) the integral in
(5.23) is well defined.

The next problem consists in the continuation of all functions (5.22) and (5.23)
into the region \g\ > g0. For this aim we have to know the phase θ(u) of the zeroes

) = r(u)eίθ(u\

6. Carleman Formula and the Location of Zeroes

If a function F(z) is analytic and of finite degree in the right half-plane, it has zeroes
at the points ak = rke

lθk and F(0)=l, then the following Carleman formula

Σ
R e f l k > 0 k -OD

i ^ i
+ lim — J dθcosθln\F(Reίθ)\--ReFf(Q) (6.1)

R-^-JO nR _ f 2

is valid for it (see, for example, [5]).
Let us define the function

This function Fv(ζ,b) has zeroes at the points

ζ = aj(V)-b = rj(V)eiθ' (V)-b. (6.3)

Applying the Carleman formula to this function Fv(ζ,b) we obtain

Σ Re ,^_,=J1(V) + J2(V) + J 3 ( V ) (6.4)
Re(a_y(K)-b)>0 aj\ *) ®

where

~iyM, (6.5)

J2(V)= lim J dθcosθln\Fv(Re?θ,b)\, (6.6)
κ^,x π _ «

A(n=-F' r (0 , ί>) . (6.7)
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We choose b = g±V where g1>0. Then we obtain for the left part of (6.4) in the limit
F-+OO:

lim X Re^7Γ τ7
^-»oo Re(aj(V)-Vgl)>Q aj\^)~9l^

= liπ4 , Σ
>o

= J dU^r(u}e^_g ^° (6 8)

where the integration is performed over the region

u)e^-gj>0}. (6.9)

For the right member of (6.4), making use of the estimations of Section 3 we can
obtain :

J1= lim J 1 ( V ) = 0,
V^oo

J2= lim J2(V)=^9 (6.10)
F-+OO ^

J3= limJ 3(F)=-i
F->oo 2

It means that for any g1 >0

' l > J

The integrand in (6. 1 1) is positive, then the integral (6. 1 1) can be equal to zero only in
the case if

(6.12)

For the odd interaction functions U(φ)= — U(— φ) we obtain

because the function Fv(g,ϋ) is even: Fv(g,ϋ) = Fv( — g,ϋ).
For the even interaction functions U(φ)= U( — φ) we can conclude only that

|^θ(u)^π. (6.14)

Below we will consider all formulas for the odd interaction functions U(φ) only. The
vacuum energy (5.22) and the coefficient functions (5.23) can be written in this case
as:

(6.15)
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or

T(v v}-a~a 2J

2ImTm(Pl,...,pm)-gam-2g Im

where the connection between am and α(m) is given by the formula (1.16).
From these formulas we can see that singularities in the complex #-plane are on

the imaginary axis. There are no singularities on the real axis. These formulas (6.15)
and (6.17) give the representations of our functions for any positive constant g.

It follows from the conditions (5.12) and (5.20) that for #-»oo

) = 0(g), (6.18)

i.e. all matrix elements of the S-matrix increase linearly when 0->oo.

7. Green Function in the Physical Region

The representation (6.18) for the amplitudes Tm was obtained in the Euclidean
region of momentum variables (p1E,...,pmE), where these amplitudes well decrease
for pJ£->-ί-oo. It should be noted that above we did not introduce any special
notations for the Euclidean momenta because we considered all expressions in the
Euclidean space only. After continuation in the physical region p2

E=—p2 any
amplitudes 7^(pl5...,pm) where p. are physical momenta increase for p?-» + oo in
each perturbation order as exp {(n — 1) (p2 12)Q} where n is the perturbation order and
ρ is the order of the nonlocal form factor K(p2). The problem is to find the
behaviour of the amplitudes (6.17) in the physical region for p?-» + oo. In this
section we will prove that the twopoint Green function is bounded for p2-* + oo.
The analogous arguments lead to the conclusion that any amplitudes Tm(pί,...,pm)
are bounded in the physical region.

Let us consider the twopoint Green function (p2 = —p2?)

G(g, p2) = T2 (pE, - pE) = I dXEe'»***B2 (f , - f ) (7.1)

for the odd interaction functions U(φ). Making use of the representation (6.17) we
obtain

2)- 2a2lm ' E ' E Π 21)- -2g Im j ^MCHMH-^] ' (7'2)

On the other hand the Green function can be represented according to (1.17) as a
perturbation expansion :

G(g,P

2)= Σ θ2"G2n(p2) (7.3)
«=1

where

1 dβJWJe-*

-..-

jE
Σ βiβj e^*-^\ (7.4)
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So long as the perturbation series (7.3) contains only the even degrees of g, the
representation (7.2) should be written in the form

Let us introduce the new variables

Then the representation (7.5) can be rewritten in the form

where ^4(ί,s) is a bounded summable function of ί in the interval — 1 r^ίrg 1.
Expanding the integrand in (7.7) in the perturbation series and comparing with

(7.4) we obtain

). (7.8)

It follows from the conditions (1.18) and (4.13) that

(7.9)

for all Euclidean momenta p^, i.e. for p2=s<0.
Our problem is to continue the Green function G(g, s) into the physical region of

p2, i.e. into the region p2 = s>0.
The analysis of the perturbation series performed in [1] showed that for

s-> + oo

G2n (s) = 0 (exp {(2n - 1) (s/2)ρ}) (7.10)

where ρ is the order of the nonlocal form factor K(p2l2).
The function A(t,s) in (7.7) can be expanded in the series over the orthogonal

Chebyshev polynomials of the second kind (see, for example, [7])

A(t,s)= ]/T ?̂ £ A2n(s)U2m(t) (7.11)
m= 1

where the polynomials U2m(t) are defined by the following generating function

1 2= Σ ^Um(t) (7.12)

and satisfy the orthogonality conditions

' ~ (t)=^-δmm,. (7.13)
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Comparing the formulas (7.8), (7.10), and (7.11) we obtain

V42m(s)=:0(exp{(2w+ l)(s/2)ρ}) (7.14)

when s—»oo.
We make use of the standard procedure for the analytical continuation into the

region of positive real 5. First, it should be noted that the series (7.11) defines the
analytical function with respect to 5 in a vicinity of the semi-axis s^O. Let us
introduce the function

ί,s)=- Σ (7.15)

where κ = [(s0-l-s)/2]ρ and s0>ε>0.
This series defines the bounded analytical function for — l^ί^l and

— 50^Re5^0. Then we can obtain from (7.15) that

(7.16)

Substituting (7.16) in (7.11) and (7.7) we obtain

1

J
-i

(7.17)

The order of integration over t and summation over m can be changed. Making use
of the equality

it can be observed that in the region

/Γ+Iϊ-ι <ι (7.19)

the series over m in (7.17) converges absolutely and we can change the order of
summation over m and integration over τ. After some transformations we obtain

dτ]/l-τ2h(τ,s)

eκ[eκ(chκ- (7.20)

This representation (7.20) is obtained in the region (7.19) but it is valid in the region
of any positive s> — s0. Really, the structure of the integrand is that the Green
function G(g,s) has no singularities for

chκ
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The nearest singularity of G(g,s) arises when

/L2 + (ch%-

from which

(7.21)

Thus the analytical properties of the Green function in a vicinity of the real axis
of are defined by the properties of function /z(τ, s) (7.15), i.e. by the properties of the
perturbation series. The summation of the perturbation series does not lead to any
new additional singularities in the physical region of momentum variables.

Now let us consider the behaviour of the Green function for high energies in the
physical region. Making use of the representation (7.20) for s-> + oo we obtain

λ2— \
- (7.22)

because the function h(τ,s) is bounded for s->oo. Thus, the Green function is
bounded for high energies though it increases very rapidly in each perturbation
order.

The analogous calculations can be performed for any S-matrix elements.
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