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Abstract. We give a complete proof of the existence of scattering amplitudes
A(s, t, u) with the following properties

i) the amplitudes are total symmetric in s, t, and u9

ii) they satisfy elastic unitarity for 4gs^l6, and
iii) they develop resonances for 1^.2 on a bounded Regge trajectory which
dominates the asymptotics for large energies.

I. Introduction

A rather general class of ππ scattering amplitudes which satisfy exactly crossing
symmetry elastic unitarity and unitarity bounds in the inelastic region is known to
exist [1]. But among the solutions of these papers there are no amplitudes with a
Regge pole asymptotics in the physical region. More generally the methods of [1]
do not allow to derive amplitudes which by construction show at least one of the
following properties

i) for fixed t the asymptotics in 5 is exactly powerlike, e.g. Im,4(s,0)~ const s
for |s ->oo,

ii) the asymptotics in s depends on the value of t in the region £<16.

These restrictions are caused by the technique to work with the Mandelstam
integral [2]. To obtain amplitudes which are dominated by Regge poles and satisfy
crossing symmetry and elastic unitarity one has to evaluate elastic unitarity with an
other method.

There are essentially two ways to proceed, either to use the Watson Sommerfeld
representation with complex angular momenta, or to work with the Mellin
transformation, i.e. the Khuri representation of the scattering amplitude [3]. In the
frame work of complex angular momenta elastic unitarity becomes a trivial
equation, the difficulties arise from analyticity and crossing symmetry. In a series of
publications Atkinson, Warnock and their collaborators are investigating this
method [4,5].
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In [6] we have studied the Mellin transformation of the amplitude and
explicitely calculated the transformed unitarity integral. In the present paper we
shall continue this work to a complete proof of the existence of scattering
amplitudes with one leading Regge pole which satisfy exactly elastic unitarity and
total symmetry in s, £, and u.

The paper is organized as follows. The general definitions are presented in
Section II. In Section III we introduce the Banach spaces we work with and give the
norm estimates for the unitarity integral. The analytic structure of the unitarity
integral in the Khuri representation with poles is studied in Section IV. If the Khuri
poles correspond to exactly one Regge pole we can separate the background and the
pole contribution for arbitrary Regge trajectories provided Reα(s + zΌ) ̂  0 for
4^5^16. The condition that the Regge pole is reproduced by the unitarity
interation imposes a restriction on the trajectory and the residue function which
depends on the holomorphic background. In Section V we derive a non linear fixed
point equation for the trajectory and the residue to implement exact elastic unitarity
also for the pole contribution. This property is not guaranteed by the constructions
of [4]. The N/D method of [5] does not require such subsidiary constraints but
there the existence of poles in the right half plane is still an open problem.

In Section VI the complete mapping for the trajectory function and the
holomorphic background is given for a crossing symmetric amplitude. It is proved
that the iteration of this mapping converges to a non trivial fixed point which yields
the crossing symmetric and unitary amplitude with one Regge pole in the right half
plane.

Technical details of our constructions have been presented in the reports [6,7].

II. The Structure of the Amplitude

We consider the elastic scattering process of equal (pseudo) scalar particles of unit
mass. The representation

A(s, t) = F(s, t) + F(t, s) + F(s9 u) + F(u, s) + F(u9 t) + F(t9 u) (2. 1)

guarantees Mandelstam analyticity and crossing symmetry if F(s, t) is a poly-
nomially bounded function holomorphic in the variables 5 and ί with only real cuts
at 5^4 and f ̂  16. If the amplitude is bounded by

\A(s9 1) ̂  const(l + \s + |ί|)yι , (2.2)

y x real the Mellin transformation

a(s9v) = J(\:At(s9t) ]=-]At(s9t)Γ^idt (2.3)
π o

of the absorptive part in the ί-channel is a holomorphic function in v for Rev>y 1

and it is analytic in seC up to the cuts 4^s< oo and s<0. The inverse relation

At(s9 1) = Jί- 1 [φ, v)] = 1 f φ, v)tvdv (2.4)
21
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is valid for any y > y t where ^dv ... denotes the complex integration along the line

Rev -7.

In the present paper we shall assume that a(s, v) can be continued to a

meromorphic function in Rev>y 0 , — i<y0<0, with a finite number of Khuri
poles [3], i.e. F(s, ί) can be decomposed into a polynomially increasing part R(s, t)
(explicitely given in Section IV) and a background G(s, t) which satisfies an
unsubtracted Mandelstam representation

F(s,f) = K(s,f) + G(s,f) . (2.5)

The poles of (2.3) α(s, v) are caused by R(s, ΐ) whereas G(s, ί) and all crossed terms in
(2.1) contribute to a holomorphic background.

Under these assumptions the partial waves /(s, /), / = 0,2,4,...,

(2.6)
5 —

can also be continued to a meromorphic function in R e / > y 0 and the elastic
unitarity condition

f(s + zΌ, /) - f(s - zΌ, /) = 2z f(s + zΌ, /) /(s - zΌ, /) (2.7)

is valid for 4^ s^ 16 in the half plane R e / > y 0 . In [6] we have shown that Equation
(2.7) is equivalent to the following condition for the Mellin transformation (2.3)

— [φ + zΌ, v) - a(s - zΌ, v)] - w(s, v) (2.8)

if 4^5^16 and R e v > y 0

where the function w(s, v) is defined for se 1R in the region y 1 ̂  y, y' ̂  Re v < 1 + y + y'
by the unitarity integral

w(s, v) - (s - 4); /(y, y ' s, v) (2.9)

with

/(7,/ s, v)= - ̂  I d

- M(v, c, /7)φ + zΌ,

and the kernel function

M(v, ς, /7) = β(l + ξ, v - ξ)B(l + η, v - η)B(l + v, l-v

By shifting and deforming the path of integration of the integral /(y,y ' ;s, v) the
function w(s, v) is calculated as meromorphic function in the half plane Re v >y0 (see
Sect. IV). The absorptive part (2.8) of Equation (2.3) is the Mellin transformation of
the double spectral function ρ(s, ί) of A(s, t) which in the strip 4^sg 16 coincides
with the double spectral function of F(s, t).
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In the following sections we shall derive a contraction mapping for meromor-
phic functions a(s, v) such that the fixed point of this mapping obtained by iteration
satisfies the Equations (2.1)-(2.9), and the existence of poles in the half plane
Rev>y 0 is guaranteed.

Without the difficulties caused by the poles an iteration scheme for holomorphic
functions α(s, v) is given by

(2.9) , , (2.4) double
> ρ'(s, t) disp.nt >

(2.3) ,( .
A(s, t) - > a'(s, v) .

(2.10)

These lines serve as a guidance for our construction. But due to the poles the
mapping will become much more complicated and we shall present the final
interation not till Section VI.

III. Norms and Estimates

We define a family of Banach spaces <f(/l),/leIR, of Holder continuous functions,
seIR-»/(s)e(C, by the norm

~ (3.1)

with a fixed Holder index μ,
The closed subspace of $(λ) generated by functions f(s)e$(λ) with /(4) = 0 is

denoted by <?0(λ).
If/(s)e<f(0) then

f n^J/(5) if 4^s^16

J + { ) JO if sφ[4,16]

is in general not an element of <ί(0). But these functions f+(s) generate again a
Banach space denoted by <ί. Its norm ||/+ 1 | is given by Equation (3.1) with λ = 0 and
the range of s and s + h restricted to 4^ s, s + h^ 16.

The Hubert transformation

F(s) = 3^\_n = -\ ̂ ~ ds' (principal value) (3.2)
7Γ iS >j

maps the space g(λ) into δ(λ'\ A<0, λ'> λ, λ'^ - 1, with

> . (3.3)

More details are discussed in Appendix A of [7].
The Mellin transformation and the unitarity integral can be estimated in a class

of Hubert spaces J2?y> yelR, defined by the family of norms, see [6],

2 . (3.4)
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The Mellin transformation

π 0

(3.5)

maps ^fy isometrically onto the Sobolev space Ly with the norm

+ 0° ' d7T c 1 i , \ I 9 V 4 ' / \ \ I / τ / ^ \
— ax φ + zx)r+ — a(y + ιx) . (3.6)
2 ̂  \ dx )\

A particularly interesting subspace of 5£Ί is generated by all functions /(ί)e JS?y

with /(ί) = 0 for ί < ί0,0 < ί0 < oo. The Mellin transformation φ) of such a function
is holomorphic for Rev>y with

φ)eLσ for σ^y

and

We shall denote this subspace of Ly by L+(t0) or simply by L+ if ί0 = 4.
Spaces of functions of two variables 5 and ί are introduced by a family of norms

which combine the constraints (3.1) and (3.4) for 5^4 and ί^O

= sup ,-|M% + ,3.8)

λeJR, y ε R ,

where ||/(s, ί)l l y is defined by Equation (3.4) with the variable 5 as a parameter. We
denote this Banach space of functions by 3P(γ,λ).

The Mellin transformation (2.2) maps JS?(y, λ) isometrically onto the space L(γ, λ)
with the norm

IΦ,v)|y^ sup .

If the support of f(s, t)ε<g(y, λ) is restricted to 0 < ί0 ̂  ί < oo the Mellin transform
α(5,v) is holomorphic for Rev>y and φ,v)eL(σ,/l) for σ^.λ, the norm estimated
according to Equation (3.7). This subspace of L(y,λ) is denoted by L+(y,λ\tQ) or
simply L+(y,λ) if the value of ί0 = 4.

If ft(s, v)eL(y,λ), A<0, with b(4, v) = 0 the Hubert transformation

1 °° hd' v]
a(s, v) - jf[b(s, v)] = - ί -4-̂  ds' (principal value) (3.10)

71 4 S — S

is a bounded linear map into L(γ,λf) with λ'>λ, λ'^. — 1.
We have not succeeded to evaluate the unitarity integral (2.9) directly. But this

integral is the Mellin transformed version of the unitarity integral with the
Mandelstam kernel which has been investigated in detail in the literature [1,8]. The
results of [8] can be modified to an estimate with the norm (3.8) and we obtain (see
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[6], Sects. 3 and 5) that Equation (2.9) is a continuous mapping

L(y,δ1)xL(y,δ1)^L(y,δ2)

with the bound

I vφ, v ) \ V t δ 2 ^ const \a(s + iO, v)\7lδί \a(s - iO, v)|yA (3. 1 1)

forO<μ<^-, y > — r̂ + μ and δ2>2δ1 +y.

IV. Analytic Properties

In the following we assume that a(s, v) can be decomposed into a pole term and a
background term b(s, v) which is holomorphic in v for Re v > y0, — \ + μ < y0 < 0. The
Khuri poles have to be located at positions v = α(s), α(s) — 1, α(s) — 2, . . . , α(s) — M and
the residues βm(s), m — 0, . . . , M follow from the expansion of one single Regge pole at
angular momentum / = α(s)

A convenient ansatz is

φ,v) = ]8(sK(s,v) + &(s,v) (4.2)

with, ^=20,

(-α(s))m(-<φ))m , .

(2v + m+l)m [v — α + m v + 1

The trajectory function α(s) of the Khuri poles and the residue function β(s) are
taken as real analytic functions with Holder continuous boundary values on the cut
4^s< oo. (The pole term-does not develop a left hand cut in s.) The background
termfr(s, v) is holomorphic in sand v for sφ<£ — ([4, oo)u(— oo,0]) and Rev>y 0 , it
satisfies the reality condition b(s*5 v*) — fe*(s,v). The norm conditions are1

(4.4)

For the trajectory function we assume a uniform bound

Then \oc(s)\ ^y1 — \ for seCcut and the function (4.1) a(s,v) is holomorphic for
v e { v | R e v > y 0 and Iv^y^. The integer M in (4.3) is chosen y1 ^M<y1 + 1. Then
Reα — M<y0 for seCcut and all daughter trajectories which might show up in the
half plane Rev>y 0 are contained in (4.3). The ansatz (4.3) is constructed in such a
way that α(s, v)eL+(y1,yί). The strong decrease ofα^s, v) for for |Imv|-»oo like |v |~ 2

1 The corresponding restrictions for the boundary values at s-z'O follow from real analyticity
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guarantees that the Regge term

or
M-l

R(s,t±iΰ)= £ β(s)aR(s,m)r

(4.6)

for f ^ O with M-l<y<M, y^yl-j,

is a Holder continuous function in both the variables 5 and ί. By construction of (4.3)
the support of Rt(s, t) is restricted to t^ =2Q^t< oo.

Since a(s±iQ,v)eL+(y1,yί) the unitarity integral (2.9) is defined for arbitrary
y ^ y ' ^ J ί and leads to a holomorphic function w(s, v) in the space L+(y1,3/y1), see
Equation (3. II)2. The analytic continuation of w(s, v) into the region y0 < Rev <yί is
calculated in Appendix B of [7], here we shall present only the results. Shifting the
path of integration in Equation (2.9) to the left, y 0 ;gy,y / <y 1 , we pass the poles of
0(s + zΌ,v) and of a(s — zΌ, v). The residues contribute with terms proportional to
M (v, α(s + zΌ) — m, η) or/and to M(v, ξ, a(s — zO) — m), m = 0, 1, . . . , M hence w(s, v) is a
meromorphic function in v for Rev>y 0 with poles at v = α(s + iO) — k and
v = α(s-ιΌ)-fc, fc = 0,l,2,....

Since the unitarity integral is diagonal in the partial wave representation the
residues of the Khuri poles of w(s,v) satisfy again the relation (4.1) and we can
separate the pole terms and a background term in a representation similar to
Equation (4.2)

w(s, v) = Y. [β(s)aR(s + iO, v) - β*(s)aR(s - iO, v)] + WB(S, v) . (4.7)

The function WB(S, v) is holomorphic in v for Rev>y 0 . The residue function β(s) is
identified at the leading pole as, see [7] Appendix B Equation (B.5),

s - 4)α(s + ί0}φ(s - iO, α(s + iO)) (4. 8)

φ(s ± zΌ, v) =B(1 + v, 1 + v)φ ± iO, v)

+ 2^ ί #(5-4)«-vB(l + £ v-ξ)

) . (4.9)

2 The exponential decrease of w(s, v) for Rev-> oo is determined by the boundary of the support of the
double spectral function at ί = 16 + 64(s — 4)"1 >16 and therefore the stronger results holds

3 The function 2φ(s, I) is exactly the reduced partial wave amplitude (5-4)~ l f ( s , /). We can therefore
easily verify Equation (4.8) as a consequence of a Regge pole ansatz in the unitarity relation (2.7) for the
partial wave amplitudes
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There are two problems with the separation (4.7). First, the analytic structure of the
background WB(S, v) does not guarantee that it belongs to a space L+(y0,δ). In
Appendix B of [7] investigate in more detail that the leading trajectory α(s + iO) is
not allowed to cross the boundary at Re v = y0 in order to derive a norm estimate for
WB(S, v). Since elastic unitarity does only apply to the range 4 ̂  s g 16 we introduce a
cut off function λ(s)eCco(M)

1^0 for

-1 if 4^5^16 (4.10)

-0 if 5^3 or 5^17

and restrict the discussion to λ(s)\vB(s, v). We denote by

ω [α, β, b] (s, v) - λ(s)wB(s, v)

the map

φ + ιΌ) x β(s + zΌ) x b(s + zΌ, v)-»A(s)wB(s, v)

between the respective Banach spaces

Under the conditions (4.5) and Reα(s + zΌ)^0 for 4^5^17 the following
uniform norm estimates can be derived4, see Appendix B of [7],

fc!!). (4.11)

The second problem is more serious. The residue function β(s) is unambiguously
defined at least in the elastic strip 4 ̂ s^ 16 by Equation (4.8). But also within this
limited region it is in general not the boundary value of a real analytic function.
Therefore the first term in Equation (4.7) is not the discontinuity of a Khuri pole
ansatz with the correct analytic structure in s, and an integration as proposed in
Equation (2.10) would lead to cuts in the v-plane.

We have to modify our unitarity mapping; the necessary conditions to generate
a real analytic β(s) are investigated in the following section.

V. The Mapping for the Trajectory Function

If the amplitude A(s, t) satisfies elastic unitarity (2.7) it is not sufficient that the
residue β(s) in (4.8) is a real analytic function but it has to be equal to

for 4^5^16. (5.1)

4 Here and in the following sections we omit the labels characterizing the norms (3.1) or (3.9) if the
Banach spaces are specified in the context
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This condition is equivalent to

/ c _ 4
' >-4)>(s-zO,a) = l for

α = α(s + z Ό ) . (5.2)

The function (4.9) φ(s, v) is a linear transform of a(s, v) and we can split it into a term
φb(s, v) generated by the background b(s, v) and a term β(s)φR(s, v) where φR is
calculated from the Regge ansatz (4.3) aR(s,v). The Equation (5.2) then reads as

(s - 4T(β(s - ίQ)φR(s - zΌ, α) + φb(s - zQ, α)) = 1 . (5.3)

In this section we start with a given background term b(s, v) and derive a mapping to
determine real analytic functions α(s) and β(s) with a right hand cuts ̂ 4 such that
Equation (5.3) is fulfilled in the elastic intervall 4^s^l6.

We write α(s) as the sum of two terms

where α0(s) is a given real analytic function with a cut 16^s<oo. We assume in
addition that α0(s) is Holder continuous on the cut, oc0(s + zO)e ̂ (0), and satisfies the
constraints

α0(4) = σ with l<σ<2 1

Reα0(s + iO)<-^ if \s\>Λ>i6 [ (5.5)

Imα0(s + z'0)>0 if s>16. J

Only the first term ά(s) develops the elastic cut s ̂  4. Its imaginary part is calculated
from a real function χ(s)eS as an element of <f0( — 2) by

s<4

(5.6)

s>16

with the cut off λ(s) defined in (4.10). The analytic function ά(s) is then given by the
dispersion integral

Λ, . s-4 » Ima(s' + iO) . ,
a(s)= - ί / / AM' \ds 5 7

π 4 (s — 4)(s — s)

for se(C— [4, 17], the boundary values at the real axis ά(s + zO), seIR, are elements of
<?0(0).

The Equations (5.4) and (5.7) define a continuous mapping, see [7] Appendix C

(5.8)

If χ(s) is a small positive function the trajectory α(s) crosses the values α= 4- 1
and α = 0 at real values of s below the threshold s0 = 4. Due to crossing symmetry a
pole of α(s, v) at α(s) = 1 does not lead to a boundstate pole of the amplitude A(s, f) at
angular momentum / = 1 but we have to cancel the pole at α(s) = 0 in a case like ππ
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scattering without boundstates. We shall therefore introduce a zero proportional
α(s) in the residue function β(s). Additionally the residue has to decrease like β(s)
^S-M-I for }arge |5|? more precisely (4.4) β(s + iΰ)eff( — M—ϊ). We select a real
analytic function f(s) with the properties5

Im/(s + zΌ) = 0 if 5<1

/(s)>0 if 3^5^17

and define

β(s) = β(s).f(s).χ(s) (5.9)

where β(s) is a bounded real analytic function with a cut s^4. The imaginary part
h(s) = Imβ(s + iQ), seIR, has to be a Holder continuous function in <?(0) with a
support restricted to 4^srg 18. The real part /f(s) = Rejβ(s + zΌ) is related to h(s) by
the Hubert transformation (3.2)

H(s) = τ + J#'ίh(s)'] (5.10)

where τ is a (positive) real constant. To formulate Equation (5.3) in a more
convenient way we introduce the functions

= 12i I/ —— (s - 4)>R(s- iO, α)α*(s)/(s- lΌ)χ(s)

" ^ / - ί\~ / .̂  X

(5.11)

with

where we have indicated the dependence on χ(s) and on the background b(s, v). The
relation (5.3) can then be written as

'](s)'χ(s) . (5.12)

The real and the imaginary part of β(s + ίty are now determined by

f O if s^4

(s) if 4^s^l6 (5.13)

h(16)'λ(s) if 5^16

H(s) = (AίBί-A2B2)-χ(s) if 4^5^16 (5.14)

with

Given a function χ(s) we define a real analytic residue function by the prescription

'](*): ]
(5.15)

5 A possible choice is f(s) = J ρ(s') (sf — s) M 1dsf with a real positive function ρ(s)eC°°(IR) the support
restricted to 18^s^s1<oo
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The notation β[χ, fo] indicates the dependence on χ(s) and on the background term
b(s,v) which enters through B1 and B2 in Equation (5.13).

The functions α[χ] and β[χ,b~] are not yet solutions of Equation (5.3). For this
purpose we define a mapping which includes also Equation (5.14)

(5.13) (5 .10) v (5.14) / (
=

(5.16)

[The range of the variable s in χ(s) or χ'(s) is restricted to the intervall 4^s^ 16.]
If χ(s) is a fixed point solution of the map (5.16) then α[χ] and β[χ, fo] satisfy

Equations (5.9) and (5.12) and they provide a solution of Equation (5,3).
In Appendix C of [7] the maps jS[χ,ft] and T[χ,fe] have been investigated in

more detail, here we give only the results. For χ(s)Ξθ we calculate

(5.17)

with

If τ>0 the function χ0(s) is positive and bounded below by χ0(s)^τ (50 for
^16 with a constant ^0 independent of τ.

For χ(s)ei, \\χ\\ ^q, and b(s, v)eL+(y0, y^ the residue function β[χ, b] (s) comes
out as an element of $( — N — 1) with the norm estimates

(5.18)

I\β[χ,b2]-β[χ,b1]\\£c\\χ\\ \b2-b1\.

The map Γ[χ, 6] is a continuous transformation <? x L+(y0,y1)-+$ only on a ball
H i l l =<2ι> 1^1 ̂ ^2 because (A1B1—A2B2)~1 can develop singularities. A detailed
analysis leads to the estimates (we take τ>0)

(a)

(b)

(c)

(5.19)

Some consequences follow immediately from (5.17) and (5.19).
i) If we choose 0<τ^τ! =min((9cj)~1,(2c2(l + 6c1))~~1) then according to the

first two estimates in (5.19) the map T[χ,b] = χ' is a contraction on the ball
} for any fixed b(s,v) with
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ii) If τ satisfies τ^δ0 (l2c1c2(l -fS^))"1 =τ2 in addition to the constraints
given in i) and if b(s, v) is bounded by

then Equation (5.19) implies

and the lower bound χ(s)^τδ0 yields

7Tχ,&](s)^fr<50 for 4^s^l6.

Hence the convex closed set

is mapped into itself and Tis a contraction on ̂ τif 0<τ^τ 0 = min(τ l 5τ 2) for any
fixed b(s, v) with \b\ :gσ0 =min(σ.1, σ2). The trivial fixed point solutions with χ(s) = 0
or β(s) = 0 are excluded if τ>0.

VI. The Unitarity Mapping

We choose as independent functions χ(s)ei> and the background b(s-HO, v)
eL+(y0,y1) of Equation (4.2). The amplitude (2.1) can be constructed from these
functions in the following way. First the Regge ansatz (4.6) is calculated with the
trajectory (5.8) α[χ](s) and the residue (5.15) β\_χ,b~\(s). The crossed Regge terms
which enter through (2.5) into (2.1) contribute with

bR(s, v) = J( [Abst(R(t, s) + R(t, u) + R(u, ί))] (6. 1)

to the background of (2.3). If ||χ|| is small enough then Reα(s) <0 for large |s| and the
construction (5.9) for β(s) guarantees that R(t,s) + R(t9u) + R(u9t)e^(γQ9y1). In
Appendix D of [7] we have estimated the dependence of these crossed Regge terms

on α[χ] and /?[χ,i?]. The map

given by Equations (4.6), (5.8), (5.15), and (6.1) satisfies the bounds [for

(6.2)

These rather weak majorisations [compared to (6.7)] originate from the
resonance poles which show up in R(t,s) + R(t,u), see the sum in Equation (4.6).

The contribution of the background G(s,ί) to (2.1) can be calculated from the
difference b(s,v) — bR(s,v). The double spectral function of G(s, t) + G(t, s) is the
inverse Mellin transformation of Abss(b(s, v) — bR(s, v)). But we know from the
support restrictions on the spectral functions of R(s,t) and G(s, t) that
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AbssbR(s,v) = Q for 4rgs:g20, hence Jί 1 [Abssb(s,v)] coincides for 4 r g s ^ l 6 with
the double spectral function of G(s, t).

We are now prepared to formulate an interation prescription for the functions
χ(s) and b(s, v) which involves exact crossing symmetry and elastic unitarity.

The iterated function χ'(s) is defined by the map (5.16)

/(s)= T[χ, b](s) (6.3)

and a new Regge ansatz (4.6) R'(s, t) is calculated with the trajectory α[χ'] and the
residue j8[χ', ί?]. Then the crossed Regge terms contribute to the background with

bR(s + z'O, v) = ΩR [χ;, fc] (s, v) . (6.4)

In Section IV we have derived the background of the unitarity integral wβ(s, v).
We calculate the dispersion integral

bl(s + iO, v) - iλ(s)wB(s, v) -f B(S, v)] (6.5)

with the Hubert transformation (3.10).
The transformations

(2.9),(4.7)

ω [α, /?, ϊ>] = /l(s) wβ(s, v)
(6.5)

(6.6)

define then a map χ x ί>->ί>1(s + /O, v) = Ω1[χ, &](s, v) between the spaces
<f x L+( y0,)'1)^ L+('y0, — 1) which is estimated for χ(s)e®t as, see Equations (4.11)
and (5.18),

(6.7)

The function ^(s, v) yields the background for the iterated function F'(s, ί), i.e.

see (2.5) or

smπv
(6.8)

The crossed terms of G'(s, t) contribute with

b2(s, v) - .Jt[_Abst(G'(t, s) -f G;(ί, u) + G'(w, ί))] (6.9)

to the background of a'(s,v) = .J?[A't(s,t}].
The mapping ft^s, v)-^G'(5, t)-*b2(s, v) is a continuous linear transformation

L(}'0, - 1)->L(70,0). The continuity follows from simple estimates of unsubtracted
dispersion integrals, see [6,8]. The map

χ(s) x b(s + z'O, v)

(5, v) = MS + A v) + b2(s + zΌ, v)e L(y0,0) (6.10)
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which includes the crossed terms satisfies again the estimates (6.7) (with larger
constants).

The iterated background function b'(s + iO),v) is now defined by the sum of
Equations (6.4) and (6.10) as element of L(y^yι)

For χ(s)e@τ and \b\ ̂  const this mapping is estimated by, see (5.19), (6.2), and (6.7),

(a) IΦijG^]! =c4\/c

(b) |Φ[/2? b~\ ~Φ[Xi5^]I ̂ c5τ~^(τ + \b\) \\χ2 — %ι || (6.12)

(c) |Φ[%,b2~] — Φ[/j&]_][^c 6 ( |/τH-[bj^l + |b2|)|b2 — b j ^ j .

The transformations (6.3) T[χ, b~] and (6.11) Φ[χ, b] define a mapping of the subset

of the Cartesian product $ x L(yQ,y^) into itself if τ is small enough, see Equations
(5. 19 a) and (6.12a). This product space is again a Banach space with the norm ||χ(s)||

s, v)|. A fixed point of the mapping T x Φ

(6 13)

leads to an amplitude A(s,t) which develops a Regge trajectory α[χ](s) with a
residue function j8[χ,ft](s) and satisfies exactly elastic unitarity and crossing
symmetry. For τ>0 the trivial fixed point solution with β(s) = 0 is excluded, see
Section V.

Unfortunately we cannot prove that T x Φ is a contraction mapping on the
convex closed set Jiτ for small values of τ because the constant on the right hand

side of Equation (6.12b), C5τ~*(τ + |b|)^c5τ~^(τ + c4]/τ), is estimated by the
unknown product c5 c4 (whereas all other constants which determine the

contraction property vanish at least like |/τ for τ->0). But the square of Tx Φ

is a contraction on ̂ τ for sufficiently small τ [the difficulty in Equation (6.12b) is
removed by the good behaviour of Equations (5.19) and (6.12c)]. Then the iteration

Xn+l xn+l=

converges to the unique (non trivial) fixed point solution χ x b within Jtτ for
arbitrary input functions χ1 x b^Jίτ, τ>0, see e.g. [9]. This completes our proof.

We would like to add some remarks about the properties of the amplitudes. The
Regge trajectory α(s + zΌ) = α[χ] (s) of the fixed point solution has to be calculated by
the iteration but we know

therefore α(s) will be rather close to the input function (5.5) α0(s) if τ is small. For our
construction the essential restrictions on α0(s) are (in addition to real analyticity)
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a) boundedness
b) α0(s)^0 for 4^s^l6 [to prevent that α(s + iO) crosses the boundary at

Rev = y0 within the elastic strip] and
c) Imα0(s + iO)>0 if s>16.

The boundedness is necessary only for the estimates (6.2) of the crossed
channels. To incorporate indefinitely rising Regge trajectories one has to consider
more complicated Regge ansatze than (4.3).

At finite energies the normalization of the trajectory is given by the value of α(4).
The proof is done with 1 < α(4) < 2 but it can be extended to arbitrary positive values
of α(4) since we do not require inelastic unitarity bounds.

The residue function β(s + iQ) = β[χ, b] (s) essentially behaves like β0(s + iQ)9 see
Equations (5.17) and (5.18), it will therefore not vanish at values of 5 with α(s + zΌ)
= 2,4,... [only at α(s) = 0 we have introduced a ghost killing factor]. Hence the am-
plitude develops resonances with angular momenta / = 2,4,..., /0 rgmax(Reα(s + z'O)).
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