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Abstract. In this paper, the Hierarchical Model is studied near a non-trivial
fixed point ¢, of its renormalization group. Our analysis is an extension of work
of Bleher and Sinai. We prove the validity of the e-expansion for ¢,. We then
show that the renormalization transformations around ¢, have an unstable
manifold which is completely characterized by the tangent map and can be
brought to normal form. We then establish relations between this result and the
critical behaviour of the model in the thermodynamic limit.

Introduction and Description of Results

This paper brings the s-expansion of the renormalization group theory for the
Hierarchical Model on a sound mathematical footing. The Hierarchical Model is a
model on a one-dimensional lattice with ferromagnetic spin interaction whose
range depends on a parameter c¢. As c varies, the behaviour of the model near its
critical temperature varies also and actually multicritical points of any degree can
occur. The first non-Gaussian critical behaviour occurs when ¢=212(1~9 gnd
then the fixed point of the renormalization group, (which is an exact transformation
for this model) can be discussed by the so-called e-expansion. This model is the
simplest model in which an e-expansion arises [1,2, 7-97]. The main impetus for the
mathematical study of this model comes from the deep work of Bleher and Sinai
[3,4], on which we rely for the existence of a critical spin distribution.

In Section 1, we review the definition and the exact meaning of the e-expansion
for this model (one changes the range of the interaction instead of the dimension).
We show that the e-expansion is the perturbation theory of bifurcation from a
simple eigenvalue [5].

Section 2 is the basis of all our results on the validity of the ¢-expansion ; we show
that the fixed point of the renormalization group is differentiable in ¢ up to any
order, provided ¢ is sufficiently small, and has thus an e-expansion up to any order.
The proofs take up Sections 2-5.

Section 6 is the description of the renormalization group action near the fixed
point; this is the theory of the normal form of diffeomorphisms around a fixed
point (on Banach spaces [17]).
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Section 7 makes the contact of the results of Section 2—6 with the thermody-
namic limit in the statistical mechanics of the Hierarchical Model. Similar results
have been previously reported by Bleher and Sinai [4], using a different point of
view. We find validity of the e-expansion for the anomalous dimensions of the
relevant scaling fields. For the free energy per degree of freedom, the scaling field
equals the thermodynamic limit of the corresponding quantity. Such a result is not
shown in the case of the susceptibility, because we have no good bounds on
thermodynamic limit, and we discuss only the scaling limit. Our methods allow for
analogous results for odd functions (magnetization) and for the case of multicritical
points of the Hierarchical Model.

Acknowledgements. Our interest in this problem was raised by illuminating discussions with G. Jona-

. Lasinio, which cleared up some of the mysticism in the theory of the renormalization group. Discussions
with A. Frolicher, A. Haefliger, R. Magnus, C. Stuart and our colleagues in the Physics Department on
various points were very helpful.

1. Formalism for the Hierarchical Model

We recall the definition of the Hierarchical Model and we put its e-expansion
around a certain Gaussian fixed point in perspective. On the one-dimensional finite
lattice consisting of the points 1,...2~, with spins s,,...s,~, one considers the
Hamiltonian

N ck 2N-k—1 s 2k 2

Hy== 3 s L (Z szk+t) , (1.1)
k=1 ji=0 =1

(with the notation of Bleher and Sinai [3]). This is an interaction with potential

~dist'°#2=2 je, the range of the interaction depends on c. The critical dimension

(for the possibility of a non-Gaussian fixed point) predicted by the Landau theory is

d..w=2(1—1log,c), so that for

c=c,=2121"9 (1.2)

the critical dimension is 1+ ¢ which is by ¢ above the actual dimension. Therefore
the expansion in ¢ of the critical spin distribution is analogous to the usual &-
expansion. We shall now derive carefully a non-linear equation for the mean spin
distribution which we then discuss. The recursive equations for the model described
by (1.1) at inverse temperature § are

Julz, B)=Ly(B, ) _f dz,dz,
z,+z z
8 (252 = ) e slen B e
Ve
Here, fy(z, B) is the rescaled mean spin distribution for the model in “volume” 2%

Henceforth, we shall omit the normalization L(z, f). The corresponding fixed point
equation for the distribution is thus

1/2ZB(zs +22)

(1.3)

fz,p=e""* ]mduﬂzc-”%u, B —up). . (14)



The e-Expansion 69

In the beautiful work of Bleher and Sinai [3,4] it is shown that certain initial single
spin distributions are attracted by the iteration of (1.3) to a non-Gaussian fixed
point of (1.4), if e >0. We shall discuss these fixed points and their neighborhoods.
For this, we introduce the following change of variables. A straightforward
calculation shows that ¢, is a solution of

+ o
P(2)=n""2 [ e " p(zc™? +u)p(zc™ 12— u)du

=AN(9)(2), (1.5)
with ¢, =229 if and only if
o 2—c\1/21"1 _B_¢ , Bc \'2
— | g1/2 22-c
an-l (5] e ) ) (19

is a solution of (1.4). It suffices thus to study (1.5). In particular, ¢, =1 corresponds
to the Gaussian solution of (1.4). We now study bifurcations from this solution for
small . Since we intend to discuss the e-expansion of ¢,, we first state the algorithm
for producing this expansion systematically. In fact we show that this is a typical
situation of a “bifurcation from a simple eigenvalue” (cf. Crandall and Rabinowitz
[5]). Set F(e,p)= A (w +1)—(p+1),and let £, ., =0, F(e, p) be the tangent map to
F at . By definition %, , is the linear map given by

+ o
Lo @) @) =271 [ e (1 +yp(ze; > +u)olze; ' —w)du—o(z) . L.7)
As we have seen, F(g, ) =0 has the “Gaussian” solution y =0, so we concentrate on

Zo.- On the space of even functions, % , has spectrum 2¢; *—1,k=0,1,2,... with
eigenvectors

Hy ()=e"02e ™| _ 1., (1.8)
where
Pe=1—c;". (1.9)

We shall write y=y,_,=1-2""2 and Hy,=H,, ,_,.
The functions H,, , are the Hermite polynomials, and the functions
27¥2(k1)~12H, form an orthonormal basis on L,(R,exp(—y,z%)dz).

The important fact is now that 2¢; >—1=0 for ¢=0. (1.10)
Furthermore 0,0,F(0,0) - H, ¢ Range (3,F(0,0)). (1.11)

Therefore one can expect a bifurcation in the H, “direction” and it can be found,
as a formal power series, as follows:

Let y, (@)= ), a;(x)H,; and define
j*2
1
— Fle(@),aH 4o, (@), a0

Fo (@) (@) = * 0 (1.12)

, a=0"
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The conditions (1.10), (1.11) ensure that the implicit function theorem for formal
power series [18] can be applied to the equation f(a, &(x), w,(«))=0 and yields a
nontrivial formal solution. We do this explicitly in the Appendix.

Unfortunately, it seems that the topological conditions, which are needed for
the existence of a solution of f(«, &, ,) =0in some function space are not satisfied for
the non-linear Equation (1.5). We have in fact been unable to verify the hypotheses
of any of the strong implicit function theorems on Banach spaces or Frechet spaces
[11] (Nash-Moser type theorems) [cf. Lemma 3.1 and Eq. (A7)]. Therefore,
although the formalism (1.10)—(1.12) is very elegant, we are forced to use the direct
calculations of Bleher and Sinai [4] to insure the existence of the solution. We hope
however that (1.10)—(1.12) systematizes suitably ¢-expansions and we shall use such
ideas in the sequel.

2. The Fixed Point

We discuss the properties of the non-trivial solution which the Equation (1.5) has
for ¢ satisfying ¢, >¢>0. We view ¢,(.) as an element in [0,e))x L, ,=M, , .,
where L, ,=L(R,e”"**¢'/>n~'/2dz). Let y=1—2""2 Our first result is then

Theorem 2.1. For all NeZ™ and all ce(0,7] there is an g,(N, o) such that for 0<e
<¢go(N, 0) a solution @(2) of N (¢,)=¢, satisfies
i) @, is a CN function of ¢ and z as an element of M 2,0’80(1\,,6)1.
ii) The derivatives with respect to ¢ at e=0 are given by the ¢-expansion, cf.
Appendix A.
iii) In particular,

@(2)=1-e8H,(2)+ 0Oy, (¢%), @2.1)
with 9= (log2)/(144(21/% — 1)?).

The main input to our result is the analysis of Bleher and Sinai [4], whose result
we state with a minor generalization which is easy to incorporate in their proof.

Theorem 2.2. For ¢ =0 sufficiently small, the equation & (@)= ¢ has a solution ¢ = ¢,
which is not constant when £¢>0 and which satisfies
1) |p,(2)l, 10,0(2)| <2. 22
ii) For fixed z, ¢,(z) is continuous in ¢ =0.
i) For every d>O0 there is an g,(d) >0 such that for 0=<¢<egy(d), the function ¢,

has the following representation for |z| <(dlng~1)'/2:

0 (2)=1—¢H, (2)+&*R (2) , (2.3)
with

IR,(2)l,10,R,(2)| <1 . 2.4)

Remark. Presumably ¢,(d)—0 as d— oo.

! The topology of M, , . is given through the norm sup |, , ., where | - ||,,, is the norm of L, ,
0=e<eg
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It is our aim to work in the more convenient class of L, , spaces instead of using

the regions |z| <(dlng™ )2, 2 However, as we shall see below, the remainder R, and

the linearization o/, of /" around ¢ = ¢, are not sufficiently well controlled on all

L, ,-spaces simultaneously for fixed ¢, and we will have to work on a scale of spaces.
"For &>0, let

d,= sup{dle,(d)2¢,dse™ 1%} . (2.9)

Note that for ¢ sufficiently small, one has d, =1, (2.6)
and furthermore d,<d, if ¢ <¢, and d,— 0 as ¢—0.

Define R, by

R,=¢"*3(p,—1+¢9H,), if e>0,

R,=0. 2.7)
Proposition 2.3. If 0<a<y, s=1, 6/s=10/(3d,), then |R,. ||” and ||0,R, |, are
uniformly bounded for ¢ €[O0,¢).

Proof. On
D, ={zeR||z|<(d, In(1/))'/?} , 2.8)

one has |H,(2)—H, | S0 &™), by the definition of H, ., H,, and d,.
Therefore, on D,,

R,=¢"**(p,—1+¢9H, ,—%'(H, ., —H,))
=R, +0(?19),

so that |R,.(z)| <2 for sufficiently small ¢'>0, and ze D,.. Therefore

( § IRs,(z)ISe‘”Zdz)”s =0(1).

&

On the complement D¢, of D, one has |p,.(z)| <2, by Equation (2.2) and therefore

(O'/Tt)_ 12 f kps’(z)'se-o‘zzdz é(G/TC)_ 1/29s+1 J. e—azzdz
D¢

(derIn1/e)1/2

<e 2dc 1n

21/2 +s__ 2s+1/2 rader /2
Similarly,

(o/m)~'? [ [1—€¢8H, ,(2)le” " dz<e”*/*C(a,s) .
D

It follows that with characteristic functions y, one has
IR Mo = xp, Rerlls,0+8 > (I2pg, 0 (s + 40 (1 =& H ,),,)
SO(1)+0(e 31 =29 < C(a,5)

provided od, /(2s)=5/3, which follows from ad,/(2s)=5/3.
This proves the assertion for R,, the case J,R, is similar.
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3. Differentiability in z
Our inductive bounds are based on the following

Lemma 3.1. Let s,t,r=1; 0,7>0, s<t. If

1—0g/s—1/t>0, (3.1)
and

g(l_z_z)_l(zg)ﬁzgo, (3.2)

r s t)] c¢\s t] cst
then one has for feLg, and geL, ,

fe I f(ze™ 2 +u)g(ze™ 2 —u)du=h(2)e L, , (3.3)
and

IBll,, = const. || fll; gl - (3.4)

Furthermore, the map f—h, defined by (3.3) for fixed g is compact.

Proof. If K(z,u) is the kernel of an operator K from L(IR, dx) to L(R, dx), then the
operator K is compact if

Kl o= {J dul | dz|K(z, )" 1"} <00, s'=s/s—1),

(an easy generalisation of [6, p. 518]).

Since we work on L, ,, we reduce the situation to L(IR,dx) by setting f(x)
= f (xl exp(— ox?/s), and similarly for g and h. Then the kernel corresponding to the
map f—h, is

t
7 (2z¢” V2 —y)2
g

Kg(z’ u) =e” o/rz2 { eo-(Zc‘ 1/2 —y)2 (e (2ZC_ 1/2 _ u))l ed/suz )
Using the Holder inequality in z, we bound |KJ5; by

t)s'¢—r
(9(1)jdu{jdz[exp(—gzz—r(zc‘l/z—u)2+r;(22c_”2—u)2) ‘_‘;} o

" G
gl exp(s Zuc).

It is now a straightforward matter to evaluate the Gaussian integrals (first the z
integral), and this yields the conditions

2 2
o2 et 3),
t t s ¢ t c t

which after some transformations can be seen to be equivalent to (3.1), (3.2). This
proves the assertion.

Note that (3.3) does not define a continuous map L, , x L, ,—~L, ,, whatever
s=1, 6>0 may be. We shall use the following special cases later:

1
¢

r C
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The map (3.3) is compact and continuous on the spaces
LyoXLso=La 00 3.5)
LS,U X Lt,t _>LS,0‘ >

provided ¢=6/5, a/s<1/8, t/t<0/(20s), s<t.
In particular one can choose

LyoxLy—Ly,, (3.6)
provided ¢=6/5, 6 <1/4, 1<0/10, and
Ly3oxLsy=Lys, s 3.7

provided ¢=6/5, 0 £1/6, 1<30/40.

Remark. Lemma 3.1 holds with e ~**du replaced by ue™**du [with a slight change of
the constants, but not of (3.1), (3.2)].

Theorem 3.2. For every NeZ™ and every y 26 >0, there is an ¢,(N, 6), such that ¢, is
N times continuously differentiable in z as an element of L, , if 0=e<e(N,0).

Proof. Fix &, =¢,(N, ¢) such that ¢-9V**/2=10/(3d,,), where d, is defined by (2.5).
Note that ¢,(N, o) is monotonically decreasing as a function of N and a. Since
Hermite polynomials are differentiable in all L -spaces, the case N=0,1 is an
immediate consequence of Proposition 2.3. We proceed by induction, and we
suppose the result holds for f;=0l¢,, j=0,..., N—1. By the equation 4 (¢p,)=0,,
we have with c=c,

Sv-1(2)
—N/2 —1/2N—1 N-1 —u? -1/2 -1/2
=c N2g Y j Je“filze™ P +u)fy_y _jze” P —wdu . (Ay_,)
j=0
Since ¢ ~2'/? this equality holds on L, ,q.5,,C L, ,/3, by Equation (3.5) and by the
relation &,(N —1,6/9)=¢,(N, o). (This relation implies f;e L, ,/ for j=1,... N—1))
Define also

N1 (N ¢ e _ _
gy=c N2g l/zk;(k)je flze 2 4wy fy_(ze™ Y2 —u)du

+2c" W=D 12 f e udu(fy_,(zc™ 2+ u)f,(ze™ V% —u)

+ folze ™2 +u) fy_ 4 (ze ™12 —u))

— NP2 e (fy_ (ze™ V2 u) fi(ze ™ M2 —u)

+filze™ 2+ u) fy_(ze ™2~ u))du . (By)

By the inductive assumption and by (3.5), gy is defined on L, ,/9.3,,CL; .5 and
bounded uniformly in 0<e<¢,(N, 0). Using an integration by parts formula, it is
easy to see that gy is a candidate for f,;=0Y¢,. By the inductive assumption and
partial integration, gy is the derivative of gy _, withrespecttozon L, , 5. Alsogy_,
= fy—y on L, 5, since the corresponding r.h:s. of Ay_, and By_, coincide on this
space. Therefore gy=0,gy_; =0,fy_,, i.e. fy_, is differentiable on L, , ; and in
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fact continuously differentiable as can be seen by a change of variables
u—uFzc Y2, its derivative is then equal to the r.hss. of Ay, as an element of
L, ,DL, 4.3, The induction step is complete.

4. Bounds on the Linearization

For a suitable function g, to be specified below, we define the operator <7, , by the
equation

A, (f)(2)=2n"11? T)e’“zg(zc;”z+u)f(zc;”2—u)du. 4.1)

(A, , =%, .+1, cf. Equation (1.7).]
For g=¢, we shall note &/, =/,
The following facts from Bleher and Sinai [4] are used later.

Theorem 4.1. For 0 <¢ sufficiently small the operator </, is boundedon L, , _,_:, and
it has the following properties:
i) &, has an eigenvalue A of the form

A=1-—¢(log2) + O(*?)? 4.2)
with eigenvector g, satisfying
su Ige(z) - H4,£(Z)l = e*® ’ (4.3 a)

|z|§10<1£-1>1/2
and
lg.(2)| <lz1°exp (=0 (elz*)  for |z1=10(lne™ )2 (4.3b)
(i)i) The remainder of the spectrum of <, is bounded away from 1, uniformly in
>
= I;et 0,0<0=1/4 be given and define ¢, by c,,=6/5. For 0<7=<0/10, and

0<e<e, the numbers o,7,c, satisfy (3.6). Fix now 0<e; <g, such that
d/2,t/4>10/(34). Then we can improve Theorem 4.1 to

Theorem 4.2. For all 6,0 <0 =1/4, there is an ¢,(0)=¢,<¢&,, £,>0, such that for
0<e=e, one has

i) #,— 1 is a bounded, invertible operator on L, ,. Its inverse is a norm
continuous function of £¢>0, and it is bounded in norm by O(s™*).

ii) Let [|g—@,ll,.=0E"*). Then (o£,,—1)"" is a bounded operator of norm
O™ ") on L, , and it is norm continuous as a function of geL, .

Proof. By the condition t/4>10/(3d,,), by Equation (2.7), and by Proposition 2.3 we
have ¢.e L, . Therefore, since o, 7 satisty (3.6),

o, is compact from L, ,to L, , . 4.4)

For small ¢20 we have L, ,CL, ;_,, _, since 0 =1/2. Therefore the spectrum of
o, —1 consists of a point with multiplicity one near 0(¢) and a remainder bounded

2 The coefficient can be found from Equation (A5) by perturbation theory
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away from zero. The bound on («/,— 1)~ ! is complicated by the fact that <, is not
symmetric. Let P, be the orthogonal projection onto ¢, in L, ,, Py =1—P, Then

one has

Lemma 4.3. The operator P, (sf,—1)P; is invertible on P;L, , and the norm of its
inverse is uniformly bounded for ¢>0 sufficiently small.

We postpone the proof of this lemma and continue the proof of Theorem 4.2.
Consider the “matrix”

Pe(de_n)Pe Ps(de_ﬂ)Pi.>

0 P/, —1)P- (43)

ot

on
PsLZ,a'@PelLZ,o' .

The element P(sZ,—1)P, is invertible and its inverse is bounded by 0(¢~!) on

P.L, , as a consequence of Theorem 4.1. The operator P («/, —1)P; is rank 1 on

L, ,andits normis bounded as a function of small £ 2 0 for fixed o, as can be seen by

explicitly calculating the Hilbert-Schmidt norm of <7, on L, . Therefore the inverse
of (4.5), which is

((Pe(&fg —DP)"!  —(P(A,—1P) (P (L, —DP;) (P, (£, —DP;)™"
0 (Py(et,—1)P;)""

is bounded in norm by O(c ™), (the sum of the norms of the matrix elements). This
proves i), up to the norm continuity.By Lemma 3.1, | o, ,— o, ,I|, , < 0(¢>*). The
assertion follows now by i) and standard perturbation theory [14, IV, Theorem
1.16]. This completes the proof of Theorem 4.2, 1i). By the continuity of ¢, in L, , the
remainder of Theorem 4.2, i) follows.

) (4.6)

Proof of Lemma 4.3. We first note that ||p,— 1|/, . < O(e), by (2.7) and Proposition
2.3,so that by Lemma 3.1, ||, _,— 2, oll,,= Oe). It suffices thus to show (by [14,
IV, Theorem 1.16]) that P;(s#, ,—1)P; has a bounded inverse. Similarly, we note
that

[ %_H4,0||2,a =| ¢a_H4,e“ 2,6t ”H4,£ _H4,o” 2,6 < OE*?)+0() ,

by (4.3a), (4.3b) and the definition (1.8) of Hermite polynomials. Therefore
I Py —Pg ll2.0=IPy,—P.ll,,=0(E*?) and it suffices to show the bounded in-
vertibility of P~(«/; ,—1)P*, where P*=1—Py_on L, .. Now &, , is compact on
L, ., by (4.4) and hence 1 is at most an isolated eigenvalue of P*.«; ,P*. Suppose y
is in the nullspace of P*(s/, ,—1)P*. Then there is a A such that
(, o—1)P*y=AH,. Since L, ,CL, , this equality holds on L, ,, so that (by the
selfadjointness of o/, s on L, ), A=0and P*y=1'H, ,. Going back to L, ,, we see
that 2'=0. Hence P*(s#, ,—1)P* isinvertible on P*L, ,and has a bounded inverse
(for fixed o). This proves Lemma 4.3.

5. Proof of Theorem 2.1

We proceed in several steps. We first show in Lemma 5.1 that ¢, is C¥ for ¢>0
sufficiently small (depending on N). Then we show in Lemma 5.2 that o (z) is
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bounded as ¢—0. In Theorem 5.4 we establish an asymptotic expansion in ¢ for ¢,(z)
from which we finally deduce the differentiability of ¢,.

Lemma 5.1. Forall N 20,5 >0thereis ane, =¢,(N,0) >0 such that for 0 <e<e, the
function ¢(z) is C" in ¢ and z as an element of M, , . (cf. Theorem 2.1).

Proof. Asin the proof of Theorem 3.2, we work with a sequence of ¢,(N, o) satisfying
£,(N—1, 6/27)>¢,(N, 0) and &,(N, o) is such that 27¢/2>10/(3d,,). We shall show
recursively the following properties.

Py: For k=0,1,2,...,050 ¢, is in L, , for 0<e<e,(N+k,0)
and it is continuous in &.

Py: (0Y9,)(2)
N N\ . .
=n 2y fe ( j)ai(%(zc; V2 L u)oN (g (ze; 2 —u)du .
j=0

Note that P, is a trivial consequence of Theorem 3.2 and Lemma 3.1. Also P,
expresses the fact that ¢ e L, , 5 solves N (¢,)= e Suppose now that P;, P; hold
for j<N. In particular, we have on L, ,

@Roa=r S feor ([ )otosee: v
j=1
0y po(ze; 1 —w))du
+217 1 [ e 0 (@ fzc] P+ u)g (zc] 2 —wydu
=gM(2)+2n" 2 [e g (zc; P +u)
@) ee M~y oD

By the chain rule, we find

4 =n" 2 Z f e( ].)az‘«ps(zcs”z+u»a§'f((pa(zc;”2—u»du

-1/2 N! —1/23n
+2n s Sl | RECA NS L

J+xim=N j! l_[n'l'"'
<N

[ e @L0F " p,) (ze; 2 + Wz M2~ w)du. ©-2)

These expressions are well defined on L, , by the inductive assumption Py. We can
now form for 0<e,&'<e,(N+1,0) on L, ,

070, (2~ (07 0,) (2)=g™(2)— g™ (2)
+217 2 fe™ g (ze, P +u) [(0F ) (2, M2 —w)— (0% ,) (zc; 11> — w)]du
+217 12 fe™ g (ze, P +u) [(0F o, ) (ze; P —u)— (0Y @) (zc 2 — u)]du
+2n" 12§ e"‘z[(pa(zc_ 12 L u)— @, (ze; 12 +w)] (0N ,) (zc; 1* —u)du

=g"(2)— g () + Z R CE
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Solving for (Y ¢,) (z)— (0 ¢, (2), we get
M-, )0, ~ 00, )=g"—gP+ Y gV, ), (5.3)

k=2,3

and this is well defined on L, ,. Since 0Y ¢, and 02 ¢, are continuously differentiable
™

as functions of z, by Pj, we may rewrite g\" +g{" as “derivatives plus remainder”,
ie.
9V, €,2)=(e—¢&)-2n" ?20,c; 2 [ e W @ (zc, V2 +u)
(007 @,) (ze; ' —w)du+0((e—£)?) , (5.4)
on L, , provided 0<e¢, &' <e,(N +1,0)<¢,(N,6/27).
We similarly have

9V, ¢, 2)=(e—¢)-2n" 12 [e™"(0,0,) (zc; 2 +u)
(0Y @) (ze; 1 — u)du
+(e—&)-2n"Y229,c7 12 [ e (8,0,) (zc; 2 +u)
(0Y,) (ze; V2 —wydu+0(e—¢)?), (5.5)
Ender the same conditions as before, if N = 1. For N =0, Equation (5.3) is replaced
y
(-3, .~3,,)@.~9,)]()
=n"12fe (@, (zc; 2 +u)p, (zc; V2 —u)— @, (zc; 1* +u)p, (zc; V/* — u)}du
=2n""2(e—e) [ e {(0,0,)(zc; Y  + e (zc; V* —u)zd,c] 1*}du
+0((e—¢)?) . (5.3)

Henceforth we only discuss Equation (5.3), the case (5.3') is analogous. By Theorem
42, o4, .—1=sf —1isinvertible on L, , for sufficiently small >0, and its inverse
is bounded in norm by @(¢~'), and continuous in ¢>0. Therefore

0,0 ¢, =lim (e —&)~ " (3} . — 0y )
= (11 - J%.t:)— ! ( aag.(t;N) + z ag’gz(sﬁ 8,9 : )Is’ =e) (5'6)
k=2,3

is continuous in ¢>0, on L, ,.

Multiplying (5.6) by 1— .<Z, on both sides, one gets the relation Py, ,. Next we
show that 0¥ * !¢, is differentiable in z. Using the relation Py ; and the inductive
assumption Py, it is clear from Equation (5.1) that it suffices to show the
differentiability of

e @Y o,) (ze; 2 +we,(ze; 12 —u)du .
But this equals
[ ez 2N 10 (1)@, (2zc] V2 —wydu , (5.7)

and the assertion follows now by Theorem 3.2 and by the bound Py, , on ¥ *1g..
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We now work towards differentiability at e=0. Our first result is

Lemma 5.2. For all 6>0 and KeZ*, the function 8%, is uniformly bounded in
0=<e=¢(K,0), as an element of L, .

Proof. This follows immediately from Theorem 3.2 and the fact that the assertion is
true for K=0, 1, by (2.7) and Proposition 2.3.

Lemma 5.3. For all k=2 and ¢ =0 there is a (unique) polynomial P,(e, x) of degree
less than 2* 3 in x and k—1 in ¢ such that

i) P,(e,x)=1—¢e3H ,(x)+ higher orders in ¢. (5.8)
i) | A (Py(e, X)) — Py, X)| S Cpe*(Ix|* " + 1) . (5.9

Remark. The lemma asserts the existence of the e-expansion for ¢, as a formal power
series. We shall prove the statement in Appendix A.

We next show that ¢, has an asymptotic expansion at ¢=0 (this does not
necessarily imply its differentiability).

Theorem 5.4. For all k=2 and for all 6>0 there is an ¢4(k, o) such that for 0=<e¢
<ég,(k,0) one has

0, =Py iz, ) +0(EY (5.10)
inL,,.

Proof. Setting R, ,=¢~**(p,—1+e9H,)— &~ **(P, 1 ,(&, - )— 1 +£3H ), we have by
Proposition 2.3 and Lemma 5.2, that
@, =Py, ) +e* PRy, , (5.11)

R, .=0(1) in L, provided t/4>10/(3d,). In addition R, ,—0 as &—0in L, , for
d/2>10/(3d,). We now use that ¢, is a fixed point of 4. Therefore

Piiy(e - )+e* PRy,
=‘/V8(Pk+ 2(&'))"'84/3*52{

Pre+2(8,7),¢

(Re)+e¥* N (R,,)
=N (Pryo&; N+l oy v 1/200R, o Rice)
and by rearranging we get the crucial identity
*‘34’/3(&{11,(+ 2(e,)+1/264/3Rc 008 DRy, =Py s, )= N (Prysle, )
=10, )., (5.12)

where Q, is a polynomial. If we fix o >0, 7 > 0 sufficiently small, then (3.1), (3.2) hold
for ¢ =0 sufficiently small. Therefore, by Proposition 2.3,

Pyio(e ) +1/26*Ry . — 0, = O(e*?)
in L, , by (5.11).

3 The correct bound is 4k—4 for k=1
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Since ¢*/® <¢%/4, we may apply Theorem 4.2ii) with g= P, , ,(¢,)+ 1/2¢**R,, so
that

Ry, =e * (o, 1) 71" 1Qu(e, -)
and

e Ry ol 2,, SO e 1 Qule, )2, S OEF) -
The assertion follows from (5.11).

Lemma 5.5. For all k,n=0, and >0 one has for sufficiently small ¢=0 the
representation

00, =0;Py 36, )+ Ry, (5.13)
with
“R;(,a,n ” 2,0 é SkC(n5 k9 G') .

Proof. The case n=0 is covered in Theorem 5.4. To prove the case n=1, we write
first Equation (5.10) for k+1

@, =Pyis(e ) +ER;, (5.14)

with ||R;]|, ;3 =0(e), for sufficiently small ¢=0. Since ¢, and P,,;(e, ) are
differentiable in z on L, , 5 (for ¢ sufficiently small), we find

0,0,=0,Py, (e, -)+€0.R; . (5.15)
Using now
0,0 (2)=2n""2c 2 fe™ g (z¢7 V2 +u)(9,9,)(zc; V2 —w)du, (5.16)

we find on L, , the identity
0, Py 3(6,2)+60,R;(2)
=2~ 2c Y2 [e " Py, 4(e, zc] M2 4+ u) (0,0,) (zc; M2 —u)du
+217 2712 [ oW R (zc] 12 +u) (0,0,) (ze] Y2 —u)du.,
which becomes upon integrating by parts
"0,R)(2) = —0,Py (&, 2)
+2n 2712 [ e7{(0,Py 1 5) (6, 2€; 12 +u)
+2uP, , 5(e, zc; 1 +u)} @ (zc; 1? —u)du
+2r 2 12 (e W e R (ze; V2 +u) (0,0,) (zc, Y2 —u)du . (5.17)

By Theorem 5.4, Lemma 3.1, Theorem 3.2, and Equation (2.7), the second integral is
O(**")in L, ,. In the first integral of (5.17), we split ¢, according to (5.14) and the
term coming from R} is bounded by @(¢**!) in L, .. The other term is equal to

2 12712 (W ((0,Py 4 5) (6, z¢] M2 +u)+ 2uP, , (e, zc; V2 +u)}
Py, 5(eze; Y2 —u)du

=2n" Y2 M2 (e P  5(e, ze] V24 u) (0,Py 4 5) (6 zeg VP —u)du. (5.18)
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By perturbation theory, (5.18) is equal to 8, P, , 5(&, z) up to a polynomial which is of
order k+3 in &. Going back to (5.17) we see that ||0,R}|, ,=0(e) so that it is in
particular uniformly bounded in £ >0, and well defined for ¢ =0. This proves (5.13)
for n=1. The cases n=2 follows by induction as in Theorem 3.2.

End of Proof of Theorem 2.1. We show that for all k, N,l,k=N+3, and >0 one
has for ¢ 20 sufficiently small, depending on k, N, [, o, the representation

0L0N g, =LY Pyle, - )+ O~V 73), (5.19)

onL, ,. This obviously implies Theorem 2.1. We prove(5.19) by induction on N. For
N =0it is the content of Lemma 5.5. Suppose now (5.19) is true for N<non L, 3.
By the property P, of Lemma 5.1, we have for 20 on L, ,; the identity

M-, )0 9,)(2)

n +1\ ., .
—n 3 e (" o) e @2 o) e -,
J.;j i )e ¢ (5.20)
so that by the induction hypothesis and the definition of P, we have on L, ,,
A— )@ )=~ )0 ' Pfe, )+ O(E ") . (5.21)

Applying Theorem 4.2, we get (5.19) for N=n+1 and /=0, and therefore the
derivatives with respect to ¢ of ¢, are bounded and can be extended to e=0. By the
induction hypothesis, the terms on the r.h.s. 0f (5.20) are [ times differentiable in z so
that (1— .o£,)84(02* ' @,) (z) can be defined as a suitable sum of [ e~ “* times derivatives
of the form

&olp,, j=0,..n; I'=0,..1;
e M2y

[apply the Egs. (5.1), (5.2) to 8"* ¢, solve for (3"*'¢,), differentiate both sides I
times with respect to z]. We can now use the induction hypothesis (5.19) for I' <1,
N=non L, ,; and then (5.19) follows for I'<], N<n+1 on L, ,, since no further
powers of ¢ are lost by differentiating with respect to z. This completes the induction
proof of (5.19) and hence the proof of Theorem 2.1.

6. The Normal Form around a Fixed Point

So far, we have only regarded the equation A" (p)=¢p. We shall now discuss the
“flow” around the fixed point ¢,, > 0. In order to be able to talk about a flow, one
either needs a differential equation or at least a diffeomorphism. This means that
one has to abandon some of the generality of the equation 4" (p) = ¢, and one must
introduce an iteration scheme. As has been pointed out by Jona-Lasinio in his
careful analysis [13], there is some arbitrariness as to the formulation of such an
iteration scheme. We may take, e.g.

(pn +1= ‘/Ve((Pn) (6' 1)
or

¢n+1='/V‘£O"'°‘/Vs((pn) (62)



The e-Expansion 81

or
@i 1 =2/ 0,)— @, (6.3)

Jona-Lasinio shows that in the free case (infinite temperature), the first choice is
somewhat more natural from an intuitive point of view and we shall therefore
discuss the ”flow* associated with (6.1). The normal form of diffeomorphisms is
discussed in the mathematics literature (especially on IR"), and we shall use such
considerations for the case at hand. The main point of the ensueing analysis is that
we linearize only the unstable manifold by the Sternberg analysis [17]*, while the
stable manifold is not linearized, but handled by contractions, using an idea of
Mather [12].

We work on L _(IR,dz), and we start by controlling the spectrum of the tangent
map to A" (¢) at 9=,

Lemma 6.1. For sufficiently small ¢>0, the map o/ ,=s/,_ . is compact on L.

Proof. We show that the unit ball of L is mapped by «/, onto a set of
equicontinuous functions which tend uniformly to zero as |z|—co. Compactness
follows then by the theorem of Arzela-Ascoli. Let feL, ||fll, =1. Then

| (2 =2r""2|fe™ flze; 12— u)p,(ze; M +u)dul
ézn—l/Zj'e—(ﬂ(a)(zce-l/Z +u)4e—u2du’ (64)

by Bleher-Sinai [4, Theorem 17. The right hand side of (6.4) tends uniformly to zero
as |z|— oo, so that the same is true for the left hand side. To prove continuity, we
consider

A(fN2) =L ()Z)
= 2R (7 W (02 )
—e e 1/2+u)2(p£(2zlce— 12 4 u)}f(u)du X 6.5)

The function exp(— (zc; */* +u)?) is continuous in z, and so is @, (by Theorem 2.2).
Since both functions tend to zero at infinity, and since they are in L,(dz), the integral
is equicontinuous. This proves Lemma 6.1.

Lemma 6.2. The operator s/, has discrete spectrum on L3™ for €>0. If Ae) is the
sequence of eigenvalues in the order of decreasing absolute value, then the following is
true:

For M, N =0 there is an &(M, N) >0 such that for 0<e<¢&(M, N), the eigenvalues
Afe) are CMine for j=0,1,..., N>, and they are simple. For j> N the eigenvalues . O]
satisfy |A,(e)] <2/cy 1.

Proof. The discreteness of the spectrum follows from Lemma 6.1 and the Riesz-
Schauder theorem. Since L, (dz) is dense in L, 5 ,, it suffices to show the assertions
on L, ,. We claim that o7, , is an analytic compact-operator valued function of
geL, ,onthespace L, ; , provided c,26/5, 0 <1/6, T < 30/40. This follows at once

4 M. Droz has pointed out to us that a similar analysis has been done by Wegner [19]
5 Here, we define /1,.(0)=21—j/z
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from (3.7) and the linearity of o/, , in g. The isolated eigenvalues of <7, , are thus cy
functions of g and of ¢ since </, , depends in a C¥ fashion on &. The first part of
Lemma 6.2 follows thus from Theorem 2.1i), while the last assertion of Lemma 6.2
follows from [14,1V.§3], and the fact that it is true for e=0.

Our next problem is to make sure that the part of the spectrum of &/, =/, _,
corresponding to the eigenvalues of modulus <1 is a contraction. This is shown in
the following theorem of Mather [12].

Lemma 6.3. Let A be a linear continuous map from a Banach space E onto itself, with a
finite number of eigenvalues of modulus above 1 and the remainder of the spectrumina
circle of radius less than 1 around the origin. Then there is a spectral decomposition
E=E ®E,, invariant under A, and there are norms on E |, E,, equivalent to the original
ones such that Alg, is a contraction and (A|¢,)” Yis a contraction.

The norm is defined as follows: Let ¢ be the radius of the circle, o'=(0+ 1)/2,

A,=Alg, One has for sufficiently large n the inequality ||A%||'" <¢'. Therefore
[|[45]| < C-(¢)* for some C. Let p be such that C-(¢")?<1. Then the new norm is
defined by

P
A= 4311l
q=0
for feEz.)
We shall use |-|; as the symbol for the new norm ||| -||| defined through Lemma
6.3 on £, i=1,2. We now discuss the non-linear map
T) =N (@, +y)— N (@)= L)+ N (), (6.6)

and we introduce some notation. Let £,, £, be the two subspaces corresponding to
the decomposition of L_(dz) according to the operator DT(0,y)= () in the
sense of Lemma 6.3. Let A,= /|, , N;;=projection onto £; parallel to £; of 4| ¢,
i,j=1,2. By the quadratic nature of .4, we have obviously (for i,j=1,2),

INyw) = p-lwlf - (6.7)
Such an inequality is not true on L, ,-spaces and this has dictated our choice of L -
spaces.

We shall now trade in continuity for boundedness. For this we introduce the
notion of Lipschitz continuity; ®:4—%' (#,%#' are Banach spaces) is called v-
Lipschitzif #(0)=0and || ®(y)||’ < const. [|y||". The v-Lipschitz maps on the ball %(a)
={llyl|=a} C%, form a Banach space & ,, (#(a)—#') with norm |P|,

= sup ||@)|I'/llw|* if v>0, as is easily verified.
llvllsa

Lemma 6.4. If @ is v-Lipschitz on %(b) and of v-Lipschitz norm N then it is v'-
Lipschitz for 0<Vv' <v on %(b) and its v'-Lipschitz norm is bounded by b* "' N,. The
composition ®®' of a v-Lipschitz map ® and a v'-Lipschitz map v' from B(b) to #'(b’)
and from %'(b") to #"(b") is v-v'-Lipschitz from %(b) to #"(b").
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The proofis a trivial consequence of the definition. We now diagonalize T, up to
a 3/2-Lipschitz part £.

Theorem 6.5. There is a C*® diffeomorphism S defined on %(a)CL,, for a>0
sufficiently small and a C* map & from %(a) to L, such that
(i) LE,CE,, PE,CE,,
(i) &g, is 3/2-Lipschitz for j=1,2,
(iil) (A, +L)S=ST(=S(L,+N?)). (6.8)

Proof. Write L, =E=E @ E, according to Lemma 6.3 applied to =7, We look for
an operator S of the form

_ 1 S,
S‘(Sm n)

on £,@E,, with S;; 3/2-Lipschitz, while # will be of the form

% 0
2=(7 o)
Then the Equation (6.8) follows from the relations
A +%,  =A4,+N;; +S,N,,, (6.9)
(A1 +Z1)S12=N1,+8,,(4,+N33), (6.10)
(Ay+Z3)S,1 =N +851(A4; + Niy), (6.11)
A,+%¥, =A,+N,,+S,N;,. (6.12)

Given S, ,, Equation (6.9) determines .,, and substituting into (6.10), one finds

A1S13=N123+812(A2+N33)—N1S12—812N21812, (6.13)
or

Si2=A7'Ni,+A7'S1,(A,+N,)

_A;INllsIZ_Al_lSIZNZISlZ' (614)

A similar equation follows from (6.11) and (6.12). We show now the existence and
smoothness of a unique solution S, , 0f (6.14). By Lemma 6.4 and Equation (6.7), N
is 3/2-Lipschitz on %(a)CE; and of 3/2-Lipschitz norm pa'/?. Consider now the
r.hs. of (6.14) as a map S12—>F(S12) on the Banach space Z3,(#,(a)—E,). If
IR|3/,y=a <1, and since |[4,], <f <1 and |[A] '|; £f <1 by Lemma 6.3, one has by
Lemma 6.4 and Equation (6.7) the inequality

[F(R)\(3/2) = Pou(B + pa)y’? + Bua'’?
+ﬁ,uot2(13/2 +ﬂau3/2 3 3
«, (6.15)

IIA

provided a=a(a, f, p) is sufficiently small. In the same way, one shows
[F(R)— F(R)| 32 =3(1 +B**)R—R’ li3/2)>
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provided |R|3/,), IR — R|3,,), %, a, are sufficiently small. Hence F is a contraction on a
ball #, of the Banach space & ;,,,(%,(a)—£,) and posses a unique fixed point
F(S15)=5,.

We shall now bound the derivatives of S,,. If we view N=N,;, which is
quadratic, as a bilinear function, then we see by iteration that S, , can be written as

S,,= ). r, where r, is 2"-linear. We shall show inductively that
n=1
(X150 X204 <?nn|xj,2, (6.16)
J

with y,<K?~32 for some K>pu sufficiently large. It then follows that for
a<(2K)~* sufficiently small, one has for pe %,(a) and all p,

IDpslz(U)aaUmeéwp)h
© n - on )
<[y, ZIKZ 2q? "<p>p, (6.17)
Jj n=

which shows that S,, is C* on %,(a).
To show (6.16), we first observe that it is true for some y, for n=1, because

ro=Y A7 IN,A4k.
k=0
We proceed by introduction. Suppose the result is true up to n— 1, we show it for n.
By (6.14), for n=2.
r,—A7'r,A,=A7'r,_ N,y —AT'N ,r,  — Z AflrpNurq:Sna

n
ptg=n—1
pqz1

and the norm of s, is bounded by
BK2Z '3z

+ﬁ[l(K2n-l_3/2)2+ z ﬂK2p—3/2['u(K2‘1—3/2)2]2P

ptgqt+tl=n
=K2n_3/2{ﬂK_2"_1,u2"_1+B;1K-3/2+ Z ﬂK—2p+1H2p}
ptqg+ 11=n
r.qz

<(1-pKT32

provided K is sufficiently large.

Now r—A7'rA, is a linear map of norm B2"*! on the space of 2™linear
operators r, and hence r,— A; 'r,A}=s, has a solution of norm =(1—p8)"|Is,l|.
Thus r, exists and the induction step is complete. This proves (6.16) and hence the
differentiability of S, , follows from (6.17) and we have shown the existence ofa C*
map S, ,, satisfying (6.14) and [S, ,|(3/,) <« and there is an identical argument for
S, .. Going back to S, we see that S =1+ (), so that S is a C* diffeomorphism. The
bound on Z follows from Equations (6.9) and (6.12). This completes the proof of
Proposition 6.5.
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Let now T/=ST.,S™?', on %(a). Note that by construction DT,(0,p)= <, (y),
since DS(0,yp)=1vy, DT(0,p)=(p). We now complete the diagonalization of
A+, (the dilating part of o/, +.%). For this we verify the so called Sternberg
conditions [17] for the eigenvalues A,(¢), which have absolute value >1 on
L,CL,,° By Bleher, Sinai [4, Theorem 3.1], one has

A 6)—2/ci| <e¥5,  i=0,1. (6.18)
Also

A(e)=1—¢-log2+0(*?), (6.19)
by (4.2), and

W&l <27Y28/7,  j=3,4,.., (6.20)

provided ¢ =0 is sufficiently small, by the continuity of ., (Section 4). Therefore the
expanding subspace £, is of dimension 2, and the eigenvalue conditions of
Sternberg are for this case the conditions

Aoe)EAT(e) for m=0,1,2,...,

Ae)F5(e) for m=0,1,2,.... (6.21)
In Appendix B, we show that (6.21) is true, and we do the proof also for all
“relevant® eigenvalues in the m-critical case. The condition (6.21) allows us to apply

the theorem of Sternberg [17, pp. 38, 46, 53], and it asserts the existence of a C*®
diffeomorphism U of a neighborhood of the origin of £, such that

A =UA,+L)U"Y, DUO,8yp)=5yp. (6.22)

Theorem 6.6. Normal form of T,. For sufficiently small ¢ >0 there is a neighborhood ¥,
of the originin L, a C* diffeomorphism %, and a 3/2-Lipschitz contraction L, such
that

D0, 6p)=0dyp
and
UA,+ N )U ' =A, DA, +L,P,.
where 2, is the projection onto E, parallel to E,.

Proof.On £E,@E,, set U, (UDI)S, where U is defined by (6.22) and S is defined by
Theorem 6.5. Set L,=.¢, and the result follows.

Having found the normal form of the map T, =/, + .4,, we now look for the
normal form of the diffeomorphism defined by Equation (6.1).

Corollary 6.7. Normal form of o — A (@) around @,. For sufficiently small ¢ >0 there
are on the neighborhood ¥, two transverse C* foliations &%,, #,, invariant under T,
such that

(i) dim&%, =2, codimZ, =2.

6  We work from now on on the even subspace of L, but our analysis could also be extended to
include the odd subspace
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(i) The sheets of &, (resp. &) passing through the origin (=¢,) are the
unstable (resp. stable) manifolds W, (resp. W,) of T,, and they are tangent to E ( resp.
E,).

(ili) T,|5, contracts to W,, and Tz} contracts to W,

Proof. Since %, is a C* diffeomorphism, it suffices to show the assertions for
o+ L, 2. But this is a standard fact ([12], pp. 139, 141).

7. Critical Indices

The analysis of Section 6 has shown us that the first two eigenvalues of o7,
determine the unstable part of the "flow” (="relevant scaling fields*). We now
specialize the situation even further by showing that there are Hierarchial Models
(defined by their free spin distributions = free one point spin distribution) such that
the critical indices of the thermodynamic limits of these models are related in the
standard fashion to the eigenvalues of .. In particular, this shows (by Theorems
4.2, Theorem 2.1. and the fact that o7, is linear in ¢, and hence analytic) that the
critical indices have standard perturbation theory as their asymptotic expansion (up
to arbitrary order).

We begin by constructing the models in question. For this we shall need single
spin distributions ¢ satisfying the following conditions:

cl) peWnv,

c2) >0,

c3) peCl,

c4) 28,0(2)/(p(2))'*€ L,

c5) logp(2)20,0(2)[(@(2))!/*€ L,
¢6) 10,90 —0,0,ll, is small.

Lemma 7.1. There exist functions ¢ satisfying cl-c6.

Proof. By Bleher-Sinai [4, Theorem 8.1] there are functions ¢ >0 such that
y,=/"(¢p) tends to ¢,, and this convergence takes place in L,,~C*. Therefore one
can satisfy cl, c2. The other conditions are then easily satisfied by modifying ¢
slightly near infinity.

This lemma allows the following definition. Let ¢ >0 be given, let c=c, and let ¢
be a function satisfying c1-c6. Choose furthermore a constant « >0 such that

i’f(z_c) +1 (7.1)

c oc e

Then we define a function
2—_¢c\~ 1/2\  _ 222211_0
qu(Z) =f(Z) =|@ (Z( p” ) ) e (22-¢)

which will be called an admissible single spin distribution.
Let

N
H oy, p(5)=— ;1 log f(s)+#y , (7.3)

4_“(%—_6)}_”2}”“, (7.2)

4 oc
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where = #(s) is the Hierarchical Hamiltonian defined in (1.1). Thus log f plays
the role of a single spin distribution. By (7.1), (7.2), and because @pe W,, the model
defined by #, , is critical at ;=

According to the general ideas of renormalization group theory, the anomalous
dimensions (logarithms of the eigenvalues of .«7,) describe the behaviour of physical
quantities close to the fixed point ¢,, under the transformation 1.7. The aim of this
section is to show

Theorem 7.2. The thermodynamic limit of the free energy and the scaling limit of the
susceptibility behave according to the “flow” described in Section6.

We shall show below the existence of the thermodynamic limit for the free
energy. A similar statement could be made for the two point function. The question
of the finiteness of the susceptibility outside the critical temperature is quite a
different matter and not known for most models. Technically, our calculations
show that the scaling-limit can be taken for such quantities.

The above theorem connects in a rigorous fashion aspects of the “geometrical”
theory of Section 6 to the theory of the thermodynamic limit in the statistical
mechanics of the Hamiltonian #) ;. From this point of view, universality means that
our results hold for many different choices of f and do not depend on them. The
combination of the results (shown below) with Lemma 6.2 implies that the e-
expansion is valid (to arbitrary order) for the critical indices of the models defined by
the thermodynamic limit of Hierarchical Models.

We first establish the existence of the thermodynamic limits for the free energy
and the two-point function.

Theorem 7.3. For ¢>0 sufficiently small and for 0 < f <exp(— O(e)|x|*) the limits

.1
Fy .= ,\1,1_1,1302—NIOgZN’”’f’ (7.42)
2N
where Zy ,; = ) Ul ds;e =P n.10),
and 7= .
CSpy= lim Zyjs § I1 dsje™?ms0s7, (7.4b)
- 00 j=1

exist, and are uniformly bounded in p.

Proof. Consider the generating function

Zypru=] H (ds;e*si f¥(s;) e~ P me, (7.5

and let >y ;  , be the expectation with respect to the corresponding measure. We
claim

CI"SZy,puSC3,  C>0. (7.6)

M 2 M
Indeed, the upper bound follows from the bound { )’ ( s.) =M Z ,and using (1.1),
from i=

2N ©
Is2 5 5 3t
j= =
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with C,= 5e"32e(1 - E) st f(s)ds. The lower bound follows because
exp(—BH#y) 21, with C, = [e**f(s)ds.

From the first Griffiths inequality [ 18], one deduces that Zy, ; . ,is monotone in
N, and by the nature of the logarithm,

liminf2™NlogZy ,; = sup2 NogZy s

N- o

and hence the limit lim 27 VlogZy , , , exists and is bounded by log C,, using (7.6).
N—-oo
(These arguments are fairly standard cf. e.g. [15].)
We now turn to the 2-point function. Although the Hierarchical Model is not
translation invariant, the quantity (s,?)N,,, does not depend on i and one can

therefore define it by
(P On,p,=27""0,108Zy 4  uju=o- (7.7)

A straightforward calculation shows that Fy, . ,=2"VlogZy, ., is a convex
function of u, and therefore Equatlons (7.6), (7.7) imply

<Si2>N,[i,f é(FN,ﬁ,f,u_ FN,B,f,o)/H <2logC,. (7.8)

This implies uniform boundedness. The existence of the thermodynamic limit for
(s w,5,s follows now from the second Griffiths inequality [18].

Corollary 7.4. The function {s;s;), , defined in analogy with (7.4b) exists and is
bounded.

' Proof. From the Schwarz inequality and the bound (7.8) we have:
[<5:8;>n.p.5] §(<5i2>1v,p,f)1/2 (<SJ?>N,,;,f)1/2 <2logC,.

Moreover, {s;5;>y ;. is an increasing function of N by the second Griffiths
inequality [18], hence the existence of the thermodynamic limit.

Remark. Theorem 7.3 and Corollary 7.4 imply that F; and {s;s;>, ,are lower semi-
continuous functions of the inverse temperature S.

We now discuss the precise action of the renormalization group. It follows by
direct computation from the definitions (1.1), (7.2) of a model with admissible single
spin distribution f, that

Zypr=Zyn-1p06x5008= Ly -1 p gy (7.9)

where c=c, and

N B(g)(z)=2c"12 [ ds'ds"g(s')g(s")3(s' + 5" — 2zc~ 1/2) P12 (7.10)
Let now
T)(2)=f* (z (21;:C>1/2) o2 <<2ﬂcc) 4n> . .10

By construction, 7,(f,)(z)=¢(z), cf. Equation (7.2), and one verifies that
T34, Ty =N, (7.12)
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where A" =/, is the nonlinear operator defined in Equation (1.5) and discussed
throughout the paper.

Suppose ¢ satisfies c1—c6, and a satisfies (7.1). We call the set of functions ¢(8,.)
=T 4(f,), B near «, the temperature trajectory of ¢ with inverse critical temperature a.
Note that ¢(o, z) = ¢(2).

Lemma 7.5. The curve ¢(B,.) is differentiable in L, and its derivative 03p(B,.)|; -,
=@, satisfies P, ®,%+0, where P, it the projection onto e parallel to e, and E, (cf.
Theorem 6.6, e; is the eigenvector corresponding to 1;).

Proof. From the definitions (7.2) and (7.11) we deduce:
2—c\Y? 2—c\4n\1/?
— {B 22/2 an
o= () ) (5

o e e

This formula together with the hypotheses on the function ¢ proves the
differentiability. Moreover, we have

Op(ar, 2)= — Elo_c{l + logFg (t_‘j)]} d(2)

acC

1/2

+ oeiozs)- S0
a

In L we have
¢=0,+0@E), 0,4=0,0,+0()),
so that in L, , the following representations are valid;

¢=1+0(), 0.0=00),

and we deduce
47 (2—— c)}} o).
¢\ ac

By the assumptions on ¢ and o, 9,¢(f, z) has a non-negligeable projection onto
¥o,.- But from standard perturbation theory [14] it then follows that the same is
true for the projection onto e, in L.

Lemma 7.5 shows that the tangent to the curve ¢(f,.) has a component in the
direction of the first eigenvector of «Z,. In view of Theorem 6.6 and Corollary 6.7,
this implies that %,¢(f,.) has the same property, and that the curve ¢(B,.) is
transversal to the stable (critical) manifold W,. Thus the coefficient g, of the “field”
.. can be used as a parameter on the curve. By the implicit function theorem B is a
C? function of g,, and we shall use the symbol g,(8 — o) [with g,(0)=0] to indicate
the dependence of g, on the reduced inverse temperature.

We now discuss the scaling properties of the free energy

1
yb(a,) = — -23{1 +log

Fy = lim 27NlogZy , ;.

N—- oo
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By (7.9), we get
Fpr=12F; 4,4 (7.13)

or, going over to the space £, @ E,, by the transformation ¢ s =UT §(f3)— @)+ @,
we have with obvious notation,

ﬁﬁ,fisﬁ = 1/2ﬁﬂ,(Ax@Az+Ls%>($ﬁ ~9o) t s (7.14)
cf. Theorem 6.7.
Given ¢>0 sufficiently small, define f, by Aj|f,—a«|=¢ and sign(f,— «)

=const. According to Lemma 7.5. ¢, is of the form 43,,=<p£+ go(B—a)e,
+g,(B—a)e, +r, with ey, e,€E,, reE, and hence

(4,804, +£gs)n(q$ﬂ,._ ©)=A0go(B,— )€+ A1g1(B—)e; +7,.
It follows from (7.9) and the fact that g,(0)+0 (Lemma 7.5) that

A aonp
Fﬂn,¢p,, =2 Fﬁn,¢e+ggé(O)eoJrl?gl(ﬂra) e1+rp+0(fn—a)’

so that we find for the critical index 2 —a,

. logF . logF, .
2—g= lim Brfo — lim Bny@p,
n>o0 10g(B,— ) - log(f,—)
. —nlog2+0(1)
e —n1ogig(e) + O(1)

This agrees with the heuristical discussion of Gallavotti and Knops [10], and
provides thus a rigorous proof of their considerations.

Now things are not much different for the correlation length but we do not
know the existence of the thermodynamic limit. We shall take the point of view
adopted by Gallavotti and Knops [10, Egs. (5.17) and (5.18)] and show that y,
defined by

z {8875 27N~ O(B—2)77),

1=5ijs2VN

is the “correct” critical index. So let
My=s,+...+5,~.

We change now slightly the definition of the non-linear map .4/, eliminating the
first unstable direction. Using again the definitions (1.1), (7.2), we find

—_ 2 -
27 NME DN = 27 MR DN 1 pdnin

where
2 N

2N
IO Dn,p.r= j l_[l dsje_ﬂ‘#”’f(s)g(s)/j Hl dsje—ﬁﬂ’u,f(S) ,
j= j=
and where the “normalized” transformation is

) A O ) |
9(N)(2)= [W—)(f&y)]
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From Equation (7.12) we deduce:

5%, T i "N=H ()| dy ¥ PULT 5 (NPI0)
C

=,/f/(f) [(W)Uzj’j'dudze—%——uzf(zc_1/2+u)f(zc_1/2—u)

=:A7(f).

Let now

1/2 _51_“2
a‘1=<2§-§> [fdudze 2 " @ (zc'* +u)p,(zc™ 2 —u),

-1

it is easy to see that if @, =aq, we have
H (@)=,
Moreover, if ¢ is sufficiently small, N is defined and continuous on a ball in L,of

center §, and radius &. 3
We consider now the map 7, defined by

Tw)=H (@, +v)— ..
and we find
T(p) =, (¥)—2a0,0(¢,, )
+ (N () — ag 0w, p)—2a0(p,, p),, (v)— 0w, ), ()
+4a%,0%(@,, v) +2a0,0(p, v)0(@,, v))
- (a+2a0(g, )+ 0w, p) ',
where

12 2,
e(w’wl)=<4_fz2> [Jdzdue 2 " p(ze™ 2 +upy'(ze™ 12 —u).

The differential of this map at the origin (the new fixed point) is given by

DT0.)= o, (¥)~ 240,09, y)-
From Lemma 6.1 we deduce that DTE(O,.) is compact, its spectrum is given by

Sp(DT(0,.)=Sp(+#,, )u{0}\{2}

. . P a
and the first eigenvector is &, =¢e, — 21—-9(60, e,)e,.
1

It is easy to verify that the analysis of Chapter 6 can be applied to the operator T
and the fixpoint p=0. We have again a normal form of T, but with only one
“relevant” direction: with this modofication, the conclusions of Theorem 6.6 and
Corollary 6.7 are valid, and we call %, the “diagonalisation map”.

In order to repeat for the susceptibility Ay , ,=2"NKMZ% Yy 5 - the argument
used above to calculate the critical index of the free energy, one has to know the
existence of the thermodynamic limit. This is an open question in the neigh-
bourhood of the critical temperature (see [16] for a similar problem).
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We now investigate the susceptibility in the scaling limit. We have
(7.15)

" 2,
ANB,dp = ZXN—— 1,8,4($g)>
where ¢ 5= a (T (fs)— @) and Yy 4 4, = XAn 4,4 Let p be a fixed positive integer, given
0>0 sufficiently small, define §, by A}|f,—a|=¢ and sign(f,—o«)=const. As in

Lemma 7.5, q§,, is of the form
$p=¢e+g1(ﬁ—“)é1 +7, and yg,(0)%0,

where 7 is an “irrelevant vector”. Now

2\n
) XpBnspe+ A1G1(Bn— ) &1 + (Woks 1)'F >

Zn+p,lim<5p" = (C
and we conclude as for the free energy, that the critical index y is given by

log)”(Hp’Bm(,;Bn _ logc/2

= l. = .
7T Tog(B, -0 log,
One may remark that this value does not depend on p. The value of y thus found

coincides with that of the literature [4,10]. This proves Theorem 7.2.
Using the thermodynamic limit of Corollary 7.4 one can show in exactly the
ogc

loge
logd, "

same way, that in the scaling limit one has 1 —y=

Appendix A
Perturbation Expansion. We collect here only some considerations and give some of
the intermediate formulae without proofs. We recall first the definitions:

(A1)

cg ___21/2(1 —¢€) ,
ye=1-¢; %, (A2)
x=yi/2z" (A3)
(A4)

H, =(—1)e"d%e ™|

The functions
1pn,s(z) = Hn,s(z) : 2—n/2n - 1/2

are orthonormalized Hermite polynomials on L, , . We shall expand below ¢,, the

solution of A4 (p,)=¢,, in these polynomials. Basic to this is the following

Lemma Al. For 7,(f,g)(z2)=n""2{e™" f(ze] V> +u)g(ze] /> —u)du we have

Wae HiWane> Vo o2y,
(z _1)n+n’-k
1 \e, 2k 2020 \V2 i |n—n|Zk,
& (n+n' —k)! (k-l—ln—n’l)( 2k! ) n+n 2k,
otherwise. (AS)
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This is shown using the orthogonality relations between the y, , and integration by
parts.
We next set

2 =J
o e=vas @7 (2 -1)

€

and make the ansatz [5], [cf. (1.12), with a change of normalization],

¢s(a)(z) = Z aj(a)gj,e(a)(z) s (A6)

with a;(0)=4;,, a,(«) =c. If we represent a function ¢ by its series {;}, ¢’ by {a}} and
N(@,9') by {b;}, then it follows from (AS5) that

2k 1
b= |n—; <k nll (k +|n— n’I) C'g(n-&- n—k)! (A7)
n+n' 2k

Incidentally, Equation (A7) exhibits the unboundedness of 4" (or ) cf. the terms
coming from n=n', n+n' =k.

Setting
afw)= Y a,o*, &)= ) &o", (A8)
nz0 nz1
one expands
Comy =27 V2(1 +1/2¢, log2 +a*(1/26, 10g 2+ 1/8(¢, log2)?)) + O(a). (A9)

Substituting now (A6)—(A8) in the equation A (¢,, ¢,) = @,, it is easy to see that this
can be solved inductively by solving for increasing powers of a. The result is

ag(@)=1-0?/24+0(2),

ay(@)=—o?(32-2"2) " +0(),

az(@)=+a?-10Q2Y2 - 1)"1 + 0(%),

a,(@)=+a*-35+ 03,

a()=0?, k=56,7,...,

eo)=—a-3(2log2) ' —a?(17+ 18 21/2)(310og2)~ 1)+ O(2%).

It remains now to solve for ¢ (by inversion of the power series), and to express each
0;,. as a formal power series in ¢ and H, o, k=1, ...j. This is done easily, using the
definition of Hermite polynomials. One notes here that only a finite number of
a,(«(e))e; . contribute to a term &'H ;. o- This shows that Equations (5.8), (5.9) hold;
the bound on the highest power in x follows simply from the fact that .4~ at most

doubles the degree of a polynomial.
Summarizing, we get in particular

H4’8(x) =H, o(x)— g2'?—1)""log 2(H, o(x)+6H, o(x))

+0(e?)
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and putting everything together
@ (x)=1—c¢log2/(1442"*—1)*)-H, ,

.| (log2y’ _ (log? (log2)?
+é& { 54 +H2,0 21/227(21/2_1)2 24(21/2_ 1)

u (logd? 17+18:2% (214 1)log2)?
] R PN R 77 144012 Z 1)
(log2)* (log2)* 3
T Hs.o G iyiaeg T Hso @ —ipaiar) TOE)

Appendix B

Let A8(e),..., At™ | (¢) be the m “relevant” eigenvalues, (i.e. those > 1) at the m-critical
point ¢™ which we parametrize as ¢™ =(2/(1+¢))}'™. Then there is for sufficiently
small ¢>0 no relation of the form

m—1
A= [T M@, keZ*, ism—1, (B1)
j=0

except the trivial one.

Proof. If the relation (B1) is to hold, it has to hold in particular up to first order in ¢
for small ¢>0 since the eigenvalues have asymptotic expansions. One finds,
according to Appendix A,

(p(m) =1- Somwg'r'r)n & + (0(82) s (B2)
with
mm 1 m -1
0 = [1/2%(2'”) m )1/2] , (B3)
and
via(2)=(— e e, —(1 - 1/comyi2z 2" 112 (B4)

Therefore, since &7, is linear in g,

A(e)=

clmi

2 1/2 -1/2
—0, 205, n 2 fe  phn (- uppdD (T —w)du), 4 om -
+0(e?)

2j

=2m |1 ——2—=
2 +eé = m
m

where we have used (A5).

+0(e?), (B5)
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Therefore (B1) holds up to first order only if

m—1
m—i= ';o kim—j) (B6)

and
)
j m
2m j=0 i ; 2m ) (B7)
m m
Using (B6), we can replace (B7) by the more convenient
2m 2i\ ™! 2j
(o) =2lo) =2 5(0) 2L @9

We now claim that for j>i,m> j= —— mt [this value of j must occur due to (B6)]
one has 2

m m m—j
(2m) (21') T m—i (B9)
-2
m m
Now (BY) excludes that (B6) and (B7) hold simultaneously in a non-trivial fashion,

which proves the assertion.
To prove (B9), we show first that

m—j < m—(m+i)/2
m—i~  m—i

On the other hand the Lh.s. of (B9) is bounded below by

2 2Am—1)
<';n) _an)m’" )=1_2";;__1 >172,
M

so that (B9) follows.

=1/2.
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Note Added in Proof

The bounds we have given for the derivatives of ;S, in the proof of Theorem 6.5 are incorrect. We
thank D. Chillingworth and L. Guimaraez for pointing out this error to us. The corrected version
will be given in a Lecture Note volume on the subject (in preparation). This will also contain a new
proof of existence of ¢,.





