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Abstract. In this paper, the Hierarchical Model is studied near a non-trivial
fixed point φε of its renormalization group. Our analysis is an extension of work
of Bleher and Sinai. We prove the validity of the ε-expansion for φe. We then
show that the renormalization transformations around φε have an unstable
manifold which is completely characterized by the tangent map and can be
brought to normal form. We then establish relations between this result and the
critical behaviour of the model in the thermodynamic limit.

Introduction and Description of Results

This paper brings the ε-expansion of the renormalization group theory for the
Hierarchical Model on a sound mathematical footing. The Hierarchical Model is a
model on a one-dimensional lattice with ferromagnetic spin interaction whose
range depends on a parameter c. As c varies, the behaviour of the model near its
critical temperature varies also and actually multicritical points of any degree can
occur/The first non-Gaussian critical behaviour occurs when c = 21/2(1~ε) and
then the fixed point of the renormalization group, (which is an exact transformation
for this model) can be discussed by the so-called ε-expansion. This model is the
simplest model in which an ε-expansion arises [1,2,7-9]. The main impetus for the
mathematical study of this model comes from the deep work of Bleher and Sinai
[3,4], on which we rely for the existence of a critical spin distribution.

In Section 1, we review the definition and the exact meaning of the ε-expansion
for this model (one changes the range of the interaction instead of the dimension).
We show that the ε-expansion is the perturbation theory of bifurcation from a
simple eigenvalue [5].

Section 2 is the basis of all our results on the validity of the ε-expansion we show
that the fixed point of the renormalization group is differentiable in ε up to any
order, provided ε is sufficiently small, and has thus an ε-expansion up to any order.
The proofs take up Sections 2-5.

Section 6 is the description of the renormalization group action near the fixed
point; this is the theory of the normal form of diffeomorphisms around a fixed
point (on Banach spaces [17]).
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Section 7 makes the contact of the results of Section 2-6 with the thermody-
namic limit in the statistical mechanics of the Hierarchical Model. Similar results
have been previously reported by Bleher and Sinai [4], using a different point of
view. We find validity of the ε-expansion for the anomalous dimensions of the
relevant scaling fields. For the free energy per degree of freedom, the scaling field
equals the thermodynamic limit of the corresponding quantity. Such a result is not
shown in the case of the susceptibility, because we have no good bounds on
thermodynamic limit, and we discuss only the scaling limit. Our methods allow for
analogous results for odd functions (magnetization) and for the case of multicritical
points of the Hierarchical Model.

Acknowledgements. Our interest in this problem was raised by illuminating discussions with G. Jona-
. Lasinio, which cleared up some of the mysticism in the theory of the renormalization group. Discussions

with A. Frolicher, A. Haefliger, R. Magnus, C. Stuart and our colleagues in the Physics Department on
various points were very helpful.

1. Formalism for the Hierarchical Model

We recall the definition of the Hierarchical Model and we put its ε-expansion
around a certain Gaussian fixed point in perspective. On the one-dimensional finite
lattice consisting of the points 1,...2N, with spins sί9...s2N, one considers the
Hamiltonian

Γ ^k 2N~k-l { 2k \2

(1.1)

(with the notation of Bleher and Sinai [3]). This is an interaction with potential
~distlog2C~2, i.e. the range of the interaction depends on c. The critical dimension
(for the possibility of a non-Gaussian fixed point) predicted by the Landau theory is
dcrit = 2(l-log2c), so that for

c = cε = 21/2(1-ε), (1.2)

the critical dimension is 1 H-ε which is by ε above the actual dimension. Therefore
the expansion in ε of the critical spin distribution is analogous to the usual ε-
expansion. We shall now derive carefully a non-linear equation for the mean spin
distribution which we then discuss. The recursive equations for the model described
by (1.1) at inverse temperature β are

Z+Z2 ! 2

(1.3)---7-z y

Here, /N(z, β) is the rescaled mean spin distribution for the model in "volume" 2N.
Henceforth, we shall omit the normalization LN(z, β). The corresponding fixed point
equation for the distribution is thus

(1.4)
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In the beautiful work of Bleher and Sinai [3, 4] it is shown that certain initial single
spin distributions are attracted by the iteration of (1.3) to a non-Gaussian fixed
point of (1.4), if ε>0. We shall discuss these fixed points and their neighborhoods.
For this, we introduce the following change of variables. A straightforward
calculation shows that φε is a solution of

, (1.5)

with cε=21/2(1-ε> if and only if

•-Ά1'2-1 -f^2

o 2 2— C

is a solution of (1.4). It suffices thus to study (1.5). In particular, φε = 1 corresponds
to the Gaussian solution of (1.4). We now study bifurcations from this solution for
small ε. Since we intend to discuss the ε-expansion of φε, we first state the algorithm
for producing this expansion systematically. In fact we show that this is a typical
situation of a "bifurcation from a simple eigenvalue" (cf. Crandall and Rabinowitz
[5]). Set F(ε, ψ) = ̂ ε(ψ +1) - (ψ +1), and let <e = dψF(s, ψ) be the tangent map to
F at ψ. By definition ̂  ε is the linear map given by

+ 00

As we have seen, F(ε, ip) = 0 has the "Gaussian" solution ψ — 0, so we concentrate on
J^o ε. On the space of even functions, J% ε has spectrum 2c~k— 1, fc=0, 1, 2, ... with
eigenvectors

H^ε(z)=e*2dlke-*\^, (1.8)

where

y.=ι-cβ-1. (1.9)
We shall write γ = yε=0 = l-2~1/2, and H2k = H2k>ε=0.
The functions H2k& are the Hermite polynomials, and the functions

2~k/2(kl)~ί/2Hk form an orthonormal basis on L2(IR,exp( — γεz
2)dz).

The important fact is now that 2cε~
2-l=0 for ε=0. (1.10)

Furthermore 5.3 (̂0,0) #4<£ Range (5 (̂0,0)). (1.11)

Therefore one can expect a bifurcation in the H4 "direction" and it can be found,
as a formal power series, as follows :

Let φ±(α) = ]Γ aj((x}H2j and define
.7*2

- F(ε(α), α#4 + αtp^α)) , α Φ 0

Π _n
\J , OC - \J
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The conditions (1.10), (1.11) ensure that the implicit function theorem for formal
power series [18] can be applied to the equation /(α,ε(α),ι/)1(α)) = 0 and yields a
nontrivial formal solution. We do this explicitly in the Appendix.

Unfortunately, it seems that the topological conditions, which are needed for
the existence of a solution of/(α, ε, ψλ) = 0 in some function space are not satisfied for
the non-linear Equation (1.5). We have in fact been unable to verify the hypotheses
of any of the strong implicit function theorems on Banach spaces or Frechet spaces
[11] (Nash-Moser type theorems) [cf. Lemma 3.1 and Eq. (A7)]. Therefore,
although the formalism (1.10)-(1.12) is very elegant, we are forced to use the direct
calculations of Bleher and Sinai [4] to insure the existence of the solution. We hope
however that (1.10)-(1.12) systematizes suitably ε-expansions and we shall use such
ideas in the sequel.

2. The Fixed Point

We discuss the properties of the non-trivial solution which the Equation (1.5) has
for ε satisfying ε0>ε>0. We view φε(.) as an element in [0,ε0)xL2 σ = M2 σεo,
where Ls>σ = Ls(lR,£ΓσzV/2π-1/2dz). Let y = l-2~1/2. Our first result' is then '

Theorem 2.1. For all NeZ+ and all σe(0,y] there is an ε0(ΛΓ,σ) such that for O^ε
<ε0(JV,σ) a solution φε(z) of ^ε(φε) = φε satisfies

i) φε is a CN function of ε and z as an element of ^2,σ,&Q(N,σ^
ii) The derivatives with respect to ε at ε = 0 are given by the s-expansion, cf.

Appendix A.
iii) In particular,

σ(82), (2.1)

with θ = (log2)/(144(21/2-l)2).

The main input to our result is the analysis of Bleher and Sinai [4], whose result
we state with a minor generalization which is easy to incorporate in their proof.

Theorem 2.2. For ε ̂  0 sufficiently small, the equation jVε(φ) = φ has a solution φ = φε

which is not constant when ε>0 and which satisfies
i) \φε(z)\,\dzφε(z)\<2. (2.2)

ii) For fixed z, φε(z) is continuous in ε^O.
iii) For every d>0 there is an ε0(d) > 0 such that for 0 g ε < ε0(d), the function φε

has the following representation for \z\<(dlnε~1)112:

(2.3)

with

\Rε(z)l\dzRε(z)\<l . (2.4)

Remark. Presumably ε0(d)->0 as d->oo.

The topology of M2>(Tj£o is given through the norm sup ||φε\\2 σ, where || ||2 σ is the norm of L2t(T
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It is our aim to work in the more convenient class ofLsσ spaces instead of using

the regions |z| <(d lnε~ 1)1/2. However, as we shall see below, the remainder Rε and
the linearization j2/φε of Jf around φ = φε are not sufficiently well controlled on all
Ls ̂ -spaces simultaneously for fixed ε, and we will have to work on a scale of spaces.

'Forε>0, let

d^supίφo^ε^ε-1/6}. (2.5)

Note that for β sufficiently small, one has dε^l, (2.6)
and furthermore dε^dε, if ε'^ε, and dε-*oo as ε-»0.

Define Rε by

Rε = £-5/3(φε-l+εm4), if ε>0 ,

ΛO=O . (2.7)

Proposition 2.3. // 0<σ^y, s^l, σ/s ^ 10/(3dε), ίΛβn ||KeJs,* and ||3zRe,||Sf,
 are

uniformly bounded for ε' e [0, ε).

Proof. On

Dε, = {zeIR||z|<(^ln(l/εO)1/2}9 (2.8)

one has \H4(z)-H4>ε,(z}\^(9(ε' ε'~1/5), by the definition of H4ε,, H^ and dβ,.
Therefore, on Dε,,

so that |Λβ,(z)|<2 for sufficiently small ε'>0, and zeDε,. Therefore

f |Rβ,(z)| e-"2

\Dβ'

On the complement Dε/ of Dε, one has |φε,(z)|<2, by Equation (2.2) and therefore

(σ/πΓ1/2 J \φε,(z)\se-σz2dz^(σ/πΓ1/22s+1 ] e~σz2dz
Dg' (dε/lnl/ε ' ) 1 / 2

_ _
2 ε ε'

Similarly,

/2 J |l-

It follows that with characteristic functions χ, one has

ll*Λ.σ^llXD.A^^

provided σέίe,/(2s) ̂  5/3, which follows from σdε/(2s) ̂  5/3.
This proves the assertion for #ε, the case dzRε is similar.
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3. Differentiability in z

Our inductive bounds are based on the following

Lemma 3.1. Let s,ί,r^l; σ,τ>0, s^t. If

l-σ/s-τ/£>0, (3.1)

and

l£ l > 0 , (3.2)
c s t v '

then one has for /eLs σ and

$e-»2\f(zc-l/2 + u)g(zc-ίl2-u)\du = h(z)ELr,ρ (3.3)

and

I l f c l l ^ ^ c o n s t l l / U ^ l l f l f l l ^ . (3.4)

Furthermore, the map f-+h, defined by (3.3) for fixed g is compact.

Proof. If K(z, u) is the kernel of an operator K from LS(1R, dx) to Lr(lR, dx\ then the
operator K is compact if

(an easy generalisation of [6, p. 518]).
Since we work on Lsσ, we reduce the situation to Ls(IR,dx) by setting /(x)

= /(x| exg( — σx2/s), and similarly for g and h. Then the kernel corresponding to the
map / ->ft, is

K9(z, u) = e~ •'«ϊ ( ̂ <««- "2-">I (e^2zc"/2"")2^(2zc- ̂ 2 - u)) } ̂ s«2 .

Using the Holder inequality in z, we bound \Kg\
s^s by

-ρz2-φ^

It is now a straightforward matter to evaluate the Gaussian integrals (first the z
integral), and this yields the conditions

£ ILl-il ι _ l _ - _ ί ι _ ? l V I I Llι-*?\2}
r c[ t J ' t s c\ t ) l\ρ c\ t ) )'

which after some transformations can be seen to be equivalent to (3.1), (3.2). This
proves the assertion.

Note that (3.3) does not define a continuous map L s σxL s σ-»L s σ, whatever
5^1, σ>0 may be. We shall use the following special cases later:
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The map (3.3) is compact and continuous on the spaces

L2,σxL2>σ-^L293σ/cι (3.5)

provided c^6/5, σ/s^l/8, τ/ί^σ/(20s), s^t.
In particular one can choose

L2,a

provided c^6/5, σgl/4, τ^σ/10, and

£4/3,, x £2,1-^4/3^ > (3 7)

provided c^6/5, σ^l/6, τ^3σ/40.

Remark. Lemma 3.1 holds with e~u2du replaced by ue~u2du [with a slight change of
the constants, but not of (3.1), (3.2)].

Theorem 3.2. For every N e TL + and every y ̂  σ > 0, £ Jiere is an ε ί (N, σ), such that φε is
N times continuously differ entiable in z as an element of L2 σ if 0^ε<ε1(]V, σ).

Proof. Fix β! =e1(N,σ) such that σ-9N+ί/2= 10/(3dβl), where dε is defined by (2.5).
Note that ε^N.σ) is monotonically decreasing as a function of N and σ. Since
Hermite polynomials are differentiable in all Ls ^-spaces, the case N = 0, 1 is an
immediate consequence of Proposition 2.3. We proceed by induction, and we
suppose the result holds for fj = d{φ& j = 0, . . . , N — 1. By the equation Λ^ε(φε) = φε,
we have with c = c&

j=o

Since c~21/2 this equality holds on £2,σ/9 3/cC^2,<7/3> by Equation (3.5) and by the
relation s^(N — 1, σ/9) = ε^AΓ, σ). (This relation implies /7 e L2 σ/9 for 7 = 1, ... AT — 1.)
Define also

J

+ 2c-(ly-1)/2π-1/2

By the inductive assumption and by (3.5), gN is defined on ^2,σ/9 3/c^^2,σ/3
bounded uniformly in 0^ε<ε1(JV,σ). Using an integration by parts formula, it is
easy to see that gN is a candidate for fN = δf φε. By the inductive assumption and
partial integration, gN is the derivative oϊgN_ i with respect to z on L2 j(T/3. Also ^fN_ j
= fN-ί on L2s(T/3, since the corresponding r.h.s. of ̂ ^ and ̂ -i coincide on this
space. Therefore gN = dzgN_1=dzfN_ί, i.e. fN_ί is differentiable on L2,<r/3 anc^ in
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fact continuously differentiate as can be seen by a change of variables
w-»w + zc~1/2, its derivative is then equal to the r.h.s. of AN, as an element of
^2,σ^^2,σ/9 3/c The induction step is complete.

4. Bounds on the Linearization

For a suitable function g, to be specified below, we define the operator sig^ by the
equation

+ 00

^,ε(/)(z) = 2π-1/2 J e-"2g(zc^lί + u}f(zc;ίl2-u)du. (4.1)
— oo

IX,fβ = J2;-ι.β + l, cf. Equation (1.7).]
For g = φεwQ shall note j2/ε = s/φεtε.
The "folio wing facts from Bleher and Sinai [4] are used later.

Theorem 4.1. For 0 ̂ ε sufficiently small the operator s#ε is bounded on L2>1 _ c- i, and
it has the following properties :

i) <£/ε has an eigenvalue λ of the form

/2)2 (4.2)

with eigenvector gε satisfying

sup |0ε(z)-#4jε(z)|^ε4/5, (4.3a)

|0ε(z)|^|z|5exp(-tf(ε|z|4)) /or Iz^lOαnε'1)1/2 (4.3b)

ii) The remainder of the spectrum of <$tfε is bounded away from 1, uniformly in
ε^O.

Let σ,0<σ^l/4 be given and define ε0 by cεo = 6/5. For 0<τ^σ/10, and
0<ε^ε0, the numbers σ,τ,cεo satisfy (3.6). Fix now 0<ε1^ε0 such that
σ/2, τ/4 > 10/(3ίf). Then we can improve Theorem 4.1 to

Theorem 4.2. For all σ,0<σ^l/4, there is an ε2(σ) = ε2<ε1, ε2>0, such that for
0<ε^ε2 one has

ϊ ) j t f ε — t is a bounded, invertible operator on L2 σ. Its inverse is a norm
continuous function of ε>0, and it is bounded in norm by 0(ε-1).

ii) Let \\g — <pε||4>τ = $(ε5/4). Then (j^ε — i)"1 is a bounded operator of norm
^(ε"1) on L2σ and it is norm continuous as a function of 0eL4τ.

Proof. By the condition τ/4>10/(3dει), by Equation (2.7), and by Proposition 2.3 we
have <pεeL4r Therefore, since σ,τ satisfy (3.6),

j/ε is compact from L2σ to L2σ . (4.4)

For small ε^O we have L2,σCL2tί-Cε-1, since σ^l/2. Therefore the spectrum of
j/ε — i consists of a point with multiplicity one near $(ε) and a remainder bounded

The coefficient can be found from Equation (A5) by perturbation theory



The ε-Expansion 75

away from zero. The bound on (j/ε — i)"1 is complicated by the fact that jtfB is not
symmetric. Let Pε be the orthogonal projection onto φε in L2>σ, P^ = t — Pε. Then
one has

Lemma 4.3. The operator P ε-(jtfε — i.)P-ε- is invertible on P^L2σ and the norm of its
inverse is uniformly bounded for ε > 0 sufficiently small.

We postpone the proof of this lemma and continue the proof of Theorem 4.2.
Consider the "matrix"

- (4 5)

on

The element Pε(j/ε —i)Pε is invertible and its inverse is bounded by Θ(ε *) on
PεL2 σ, as a consequence of Theorem 4.1. The operator Pε(s/ε — t)P^ is rank 1 on
L2σ and its norm is bounded as a function of small ε ̂  0 for fixed σ, as can be seen by
explicitly calculating the Hubert-Schmidt norm of j/ε on L2σ. Therefore the inverse
of (4.5), which is

ε ε~Q ' ' ε~ ' (pιΛ
 ε^o^-ι ' ' ε I (4 6)

is bounded in norm by &(ε~ 1), (the sum of the norms of the matrix elements). This
proves i), up to the norm continuity.By Lemma 3.1, \\^9>ε — =
assertion follows now by i) and standard perturbation theory [14, IV, Theorem
1.16]. This completes the proof of Theorem 4.2, ii). By the continuity of φε in L4 τ the
remainder of Theorem 4.2, i) follows.

Proof of Lemma 4.3. We first note that ||φε- 1||4 >τ^0(ε), by (2.7) and Proposition
2.3, so that by Lemma 3.1, || stφ^ - j/1>0 1| 2><T = 0(εj. It suffices thus to show (by [14,
IV, Theorem 1.16]) that P^(^li0 — t)P^ has a bounded inverse. Similarly, we note
that

||%-#4.θll2.σ^ll%-^^^

by (4.3a), (4.3b) and the definition (1.8) of Hermite polynomials. Therefore

\\pϊ-pH*\\2,σ = \\pH4-p*\\29σ = ®(ε*15) and ^ suffices to show the bounded in-
vertibility of P1^ 0 - ijlP1, where P1=i-PjΪ4 on L2σ. Now Λ/ l f 0 is compact on
L2 σ, by (4.4) and hence 1 is at most an isolated eigenvalue of P1j^1)0P

1. Suppose ψ
is in the nullspace of P1(j/1 0 — ̂ P1. Then there is a λ such that
(ja/! >0 — t)P:Lψ = λH4. Since L2f(JCL2iJ this equality holds on L2jV, so that (by the
selfadjointness of ̂  0 on L2 y), λ =0 and P-Lψ = λ'H4>0. Going back to L2 σ, we see
that λ' = 0. Hence Px(«s/1)0 ~~ ̂ )^"L i§ invertible on PLL2σ and has a bounded inverse
(for fixed σ). This proves Lemma 4.3.

5. Proof of Theorem 2.1

We proceed in several steps. We first show in Lemma 5.1 that φε is CN for ε>0
sufficiently small (depending on N). Then we show in Lemma 5.2 that dk

zφε(z) is
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bounded as ε-»0. In Theorem 5.4 we establish an asymptotic expansion in ε for φε(z)
from which we finally deduce the differentiability of φε.

Lemma 5.1. For all N ̂  0, σ > 0 there is an ε2

 = ̂ 2(^9 σ) > 0 such that for 0 < ε < ε2 the
function φε(z) is CN in ε and z as an element of M2 σ £2 (cf. Theorem 2.1).

Proof. As in the proof of Theorem 3.2, we work with a sequence of ε2(N, σ) satisfying
ε2(ΛΓ- 1, <τ/27)>ε2(JV,σ) and ε2(Λ/» is such that 27σ/2> 10/(3dβ2). We shall show
recursively the following properties.

P'N: Fork = Q,l,2,...,dk

zd
]?φεismL2iσϊ

and it is continuous in ε.

7 = 0

Note that P0 is a trivial consequence of Theorem 3.2 and Lemma 3.1. Also P0

expresses the fact that φεeL2 σ/3 solves Λ^ε(φε) = φε. Suppose now that P,, PJ hold
for j^ N. In particular, we have on L2 σ,

i=ι

-Midu. (5.1)

By the chain rule, we find

- "* - u))du

j<JV ί

zc.-̂ ^̂ ^̂ -̂ -̂ .̂ (5.2)

These expressions are well defined on L2a by the inductive assumption PN. We can
now form for 0<ε,ε'<ε2(JV + l,σ) on L2>a,

e-»εK- + u)

^2 J e-"Vβ(zc.- 1/2 + u) [(θ?φ.,) (zc; 1'2 - «)- (a?ς».,) (zcε

+ 2π~ 1/2 1 e-"2[φε(zcε-
 1/2 + u) - φε,(zcεT

 1/2 + u)] (δjίφ.,) (zcεT
 1/2
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Solving for (flφj (z) - (d>,) (z\ we get

(l-J*9J(%φt-%φt) = tf>-lfP+ Σ ΛX, ), (5.3)
fc=2,3

and this is well defined on L2σ. Since 3f φε and d%φε, are continuously differentiable
as functions of z, by PN, we may rewrite g^ + g^ as "derivatives plus remainder",
i.e.

(5.4)

on L2σ provided 0<ε,ε'<ε2(JV+l,σ)^e2(ίV,σ/27).
We similarly have

• (3?φβ,) (zcεT ̂  - W)^M + 0((β - ε')2) , (5.5)

under the same conditions as before, if AT ̂  1. For N = 0, Equation (5.3) is replaced
by

[(1 - ±s/9ttt - ̂ J (φ. - φε,)] (z)

= π~ 1/2 \e-u\φt,(zc- 1/2 + u)φε,(zc- 1/2 - u) - <pε,(zceT
 1/2 + u)φε,(zceT

 1/2 - u)}du

= 2π~ 1/2(ε-ε') / e-"2{(52φε)(zcε-
 υ2 + u)φε(zc; ίl2-u)zdtc^ ί/2}du

+ &((ε-ε')2) . (5.3')

Henceforth we only discuss Equation (5.3), the case (5.3') is analogous. By Theorem
4.2, J#φfιt — H = <a/ε — 1 is invertible on L2 ><r for sufficiently small ε > 0, and its inverse
is bounded in norm by ^(ε"1), and continuous in ε>0. Therefore

(5-6)
fc=2,3 /

is continuous in ε>0, on L2 σ.
Multiplying (5.6) by 1 — j/ε on both sides, one gets the relation PN+l. Next we

show that δf +1φε is differentiable in z. Using the relation P'N+ί and the inductive
assumption PN, it is clear from Equation (5.1) that it suffices to show the
differentiability of

But this equals

j g-(«-.c.- 1/2>23f + ιφε(w)φε(2zc; 1/2 - u)du , (5.7)

and the assertion follows now by Theorem 3.2 and by the bound PN+ 1 on δf+ lφε.
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We now work towards differentiability at ε = 0. Our first result is

Lemma 5.2. For all σ>0 and KeTL+ , the function d^φε is uniformly bounded in
O^ε^ε^K^σ), as an element of L2σ.

Proof. This follows immediately from Theorem 3.2 and the fact that the assertion is
true for K = 09 1, by (2.7) and Proposition 2.3.

Lemma 5.3. For allk^.2 and ε^O there is a (unique) polynomial Pfc(ε,x) of degree
less than 2k 3 in x and k—1 in ε such that

i) Pfe(ε, x) = 1 — ε9H4(x) + higher orders in ε . (5.8)

ii) W(Pk(s,x))-Pk(8,x)\^Cks
k(\x\2k+1 + l) . (5.9)

Remark. The lemma asserts the existence of the ε-expansion for φε as a formal power
series. We shall prove the statement in Appendix A.

We next show that φε has an asymptotic expansion at ε = 0 (this does not
necessarily imply its differentiability).

Theorem 5.4. For all k^2 and for all σ>0 there is an ε3(/c,σ) such that for 0:gε
<ε3(/c,σ) one has

(5.10)

in L2σ.

Proof. Setting Rk >ε = ε~4/3(φε- 1 + εθ#4)-ε-4/3(Pfc+2(ε, - )- 1 +εAff4), we have by
Proposition 2.3 and Lemma 5.2, that

Rktε = β(ί) in L4>t provided τ/4>10/(3de). In addition RM,->0.as ε'-^O in L2σ for
σ/2> 10/(3dε). We now use that φε is a fixed point of ^Γε. Therefore

2(ε> ' )) + ε -^Pk + 2(e, )

and by rearranging we get the crucial identity

= εk+1Qk(ε, ) , (5.12)

where Qk is a polynomial. If we fix σ > 0, τ > 0 sufficiently small, then (3.1), (3.2) hold
for ε^O sufficiently small. Therefore, by Proposition 2.3,

Pk+ 2(ε, ) + l/2ε4/3.Rfc>ε -φε =

in!,4fTby(5.11).

3 The correct bound is 4k—4 for k> 1
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Since ε4/3 < ε5/4, we may apply Theorem 4.2ii) with g = Pk+2(ε, - ) + l/2ε4/3βε, so
that

and

The assertion follows from (5.11).

Lemma 5.5. For all fe,n^0, and σ>0 one has for sufficiently small ε^O the
representation

, (5-13)

with

Proof. The case n = 0 is covered in Theorem 5.4. To prove the case n= 1, we write
first Equation (5.10) for fc + 1

φε = P fc+3fe ) + βX, (5.14)

with \\R'e\\2,σi3 = @(ε)9 for sufficiently small ε^O. Since φε and Pk+3(ε, ) are
differentiable in z on L2>σ/3 (for ε sufficiently small), we find

'ε. (5.15)

Using now

dzφε(z) = 2π- 1/2cε~
 1/2 f e^φ^ ̂  + u)(dzφε)(zc; 1/2 - u)du , (5. 16)

we find on L2>σ the identity

= 2π~ WC;
 1/2 f e-»2Pk+ 3(ε, zcε' ̂

2 + tι) (θzφε) (zcf 1/2 - u)dύ

+ 2π~ 1/2c; 1/2 J ̂ -M2εX(zcε-
 1/2 + u) (δzφε)(zc; 1/2 - w)dw ,

which becomes upon integrating by parts

+ u)}φe(zc~ 1/2 - u)dw
1/2-M)dM . (5.17)

By Theorem 5.4, Lemma 3.1, Theorem 3.2, and Equation (2.7), the second integral is
&(εk+ x) in Z-2 >(7. In the first integral of (5.17), we split φε according to (5.14) and the
term coming from R'e is bounded by &(εk+1) in L2a. The other term is equal to

(5.18)
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By perturbation theory, (5.18) is equal to dzPk+ 3(ε, z) up to a polynomial which is of
order fc + 3 in ε. Going back to (5.17) we see that \\dΣR'ε\\2>σ = (9(ε) so that it is in
particular uniformly bounded in ε ̂ 0, and well defined for ε = 0. This proves (5.13)
for n = l. The cases n^2 follows by induction as in Theorem 3.2.

End of Proof of Theorem 2.1. We show that for all fc, N, /, k ̂  N + 3, and σ > 0 one
has for ε^O sufficiently small, depending on /c, N, /, σ, the representation

W<Pe = %B?Pk(*> ) + tf(βfc-"-3) , (5.19)

onL2 σ. This obviously implies Theorem 2.1. We prove(5.19) by induction on AT. For
ΛΓ = 0 it is the content of Lemma 5.5. Suppose now (5.19) is true for N^ n on L2j(T/3.
By the property P'n+1 of Lemma 5.1, we have for ε^O on L2ttr/3 the identity

f <
j=ι \ J / (5.20)

so that by the induction hypothesis and the definition of Pk we have on £2>σ/3

"-3) . (5.21)

Applying Theorem 4.2, we get (5.19) for N = n + 1 and / = 0, and therefore the
derivatives with respect to ε of φε are bounded and can be extended to ε = 0. By the
induction hypothesis, the terms on the r.h.s. of (5.20) are / times differentiable in z so
that (1 — jtfε)dl

z(d" + ίφε) (z) can be defined as a suitable sum of j e~"2 times derivatives
of the form

3fcβ-
1/2,tι

[apply the Eqs. (5.1), (5.2) to 8n

ε

 + 1φε, solve for (δe"
+1φe)> differentiate both sides /

times with respect to z]. We can now use the induction hypothesis (5.19) for /' ̂  /,
Norton L2,σ/3 and then (5.19) follows for /'^/, N^n+1 on L2 σ, since no further
powers of ε are lost by differentiating with respect to z. This completes the induction
proof of (5.19) and hence the proof of Theorem 2.1.

6. The Normal Form around a Fixed Point

So far, we have only regarded the equation ^&(φ) = φ. We shall now discuss the
"flow" around the fixed point φ& ε> 0. In order to be able to talk about a flow, one
either needs a differential equation or at least a diffeomorphism. This means that
one has to abandon some of the generality of the equation ^Vε(φ) = φ, and one must
introduce an iteration scheme. As has been pointed out by Jona-Lasinio in his
careful analysis [13], there is some arbitrariness as to the formulation of such an
iteration scheme. We may take, e.g.

or

%+i=^.°-°^.W (6-2)
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or
<Pn+ι=Wε(φn)-φn. (6.3)

Jona-Lasinio shows that in the free case (infinite temperature), the first choice is
somewhat more natural from an intuitive point of view and we shall therefore
discuss the "flow" associated with (6.1). The normal form of diffeomorphisms is
discussed in the mathematics literature (especially on R"), and we shall use such
considerations for the case at hand. The main point of the ensueing analysis is that
we linearize only the unstable manifold by the Sternberg analysis [17]4, while the
stable manifold is not linearized, but handled by contractions, using an idea of
Mather [12].

We work on L^IR^z), and we start by controlling the spectrum of the tangent
map to Jf^φ) at φ = φε.

Lemma 6.1. For sufficiently small ε>0, the map jtfε = jtfφetε is compact on L^.

Proof. We show that the unit ball of L^ is mapped by j/ε onto a set of
equicontinuous functions which tend uniformly to zero as |z|-κx). Compactness
follows then by the theorem of Arzela-Ascoli. Let feL^, H/H^l. Then

| = 2π- 1/2|J e~u2f(zc- ^ - u}9&(zc~ ̂  + u)du\

^2π-1/2$e-&(ε^ί/2+»)4e-»2du , (6.4)

by Bleher-Sinai [4, Theorem 1]. The right hand side of (6.4) tends uniformly to zero
as |z|->oo, so that the same is true for the left hand side. To prove continuity, we
consider

1/2 + u)}f(u)du . (6.5)

The function exp( — (zc~ 1/2 + w)2) is continuous in z, and so is φε (by Theorem 2.2).
Since both functions tend to zero at infinity, and since they are in L^dz), the integral
is equicontinuous. This proves Lemma 6.1.

Lemma 6.2. The operator jtfε has discrete spectrum on Le^en for ε >0. // λj(ε) is the
sequence of eigenvalues in the order of decreasing absolute value, then the following is
true:

For M, N ̂  0 there is an ε(M, N) > 0 such that for 0 ̂  ε ̂  ε(M, JV), the eigenvalues
λj(ε) are CM in ε f o r j = 0, 1, . . . , N 5, and they are simple. Forj > N the eigenvalues λj(ε)
satisfy μ/ε)|<2/cf~1.

Proof. The discreteness of the spectrum follows from Lemma 6.1 and the Riesz-
Schauder theorem. Since L^dz) is dense in £4/3>ί7, it suffices to show the assertions
on L4/3fff. We claim that jtfg >ε is an analytic compact-operator valued function of

2 τ on the space £4/3>σ provided cε ̂  6/5, σ ̂  1/6, τ ̂  3σ/40. This follows at once

4 M. Droz has pointed out to us that a similar analysis has been done by Wegner [19]
5 Here, we define Λ/0) = 21 ~ij2
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from (3.7) and the linearity o ϊ j t f g ε in g. The isolated eigenvalues of stg ̂  are thus CN

functions of g and of ε since jtfg>ε depends in a CN fashion on ε. The first part of
Lemma 6.2 follows thus from Theorem 2.1i), while the last assertion of Lemma 6.2
follows from [14,IV.§3], and the fact that it is true for ε = 0.

Our next problem is to make sure that the part of the spectrum of j/ε = j/φε ε

corresponding to the eigenvalues of modulus < 1 is a contraction. This is shown in
the following theorem of Mather [12].

Lemma 6.3. Let A be a linear continuous map from a Banach space E onto itself, with a
finite number of eigenvalues of modulus above 1 and the remainder of the spectrum in a
circle of radius less than 1 around the origin. Then there is a spectral decomposition
E = E1 Θ £2, invariant under A, and there are norms on £\ , £2 equivalent to the original
ones such that A\E2 is a contraction and (^l^)"1 is a contraction.

The norm is defined as follows : Let ρ be the radius of the circle, ρ' = (ρ + 1)/2,

A2=A\£2. One has for sufficiently large n the inequality ||y42||
1/w<ρ'. Therefore

IMSI^C ίρ')" for some C. Let p be such that C-(ρ')p<L Then the new norm is
defined by

= Σ IMI/II

for/e£2.

We shall use | \t as the symbol for the new norm ||| ||| defined through Lemma
6.3 on £f, ί=l,2. We now discuss the non-linear map

+ ψ) - ^ε(φε) = s/Λ(ψ) + Λ^(V) , (6.6)

and we introduce some notation. Let £15 £2 be the two subspaces corresponding to
the decomposition of LJ(άz) according to the operator DTε(Q,ψ) = £/ε(φ) in the
sense of Lemma 6.3. Let A{ = j/J£. , Ntj = projection onto £f parallel to Ej of </FJ E,
i, j = 1, Ί. By the quadratic nature of jV£ we have obviously (for ij= 1, 2),

MXvOl^μ M*. (6.7)
Such an inequality is not true on Ls σ-spaces and this has dictated our choice of L^-
spaces.

We shall now trade in continuity for boundedness. For this we introduce the
notion of Lipschitz continuity; Φ:&^>&' (β,Λ* are Banach spaces) is called v-
Lipschitz if Φ(0) = 0 and |̂ (tp)||; ̂  const. ||t/;||v. The v-Lipschitz maps on the ball J*(α)
= {||φ||^α}C#, form a Banach space JS?(V) ($(ά)-+ffl'} with norm |Φ|(v)

= sup ||Φ(v>)HVIMΓ if v>0, as is easily verified.

Lemma 6.4. // Φ is v-Lipschitz on &(b) and of v-Lipschitz norm Nφ then it is v'-
LipschitzforO<v'^v on &(b) and its vf -Lipschitz norm is bounded by bv~v'Nφ. The
composition ΦΦ of a v-Lipschitz map Φ and a vf -Lipschitz map v' from &(b) to
and from @'(V) to @"(b"} is v vf -Lipschitz from 8t(b) to 0t"(b").
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The proof is a trivial consequence of the definition. We now diagonalize Tε up to
a 3/2-Lipschitz part &.

Theorem 6.5. There is a C°° diffeomorphism S defined on ^(a)cL00 for α>0
sufficiently small and a C°° map <£ from &(a) to L^ such that

(i) &E±cE19#E2cE29

(ii) &\ E is 3/2-Lίpschίtz for = 1, 2,
(in) « + &)S = STε( = S« + Λg) . (6.8)

Proof. Write L^=E=EίΦE2 according to Lemma 6.3 applied to j/ε. We look for
an operator S of the form

l

C_

on E1®E2, with S^ 3/2-Lipschitz, while <£ will be of the form

0 JS?2.

Then the Equation (6.8) follows from the relations

(6.9)

(6.10)

(6.11)

(6.12)

Given S12, Equation (6.9) determines J5f1; and substituting into (6.10), one finds

or

-A^N^S^-A^S^N^S^. (6.14)

A similar equation follows from (6.11) and (6.12). We show now the existence and
smoothness of a unique solution S12 of (6.14). By Lemma 6.4 and Equation (6.7), Ntj

is 3/2-Lipschitz on &j(a)cEj and of 3/2-Lipschitz norm μα1/2. Consider now the
r.h.s. of (6.14) as a map S12->F(S12) on the Banach space y(3/2)(l%2(a)->E1). If
|J?|(3/2)=α<l, and since |^2|2^^<1 and |^4j" 1 | 1^/ff<l by Lemma 6.3, one has by
Lemma 6.4 and Equation (6.7) the inequality

^oc, (6.15)

provided a=a(a,β,μ) is sufficiently small. In the same way, one shows

\F(R) - F(R')l(3/2) £1(1 + β5l2)\ R - Λ'|(3/2) ,
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provided |-R|(3/2), \R — R\(3/2)> α> α> are sufficiently small. Hence F is a contraction on a
ball J*α of the Banach space ^f(3/2)(J'2(α)-»£1) and posses a unique fixed point

We shall now bound the derivatives of S12. If we view N = Nij9 which is
quadratic, as a bilinear function, then we see by iteration that S12 can be written as

S12= Σ rn> where rn is 2Minear. We shall show inductively that
n=l

(6.16)

with yn^K2n~3/2 for some K>μ sufficiently large. It then follows that for
a<(2K)~1 sufficiently small, one has for ψe&2(a) and all p,

Σ E^2n-3/2~2n-σ/ I ~< ( f i \ H \

, - n-,K a \PΓ' (6'17)

which shows that S12 is C°° on J*2(α).
To show (6.16), we first observe that it is true for some yl for n = l, because

fe=0

We proceed by introduction. Suppose the result is true up to n— 1, we show it for n.
By (6. 14), for n^2.

p+q=n— 1

and the norm of sn is bounded by

p+q+ 1 =n

provided K is sufficiently large.
Now r^A^lrA2 is a linear map of norm β2"+1 on the space of 2Minear

operators r, and hence rn — A^1rnA2 = sn has a solution of norm ^(1— /O"1!!'5,,!!-
Thus rn exists and the induction step is complete. This proves (6.16) and hence the
differentiability of S12 follows from (6.17) and we have shown the existence of a C°°
map S12, satisfying (6.14) and |S12|(3/2)^α and there is an identical argument for
S21, Going back to S, we see that S = i + 0(α), so that S is a C°° diffeomorphism. The
bound on Sf follows from Equations (6.9) and (6.12). This completes the proof of
Proposition 6.5.
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Let now T^ = STεS~\ on J'(α). Note that by construction
since DS(Q,ψ) = ιp, DTε(Q,ψ) = £/ε(ψ). We now complete the diagonalization of
AI+&! (the dilating part of j/β + Jίf). For this we verify the so called Sternberg
conditions [17] for the eigenvalues (̂ε), which have absolute value >1 on
L0 0CL2 ( T

6. By Bleher, Sinai [4, Theorem 3.1], one has

μ;(ε)-2Λή<ε4/5, ι = 0,l. (6.18)

Also

Λ2(ε) = l-ε log2 + 0(ε3/2), (6.19)

by (4.2), and

μ/ε)|<2-1/28/7, ; = 3,4,..., (6.20)

provided ε = 0 is sufficiently small, by the continuity of s/ε (Section 4). Therefore the
expanding subspace Eί is of dimension 2, and the eigenvalue conditions of
Sternberg are for this case the conditions

ε) for m = 0,l,2,...,

B) for m = 0,l,2,.... (6.21)

In Appendix B, we show that (6.21) is true, and we do the proof also for all
"relevant" eigenvalues in the m-critical case. The condition (6.21) allows us to apply
the theorem of Sternberg [17, pp. 38, 46, 53], and it asserts the existence of a C°°
diffeomorphism U of a neighborhood of the origin of E± such that

Aί = UiAt+yjU-*, DU(Q,δψ) = διp. (6.22)

Theorem 6.6. Normal form ofTε. For sufficiently small ε > 0 there is a neighborhood 1^ε

of the origin in L^, a C°° diffeomorphism %ε and a 3/2-Lipschitz contraction Lε such
that

and

where ^ε is the projection onto E2 parallel to E±.

Proof. On E±®E2, set Φβ(l/0/)S, where U is defined by (6.22) and S is defined by
Theorem 6.5. Set Lε = <&, and the result follows.

Having found the normal form of the map Tε = j/ε + yΓε, we now look for the
normal form of the diffeomorphism defined by Equation (6.1).

Corollary 6.7. Normal form ofφ-j>Λr

ε(φ) around φε. For sufficiently small ε >0 there
are on the neighborhood 1^E two transverse C°° foliations J ,̂ ̂ , invariant under Tε

such that
(i)

6 We work from now on on the even subspace of L^, but our analysis could also be extended to
include the odd subspace
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(ii) The sheets of 2FU (resp. ^J passing through the origin (=φj are the
unstable (resp. stable) manifolds Wu (resp. Ws) ofTε, and they are tangent to E^ (resp.
E2).

(in) Tε\^s contracts to Wu, and Tε\^ contracts to Ws.

Proof. Since ε̂ is a C°° diffeomorphism, it suffices to show the assertions for

ε. But this is a standard fact ([12], pp. 139, 141).

7. Critical Indices

The analysis of Section 6 has shown us that the first two eigenvalues of j/ε

determine the unstable part of the "flow" ( = "relevant scaling fields"). We now
specialize the situation even further by showing that there are Hierarchial Models
(defined by their free spin distributions = free one point spin distribution) such that
the critical indices of the thermodynamic limits of these models are related in the
standard fashion to the eigenvalues of j/ε. In particular, this shows (by Theorems
4.2, Theorem 2.1. and the fact that j/ε is linear in φε and hence analytic) that the
critical indices have standard perturbation theory as their asymptotic expansion (up
to arbitrary order).

We begin by constructing the models in question. For this we shall need single
spin distributions φ satisfying the following conditions :

cl)
c2)
c3)
c4)
c5)
c6) \\dzφ-ΰzφε\\^ is small.

Lemma 7.1. There exist functions φ satisfying cl-c6.

Proof. By Bleher-Sinai [4, Theorem 8.1] there are functions φ>0 such that
ιpn = ̂ (φ) tends to φε, and this convergence takes place in L^nC1. Therefore one
can satisfy cl, c2. The other conditions are then easily satisfied by modifying φ
slightly near infinity.

This lemma allows the following definition. Let ε > 0 be given, let c = cε and let φ
be a function satisfying cl-c6. Choose furthermore a constant α>0 such that

αc

Then we define a function

-c\~1 / 2\ *2αc Γ4π/2 —cVΓ 1 / 2 '
/„(*)=/(*)=?

which will be called an admissible single spin distribution.
Let

2N

#? (s] = — yN,f\ J Z~ι

I/a

(7.2)
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where ^fN = ̂ fN(s) is the Hierarchical Hamiltonian defined in (1.1). Thus log/ plays
the role of a single spin distribution. By (7.1), (7.2), and because φe W# the model
defined by J^Nff is critical at /?crit = α.

According to the general ideas of renormalization group theory, the anomalous
dimensions (logarithms of the eigenvalues of «a/e) describe the behaviour of physical
quantities close to the fixed point φε, under the transformation 1.7. The aim of this
section is to show

Theorem 7.2. The thermodynamίc limit of the free energy and the scaling limit of the
susceptibility behave according to the "flow" described in Section 6.

We shall show below the existence of the thermodynamic limit for the free
energy. A similar statement could be made for the two point function. The question
of the finiteness of the susceptibility outside the critical temperature is quite a
different matter and not known for most models. Technically, our calculations
show that the scaling-limit can be taken for such quantities.

The above theorem connects in a rigorous fashion aspects of the "geometrical"
theory of Section 6 to the theory of the thermodynamic limit in the statistical
mechanics of the Hamiltonian 3ΊPNff. From this point of view, universality means that
our results hold for many different choices of f and do not depend on them. The
combination of the results (shown below) with Lemma 6.2 implies that the ε-
expansion is valid (to arbitrary order) for the critical indices of the models defined by
the thermodynamic limit of Hierarchical Models.

We first establish the existence of the thermodynamic limits for the free energy
and the two-point function.

Theorem 7.3. For ε>0 sufficiently small and for Og;/^exp( — 0(β)|:x|4) the limits

Fβ,f= lίm^N
N->oo *•

2"

where ZWΛ/ = J J]

and " J'=1

<s?>,p/ = lim Z-jt/ J Π dsje-^ ^s? , (7.4b)
JV-»QO j=l

exist, and are uniformly bounded in β.

Proof. Consider the generating function

Z*.,./.μ = ί Π (dsfrif'^e-'*** , (7.5)

and let < yNtβtfιμ be the expectation with respect to the corresponding measure. We
claim

Cf gZ^^CΓ, C^O. (7.6)

(M \ 2 M

£sf <;M £ s?, and using (1.1),
i / ί=1

k=ί
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with C2=\eμs2e\ 2> * f(s)ds. The lower bound follows because
exp( - β^N) ^ 1, with Ci = j eμs2f(s)ds.

From the first Griffiths inequality [18], one deduces that ZNίβ}f>μ is monotone in
N, and by the nature of the logarithm,

and hence the limit lim 2~N\ogZNiβ)f>μ exists and is bounded by logC2, using (7.6).
ΛΓ-XJO

(These arguments are fairly standard cf. e.g. [15].)
We now turn to the 2-point function. Although the Hierarchical Model is not

translation invariant, the quantity (s2yN>β does not depend on ί and one can
therefore define it by

(7.7)

A straightforward calculation shows that F N ^ / μ = 2~NlogZ J V j 3 / μ is a convex
function of μ, and therefore Equations (7.6), (7.7) imply

(7.8)

This implies uniform boundedness. The existence of the thermodynamic limit for
( s f y N f β j f°ll°ws n°w from the second Griffiths inequality [18].

Corollary 7.4. The function ^s^ )̂  defined in analogy with (7.4b) exists and is
bounded.

Proof. From the Schwarz inequality and the bound (7.8) we have :

Moreover, (stSjyNjj is an increasing function of N by the second Griffiths
inequality [18], hence the existence of the thermodynamic limit.

Remark. Theorem 7.3 and Corollary 7.4 imply that FβJ and <sίsj.>j8fy are lower semi-
continuous functions of the inverse temperature β.

We now discuss the precise action of the renormalization group. It follows by
direct computation from the definitions (1.1), (7.2) of a model with admissible single
spin distribution /, that

where c = cε and

ΛT(β\g}(z) = 2c" 1/2 j ds'ds"g(s')g(s")δ(sf + s" - 2zc~ ^2)eβz2/2 . (7.10)

Let now

\ί/2

By construction, ^(fφ}(z) = φ(z), cf. Equation (7.2), and one verifies that

'Ϊ^Jf, (7.12)
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where ^V = ̂ Veis the nonlinear operator defined in Equation (1.5) and discussed
throughout the paper.

Suppose φ satisfies cl—c6, and α satisfies (7.1). We call the set of functions φ(β,.)
— ^~β(fφ), β near α, the temperature trajectory ofφ with inverse critical temperature α.
Note that φ(a, z) = φ(z).

Lemma 7.5. The curve </>(/?,.) is differentiate in L^ and its derivative dβφ(β, )\β=Λ

= Φ2 satisfies Peo Φ2 =t=0, where Peo it the projection onto e0 parallel to e1 and E2 (cf.
Theorem 6.6, θj is the eigenvector corresponding to λj).

Proof. From the definitions (7.2) and (7.11) we deduce:

r r X 1 / 2

This formula together with the hypotheses on the function φ proves the
differentiability. Moreover, we have

In L we have

so that in L2 ;Vs the following representations are valid

and we deduce

By the assumptions on φ and α, dβφ(β, z) has a non-negligeable projection onto
ψ0tS. But from standard perturbation theory [14] it then follows that the same is
true for the projection onto e0 in L^.

Lemma 7.5 shows that the tangent to the curve φ(β9.) has a component in the
direction of the first eigenvector of j/ε. In view of Theorem 6.6 and Corollary 6.7,
this implies that <%Bφ(β9.) has the same property, and that the curve φ(β,.) is
transversal to the stable (critical) manifold Ws. Thus the coefficient g0 of the "field"
φ0 ε can be used as a parameter on the curve. By the implicit function theorem β is a
C2 function of #0, and we shall use the symbol g0(β-u) [with g0(ty = Q] to indicate
the dependence of g0 on the reduced inverse temperature.

We now discuss the scaling properties of the free energy
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By (7.9), we get

F,§/ = l/2F,Λω, (7.13)

or, going over to the space Eί Θ £2, by the transformation φβ = We(&'β(fφ) - φε) + φε,
we have with obvious notation,

cf. Theorem 6.7.
Given ρ>0 sufficiently small, define βn by λn

Q\βn— α|=ρ and sign(j8M— α)
= const. According to Lemma 7.5. φβ is of the form Φβ = φε

+ gί(β — a)eί+r, with e0, e1eF1, reE2 and hence

It follows from (7.9) and the fact that 0'0(0)ΦO (Lemma 7.5) that

so that we find for the critical index 2-α,

-nlog2 + g(l)

This agrees with the heuristical discussion of Gallavotti and Knops [10], and
provides thus a rigorous proof of their considerations.

Now things are not much different for the correlation length but we do not
know the existence of the thermodynamic limit. We shall take the point of view
adopted by Gallavotti and Knops [10, Eqs. (5.17) and (5.18)] and show that y,
defined by

is the "correct" critical index. So let

We change now slightly the definition of the non-linear map Jf, eliminating the
first unstable direction. Using again the definitions (1.1), (7.2), we find

where

«9(.)»N,β,f= ί Π dsf-'*»

and where the "normalized" transformation is

ii/β



The ε-Expansion 91

From Equation (7.12) we deduce:

ι/2

C -Ξi-,,2
2

Let now

a~l =

it is easy to see that if φε = aφε we have

Moreover, if ε is sufficiently small, Jf is defined and continuous on a ball in L^, of
center φε and radius ε.

We consider now the map Tε defined by

and we find

) - aφεθ(ψ, φ) - 2αθ(φε, ψ)jtfφe(ψ) - θ(\p, ψ)^φε(

+ 4a2φβ2(φε, ψ) + 2aφβ(ψ,

where

v l / 2

The differential of this map at the origin (the new fixed point) is given by

Dtε(0, ψ) = ̂ φε(ιp) - 2aφεθ(φε, ψ) .

From Lemma 6.1 we deduce that DT^O,.) is compact, its spectrum is given by

and the first eigenvector is e1 =eί—2-—θ(e0, e^e^.
i

It is easy to verify that the analysis of Chapter 6 can be applied to the operator Tε

and the fixpoint φ = 0. We have again a normal form of 7^ but with only one
"relevant" direction: with this modofication, the conclusions of Theorem 6.6 and
Corollary 6.7 are valid, and we call 4 ε̂ the "diagonalisation map".

In order to repeat for the susceptibility λN)βj = 2~N^M^Ntβ>f the argument
used above to calculate the critical index of the free energy, one has to know the
existence of the thermodynamic limit. This is an open question in the neigh-
bourhood of the critical temperature (see [16] for a similar problem).
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We now investigate the susceptibility in the scaling limit. We have

( ' * 5)

where φβ = ̂ e(^p(fφ) - φe) and χNtβtφβ = χNiβ>φ. Let p be a fixed positive integer, given
ρ>0 sufficiently small, define βn by λn

ί\βn-tt\ = ρ and sign (/Jπ-α) = const. As in
Lemma 7.5, φβ is of the form

Φβ = Φε + 9ι(β-<x)e1+r, and ι̂

where r is an "irrelevant vector". Now

t n ί ε ί n ί B e

and we conclude as for the free energy, that the critical index y is given by

^oo logGJ.-α)

One may remark that this value does not depend on p. The value of γ thus found
coincides with that of the literature [4,10]. This proves Theorem 7.2.

Using the thermodynamic limit of Corollary 7.4 one can show in exactly the
lθ2C

same way, that in the scaling limit one has 1 — η =

Appendix A

Perturbation Expansion. We collect here only some considerations and give some of
the intermediate formulae without proofs. We recall first the definitions:

(Al)

(A2)
n

xe-χ2\x=yίε/2z. (A3)

The functions

φM>ε(z) = HΠ;ε(z) 2-"/2n!-1/2 (A4)

are orthonormalized Hermite polynomials on L2(y« W£ shall expand below <pε, the
solution of Λ"ε(φε) = φe, in these polynomials. Basic to this is the following

Lemma Al. For Jr

e(f,g)(z)=π-i'2 Je-"Y(zc,Γ1/2 + u)0(zc(Γ
1/2-«μw we have

2

1 \c, / / 2k W2n!2nΊ\1/2 if \n-n'\^k,
~ (n + n'-k)\ \k+\n-rf\)( 2k\ '

[θ , otherwise . ( A5)
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This is shown using the orthogonality relations between the φπ ε and integration by
parts.

We next set

and make the ansatz [5], [cf. (1.12), with a change of normalization],

<Pε(α)(Z) = Σ aj(°UQj,ε(«)(Z) > (A6)

with ay(0) = δjθ9 α2(α) = α. If we represent a function φ by its series {αj, φ' by {α}} and
, φ') by {fcj}, then it follows from (A5) that

- (A7)

Incidentally, Equation ( A7) exhibits the unboundedness of Ji (or ΛO cf. the terms
coming from n = n\ n + ri = fe.

Setting

*/«)= Σ V*"> ε(α)= Σ β.α", (A8)
n^O n^ l

one expands

c-α; =2~ 1/2(1 +αl/2β1 log2H-α2(l/2ε2log2+ l/8(£l Iog2)2)) + ̂ (α3). (A9)

Substituting now ( A6)— (A8) in the equation Jf(φ& φε) = φε, it is easy to see that this
can be solved inductively by solving for increasing powers of α. The result is

fll(α) = - α2(3(2 - 21/2)Γ ' + ίP(α3) ,

α3(α)-+α2 10(21/2-l)-1+ίP(α3),

It remains now to solve for ε (by inversion of the power series), and to express each
QJ >ε as a formal power series in ε and H2kf0, k = 1, ...7. This is done easily, using the
definition of Hermite polynomials. One notes here that only a finite number of

aj(a(ε))ρj>ε contribute to a term slH2k)0. This shows that Equations (5.8), (5.9) hold;
the bound on the highest power in x follows simply from the fact that Jf at most
doubles the degree of a polynomial.

Summarizing, we get in particular

H4>ε(x) = H4j0(x) - ε(2^2 - 1)' * log2(H4>0(x) + 6H2>0(x))
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and putting everything together

φε(x) = 1 -β Iog2/(144(21/2 -1)2) H4>0

(Iog2)2 , (Iog2)2

21/227(21/2-l)2 24(21/2-l)3

(Iog2)2 17 + 18 21/2 (21/2J-i^'—^2

(21/2-l)2 972 144(21/2-l)3

(log?)2 dog2)2

Appendix B

Let A(

0

m)(ε), . . . , AjjΊ x (ε) be the m "relevant" eigenvalues, (i.e. those > 1) at the w-critical
point 4m) which we parametrize as ^m) = (2/(l +ε))1/m. Then there is for sufficiently
small ε > 0 no relation of the form

(Bl)

except the trivial one.

Proof. If the relation (Bl) is to hold, it has to hold in particular up to first order in ε
for small ε>0 since the eigenvalues have asymptotic expansions. One finds,
according to Appendix A,

(B2)

with
m-l

~:
and

γ0z)=(- l)V2θ*e^2|;e=(1_1/c«m))1/2z2-ί:/2fc!-1/2 (B4)

Therefore, since stfg is linear in g,

2
λf\s) =

r(m)j
*-τ

+ &(e.2)

I (2)\\\
r U\\

ftf(ε2), (B5)

Ί//' » / / /

where we have used (A5).

m-j

=2 » | l+e _ ,
m /2m
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Therefore (Bl) holds up to first order only if

m-i=m^kj(m-j) (B6)

and

π .. /
1_2 W _ _ y , £_2_i^-| (B7Ϊ
m /2m\~,4 y m 2--J' (B7)

\ m j y

Using (B6), we can replace (B7) by the more convenient

(B8)

We now claim that for j>i, m>j^. ——- [this value of j must occur due to (B6)]
one has

p n \ 2 / 2 /

2 m \ _ / 2 Λ m - Γ

m) \m)

Now (B9) excludes that (B6) and (B7) hold simultaneously in a non-trivial fashion,
which proves the assertion.

To prove (B9), we show first that

m-j m-(m + Q/2 =

m — i m — i

On the other hand the l.h.s. of (B9) is bounded below by

2 m \ / 2 ( m - l )

•

so that (B9) follows.
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Note Added in Proof

The bounds we have given for the derivatives of j52 in the proof of Theorem 6.5 are incorrect. We
thank D. Chillingworth and L. Guimaraez for pointing out this error to us. The corrected version
will be given in a Lecture Note volume on the subject (in preparation). This will also contain a new
proof of existence of φε.




