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KMS Conditions and Local Thermodynamical Stability
of Quantum Lattice Systems. II
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Abstract. We prove that local thermodynamical stability (LTS), as defined in
[1], implies the KMS conditions in quantum lattice systems, without any
assumption of translational invariance. This result, together with those of [1],
establishes the equivalence between the LTS and the KMS conditions for such
systems.

Section 1

In an article by Araki and the author [1], the concept of local thermodynamical
stability (LTS) was defined for quantum lattice systems and it was shown that, if
the forces were suitably tempered, the LTS conditions were implied by, and in the
case of translationally invariant states equivalent to, those of Kubo-Martin-
Schwinger (KMS). In the present article, we prove that the LTS conditions imply
those of KMS, without any assumption of translational invariance, and thus
establish the following theorem.

Theorem 1. The LTS and KMS conditions are mutually equivalent jor quantum lattice
systems, subject to the same assumptions on the interactions as in [1].

Comment. It has already been observed (cf. Note following Definition 2.2 in [2])
that, for classical lattice and hard-core continuous systems, the LTS conditions are
equivalent to those of Dobrushin-Lanford-Ruelle (DLR). Thus, in view of the
above theorem, we now conclude that LTS = KMS for quantum lattice systems,
and = DLR for classical lattice and hard-core continuous ones.

Our notation will be based on that of [1]. We take Γ to be the lattice on which
the system is situated here it suffices to consider Γ as a denumerably infinite point
set. The family {A} of finite point subsets of Γ will be denoted by L. The algebra of
observables, £#(Λ\ for the region Λ(eL) will be assumed to be a finite-dimensional,
type-I factor, that is isotonic with respect to A and commutes with ^(Λr) if
Λ.nΛ'=0; and the C*-algebra of observables, <£/, for the system will be taken to be
the norm completion of stfL= (J sί(Λ). The state space, Ω, of the system will be
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assumed to be the set of positive, normalised, linear functional on s$. FoΐΛeL, we
define the density matrix ρA(e jtf (A))9 induced by the state ω, according to the
formula

ω(Ά) = τ(ρ%A)9VAes/(Λ)9 (1.1)

where τ is the central tracial state. The local entropy and conditional entropy
functional, SΛ and SΛ, respectively, are defined by the formulae

(1.2)

and

SΛ(ω)= lim[S^(ω)-S^(ω)],Vωefl. (1.3)
Λ't

As in [1], it is assumed that the forces in the system are sufficiently tempered to
permit the definition of an energy observable HA(ejtf), for each ΛeL, that
corresponds to the total interaction energy of the particles in A both with one
another and with those in ΛC( = Γ\Λ\ We say that ω(eΩ) satisfies the LTS
conditions for temperature jβ~1(>0) if, for each AeL,

βω(HA)-SΛ(ω)ίβω'(HΛ)-SΛ(ω') for ω'Λe = ωΛe. (1.4)

The dynamics of the system is assumed to correspond to a one-parameter group
{σt\teR} of automorphisms of j/, whose infinitesimal generator δ has J/L as a core
and is given by the formula

(1.5)

Theorem 1 is an immediate consequence of the following two theorems, that will
be proved in Sections 2 and 3, together with parts (b) and (c) of the theorem of [1].

Theorem 2. // the state ω satisfies the LTS conditions, then

(1.6)

where D(δ) is the domain of δ and Φ is the function from [0, oo)2 to [ — 0, oo] given by :

^ ulnu — ulnυ if u + υ >0 Ί

*(B ")=0 if u = ,=θj (L7)

Theorem 3. // ω (e Ω) is stationery in time and satisfies the inequality (1.6) , then it also
satisfies the KMS conditions.

The author is indebted to M. Fannes and A. Verbeure for discussions of their current work [3] on the
derivation of the KMS conditions from the Roepstorff inequalities for states on VF*-algebras. Indeed, it
was these discussions that prompted him to adopt the strategy of proceeding from LTS to KMS via
appropriate correlation inequalities. The author is also grateful to H. Araki for suggesting some
improvements to the first draft of the article.

Section 2

This Section will be devoted to the proof of four Lemmas and thence to that of
Theorem 2.
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Definition 4. (i) We define {ys|seli+ = [0, oo)} to be the one-parameter semigroup of
transformations of j/, whose generator L is given by :

LA = x*Ax-%{x*x,A} + VAej*, (2.1)

with xejtf(Λ) and ΛeL. Thus, by [4; Theorem 2], γs is a completely positive map;
and it follows from (2.1) that the restriction of γs to <$tf(Λc) is the identity.

(ii) For ωeΩ and seR+, we define ωs = ω°ys(eΩ). Thus, by (1.1) and (2.1),

AfDA) (2.2)
ds sv ' \ds

where

> ?
L=XQ%X*-2\,

Definition 5. We define Ω^ to be {ωeΩ\(ω(y*y)= Q)Λ(yej/L)=>y = Q}. Thus, if

l5 then ρ^J, is strictly positive, and hence has a logarithm, for ΛΈL.

Lemma 6. -ω(Llnρ%,)^Φ(ω(x*x)9ω(xx*)\ VωGΩ l 9 y l D A . (2.3)

Proo/. Let ωeί21 and Λ'^Λ. As noted above, ρJJ, is strictly positive, and may
therefore be expressed in the form

m

Qω

Λ'= Σ CjEj9 (2.4)
7=1

where the cjs are positive numbers and the E?s are a maximal set of orthogonal
projectors in ^(Λ'\ i.e.

EjEk = Ejδjk and Σ £, = /. (2.5)
;=ι

It follows that

m

Inρ3,= Σ (Inc,.)^, (2.6)
j=ι

and hence, by Equations (1.1), (1.7), (2.1), (2.4)-(2.6) and the tracial property of τ,

-ω(Llnρ;,)= Σ ff* *(<*<*) (2 7)
M=l

where

g^τ^xEjUE^EjD^O. (2.8)

Now it follows from Equation (1.7) that Φ is jointly convex in its two arguments,
i.e.

N I N N \

Y α Φ(w,ί;)>Φ Y a w Y a t? I^—i n v w' n/ — I -̂J « «' Z-ί n n /
«=1 \n=l n = l /

N

if a1?...,aN^0 and Σ α n = ̂
n = l
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Since, by (1.7), Φ is also a homogeneous function of the first order, it follows that the
N

inequality (2.9) remains valid even without the restriction that Σ α« = l Thus, as
«=ι

0/jk^O, by (2.8), we may apply (2.9) to the R.H.S. of (2.7), thereby obtaining the
following inequality:

/ m m \

-ω(Llnρ^)^Φ Σ 0/*cj> Σ 0/kc* (2 10)
\ j , fc=ι Λ f c = ι /

Further, it follows from (1.1), (2.4) and (2.8) that

m m

}^ £7. c :— cofx^x) and /^ a c ^coίxx*) (2 11)

The required inequality (2.3) follows immediately from (2.10) and (2.11). Q.E.D.

s

Lemma 7. SΛ,(ωs) - SΛ,(ω) ^\dr Φ(ωr(x*x), ωr(xx*))Vωe Ω! ,
o

yl'Dyl, S>0. (2.12)

Proo/. For ωeΩi. it follows from Definitions 4(ii), 5 and the positivity of ys that
ωseΩ1Vs>Q. Hence, by Lemma6, the inequality (2.12) will be established if we
prove that

SA,(ωs)-SA,(ω) = - drωr(Llnρ5r). (2.13)
o

In order to prove this latter formula, we note again that, as ωe Ωί9 Q%, is strictly
positive, i.e. ρ™,>2bΛ,I for some positive number bΛ,. Thus, if ^4 is any posi-
tive element of sf(Λ!\ then τ(ρ%A) = τ(ρ™,γsA)^2bA,τ(ysA), in view of Defini-

tion 4(ii) and the positivity of γs. Further, as Definition 4(i) implies that — τ(ysA)
ίtά

= τ((xx* — x*x)γsA)^ — \\xx* — x*x|| τ(ysA\ it follows that τ(ysA)
^e-\\χ*-**\\*τ(A); and hence τ(ρ%A)^2bA,e-Uχx*-χ*χttsτ(A). Therefore ρ^f
^ bA,IMs < sί = (In2)/|| xx* — x*x ||. On the other hand, (1.1) implies that, for any state
ω', ρ%^cΛ,I with c^ίdimj^Λ'))172. Thus,

bΛ.I£ρ%£cΛ,I, Vs<sl9 (2.14)

where bΛ. and c^/ are positive, finite numbers.
Since L/ = 0, by (2.1), it follows from (1.1) and (2.2) that the R.H.S. of (2.13) is

equal to

(2.15)

where ρr = ρAΐ. In view of the bounds (2.14) on ρr, we may represent / + Inρr by the
following formula:

00 / 1 1 1 1 \
/ + lnρr= J dα + ρr . (2.16)

^ J

0 \ *r
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Hence, as τ(AB} = τ(BA\ it follows from (2.16) that the expression (2.15) is equal to

(2.17)
dr \a + I

The bounds on ρr, given by (2.14), ensure that the order of integration w.r.t. a and r
may be exchanged in (2.17). Hence, as the integrand in that expression is equal to

— τ f ρ, ( 1L it follows that (2.17), and thus the R.H.S. of (2.13), is equal
dr \ \a + I a + ρr//
to

-ί
o

Q.E.D.

LemmaS. liminf s~1(^(ωs)-^(ω))^Φ(ω(x*x),ω(xx*)), VωeΩ. (2.18)

Proof. We deal separately with the following three cases: (α)ω(x*x) = 0; (5)ω(x*x)
and ω(xx*) both >0; (c)ω(x*x)>0 and ω(xx*) = 0.

Case a). The assumption that ω(x*x) = 0 implies, by (1.7), that the R.H.S. of (2.18) is
zero. This assumption also implies, by the Schwartz inequality, that ω(x*j;) = ω(y*x)
^OVj ej/; and thus, by Definition 4, that ω(L( ))=0, i.e. ω s=ωVseR+. Thus the
L.H.S. of (2.18) is also zero, and therefore that formula is satisfied.

Case b). ω(x*x) and ω(xx*) both >0. Let ωε = (l-ε)ω + ετ, with 0<ε<l. Then
ωεeΩ1, and hence, by Lemma 7,

s~1(SA,(ω2 — SΛ,(ωε})^s~1$drΦ(ωε

r(x*x),ωε

r(xx*)) V/L 'D/L, (2.19)
o

with ωε = (ωε)s. By (1.7), Φ is continuous in each of its arguments when they are both
non-zero; while, by Definition 4(ii) and our definition of ωε, this state is w*-
continous in ε and s. Thus, for suitable positive numbers ε0 and s0, the integrand in
(2.19) is continuous in both ε and r, provided that ε<ε0 and s<s0, which we shall
henceforth assume to be the case. Further, the functional SA. is w*-continuous on
Ω, and hence the L.H.S. of (2.19) is continuous in ε. Consequently, we may pass to
the limit as ε->0 of the inequality (2.19), thereby obtaining the result that

s

s-^S^ω,)- SΛ,(ω))^s-1 j dr Φ(ωr(x*x), ωr(xx*)). (2.20)
o

Since, by Definition 4(ii), ωs coincides with ω on s#(Λc\ it follows from (1.3) and
(2.20) that

s-\SΛ(ωs)-SΛ(ω)}^S-ι }dr Φ(ωr(x*x), ωr(xx*)). (2.21)
o

The R.H.S. of this inequality tends to Φ(ω(x*x), ω(xx*)), as s->+0, since the
integrand is continuous in r; and therefore

lim inf s-\SΛ(ωs) - SA(ω)) ^ Φ(ω(x*x), ω(xx*)),

as required.
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Case c). ω(x*x) > 0 and ω(xx*) = 0. Thus, by (1.7), Φ(ω(x*x\ ω(xx*)) = oo. Thus, it is
necessary and sufficient to prove that the L.H.S. of (2.18) is also oo. For this purpose
we again use Equation (2.19), with the same notation as before.

By Equation (1.7), Φ(wα, t;α)->oo as wα->t/>0 and fα->0. Hence, as ωε

s is w*-
continuous in both ε and s, it follows that for each TVe R+ , 3 positive numbers s0(N)9

ε0(ΛΓ) such that the integrand in (2.19) exceeds N whenever s<s0(N) and ε<e0(N).
Thus, by (2.19),

s- HMωί) - SΛ,(ω£)) > N\/s < 50(AΓ), ε < ε0(ΛΓ) .

Since the L.H.S. is continuous in ε, we may pass to the limit as ε->0, thereby
obtaining the inequality

s ~ \SΛ,(ωs) - SΛ,(ω)) >NVs< s0(N) .
As this formula is valid for all Λ'^Λ, it follows from (1.3) that

s-\SΛ(ωs)-SΛ(ω))>N\/s<s0(N)

and therefore liminfs'^S^ωJ — SΛ(ω))=oo9 as required Q.E.D.
s-» + 0

Lemma 9. // ω satisfies the LTS conditions, then

yω((5(x*)x-x*(5(x))^Φ(ω(x*x), ω(xx*)). (2.22)

Proof. Since, by Definition 4(ii), ωs coincides with ω on £#(ΛC\ it follows from (1.4)
that, if ω is LTS then

(2.23)

Further, it follows from Equation (1.5) and Definition 4(i), (ii) that

lim s-i(ωs(HΛ)-ω(HΛ))=ϊ-ω(δ(x*)x-x*δ(x)). (2.24)
s-> + 0 ^

This equation, together with Lemma 8, implies the required inequality (2.22).
Q.E.D.

Proof of Theorem 2. Since x can be chosen to be any element of jtf(Λ)9 and A any
bounded region of Γ, it follows from Lemma 9 that (1.6) is valid for all A e ̂ L. Thus,
it remains for us to extend that inequality to all AeD(δ). This we shall do firstly for
{AeD(δ)\ω(A*A) = Q} and then for the remaining elements of D(δ).

If AeD(δ) and ω(A*A) = Q, it follows from the Schwartz inequality that
ω(A* δ(A)) = ω(δ(A*)A) = 0, and thus that the L.H.S. of (1.6) is zero while it follows
from (1.7) that the R.H.S. of (1.6) is also zero. Hence (1.6) is satisfied.

Suppose now that ω(A*A) > 0 and A e D(δ). Since stL is a core for δ, there exists a
net {AΛ} in stfL such that the norm limits of AΛ9 δ(A0) are A9 δ(A\ respectively. As (1.6)
is satisfied if A is replaced by any element of sfL9 it follows that

u(δ(A*)AΛ - A* δ(AJ) ^ Φ(ω(A%A^ ω(A^)) . (2.25)

The application of lim to this formula yields the required inequality (1.6), since by
α

(1.7), lim Φ(ι/α, t J = Φ(u, v) if lim UΆ = u > 0 and lim vΛ = v^O. Q.E.D.
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We observe now that the L.H.S. of (1.6) is finite for all AeD(δ\ and that the
R.H.S. would be infinite if ω(AA*) were zero and ω(A*A) positive. Hence we arrive
at

Corollary 10. // ω is LTS and AeD(δ\ then ω(AA*) = Q implies that ω(A*A) = Q.

Section 3

We shall devote this Section to proving Theorem 3.

Definition 11. (i) Let (Jί?, π, Ψ) be the GNS triple induced by a state ω, that is
stationary in time. We define the Hamiltonian H by the standard formula, i.e.

Hπ(A) Ψ = π(δ(A)) ΨVAe D(δ) (3.1)

Thus,

eίHtπ(A) Ψ = π(σt(A)) ΨMAestf, teR . (3.2)

(ii) For Ae stf, we define the positive-valued Radon measures μA, VA on R by the
equations

(3.3)

and

(3.4)

for all continuous functions / with compact support, where {Es} is the spectral
family of projectors for H, i.e. H=$sdEs.

Lemma 12. Let ω be a stationary state such that, for all A in a norm-dense linear,
involutive subset A of s$, VA is absolutely continuous with respect to μA and
dvA/dμA = e~βs. Then ω satisfies the KMS conditions.

Proof. Let/ be a function on R whose Fourier transform/ is ^-class and let jβ be
the function on R whose Fourier transform is given by

}β(s) = e-»?(s). (3.5)

Then it follows from Equations (3.2), (3.3) and (3.5) that, if dvA/dμA = e~βs, then

vΛ/) = μA(ϊβ) = ί dt fβ(t)ω((σtA*)A) (3.6)

while it follows from (3.2), (3.4) that

vA(f)=$dtf(t)ω(A(σtA*)). (3.7)

Hence, by (3.6) and (3.7)

jΛ[/χί)ω((σ^*)^)-/(Oωμ(σ^η)]=OV^eJ,/6^W. (3.8)

This equation may readily be extended by linearity and continuity to the form

ί dtUβ(t)ω((σtA*)B)-f(ήω(B(σtA*))-] -0, VA9BeA,Je®(R)9 (3.9)

which constitutes the KMS conditions [5]. Q.E.D.
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Proof oj Theorem 3. Assuming that ω is a stationary state that satisfies (1.6), we shall
prove that, for all AeD(δ\ VA is absolutely continuous w.r.t. μA and that
dvA/dμA = e~βs: by Lemma 12, this will suffice to prove the theorem.

Let / be a function on R, whose Fourier transform / (with ](s)=^dtj (t) e ~ ίst) is
^-class, and let s(f) (resp. s(/)) = sup(resp. inf){sesupp/}. For A e j t f , we define

A(f)=$dt/(-t)σtA. (3.10)

Hence it follows from Equations (3.1)-(3.4) and (3.10) that

ω(A(J)*A(J)) = \\J(s)\2dμA(s)^μA(\]\2) (3.11)

ω(A(J)A(j)*)= S\}(s)\2dvA(s) = vA(\}\2) (3.12)

±ω(δ(A(f)*)A(J)-A(J)*δ(A(j)))

\ \ 2 ) (3.13)

and

l-ω(δ(A(J))A(j)*-A(J)δ(A(J)*))

(3.14)

On replacing A by A(J) in (1.6) and using Equations (3.11)-(3.13), we obtain the
inequality

/*n/)M/l2)^Φ(M/lVΛI/l2)). (3.15)

Likewise, on replacing A by A(f)* in (1.6) and using equations (3.11), (3.12) and
(3.14), we see that

-M/)v^(|/Ί2)^ΦK(|/Ί2),^(|/|2)). (3.16)

By Corollary 10 and Equations (3.1 1) and (3.12), μ A ( \ f \ 2 ) and vA(\f\2) are either both
zero or both positive. In the latter case, it follows from the formulae (1.7), (3.15) and
(3.16) that

^(l/l2)exp(-fe(/))^v^(|/|2)^^(|/|2)exp(-M/)); (3.17)

while, in the former case (μ^(|/|2) = vA(|/|2) = 0), these relations are trivially
satisfied. Thus, the inequalities (3.17) are applicable in all cases.

For given ε >0, let {hn} be a sequence in @(R) forming a partition of unity, such
that exp( — βs(hn)) — exp( — βs(hn))<ε for every n. Thus, on putting \J\2 = hng in
(3.17), where g is an arbitrary positive element of @(R), it follows that

f hn(s) g(s) e~βs dμA(s) + εμA(hng)
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for every n. By summing these inequalities over n, we obtain the formula

Therefore, as ε may be chosen to be arbitrarily small, it follows that

for every positive g in @(R), and hence, by linearity and continuity, for every
continuous function g on R with compact support. This implies the required result.

Q.E.D.

Acknowledgment. This research was carried out partly while the author was a guest at the Department of
Theoretical Physics of the University of Louvain. He would like to thank Professors F. Cerulus, R. De
Keyser and A. Verbeure, and their colleagues, for the hospitality he received at their Institute, and also to
express his appreciation for the financial assistance he received from the University of Louvain.

References

1. Araki,H., Sewell,G.L.: Commun. math. Phys. 52, 103 (1977)
2. Sewell,G.L.: Ann. Phys. 97, 55 (1976)
3. Fannes,M., Verbeure,A.: in preparation
4. Lindblad,G.: Commun. math. Phys. 48, 119 (1976)
5. Haag,R., Hugenholtz,N.M., Winnink,M.: Commun. math. Phys. 5, 215 (1967)

Communicated by H. Araki

Received February 21, 1977






