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Abstract. We prove Hunziker's theorem that the essential spectrum of the
internal Hamiltonian of an N-particle system is bounded below by the lowest 2-
particle threshold. Our assumptions are given in terms of the Hamiltonian alone
without reference to potentials. They include the previously treated cases.

I. Introduction and Results

We give a simple proof of Hunziker's theorem [4] which says that the essential
spectrum of an iV-particle Hamiltonian (after separating off the free centre of mass
motion) is bounded below by the lowest possible energy which two independent
subsystems can have. Our assumptions are so weak that they include the previously
treated cases. But we think the main point is that we can express our assumptions in
terms of the Hamiltonian alone without reference to the potential. So one can hope
that the method will be applicable also to relativistic quantum field theory.

We consider a quantum mechanical system of N particles with masses mt,
possibly with spin, moving in v-dimensional space. Exterior forces are absent so the
whole system is translation invariant and we separate off the centre of mass motion.
Let xi9 i= 1,..., JV be the coordinates of the particles, and let ξ denote the v(N— 1)-
dimensional vector representing a suitable set of N — 1 relative coordinates. In what
follows subsets of ξ-space will be given by conditions on the relative particle
coordinates xt — Xy The (reduced) state space Jf is the subspace of those vector
valued wave functions from ^(W^'^.dξ, M) which obey the symmetry or
antisymmetry requirements for identical particles, M is the finite dimensional
vector space of spin variables.

We assume the following conditions on the dynamics:

i) The Hamiltonian H is self adjoint on 2tf and bounded below by c.
ii) There is a core 2ctfofH such that for all Ψe9: f(ξ)ΨeΆ(H) (the form

domain of H) and

KΨ,U(ξ/d),ίH,g(ξ/dmψy\<hd(f,g)\\(i + \H\)Ψ\\2 (1)
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with lim hd(fg) = O, where fg are multiplication operators with arbitrary bounded
d->oc

C00-functions of the internal coordinates with bounded derivatives.
We denote by FR multiplication with the characteristic function of the set where

\x{ — Xj\^RViJ=l, ...,ΛΓ. Thus in any state of FR34? the distance of any pair of
particles is at most R. Our main assumption is:

iii) Compactness criterion: FR(it + H)~x is a compact operator on 2tf for all R
<oo.

The physical content of assumption ii) is that the energy density of the state Ψ
changes little if ψ(ξ) is multiplied with a slowly varying function. The compactness
criterion can be stated equivalently in the analogous form for the full Hamiltonian
(including the centre of mass motion). It says roughly that there is only a finite
number of states localized in a region with a given energy. One expects that it is
connected with the existence of an asymptotic particle interpretation of the theory
(see [3]), it was used to characterize bound states (particles) by their behaviour in
space and time in [1, 2, 6].

If Δq and its complement Δ'q are non void subsets of 1,2,..., JV they define a
partition of 1, ...,ΛΓ; the index q labels the 2N~X — 1 different partitions. We shall
characterize states consisting of two subsystems which are separated at least by d.
To express this mathematically let P°q(dJ be the multiplication with Πίe^.Mί,
[1 — Θ{d — \xt — Xj\j] which is a projection in L2-space. By Pp(d) we denote the range
projection of the sum of those Pq{d) which belong to equivalent partitions (i.e. they
differ only by a permutation of identical particles), p = 1,2,... K^2N~X — 1 labels
the equivalence classes of partitions,

Pp(d) = P°q(d)vP?(d)v..., q~r.

Pp(d) are projection operators on the state space Jf. Then

bp(d) = M{<,Ψ,HΨ}\ΨeΆ(H)nPp(dW, || ψ|| = 1}.

Since all bp{d) are monotone non decreasing in d the limits in

b=mm\imbp{d) (2)
p d->oc

either exist or are infinite, b is the minimal energy of (superpositions of) states which
consist of two far separated subsystems.

Now we can state our theorems:

Theorem 1. The essential spectrum of the internal Hamiltonian H is bounded below by
b: σe(H)C[b, oo) for b<co; if b = co, H has a pure point spectrum of finite
multiplicity.

If H commutes with a unitary representation of a compact symmetry group
acting on Jf7 one can consider the restriction oϊH to an invariant subspace J f G (e.g.
J-fG carries an irreducible representation of the group). Let b (J^G) be defined as b,
but the infimumis taken only over Ψel (H)nPp(d)^G, then one gets

Theorem 2. The essential spectrum of H\34?G is bounded below by b(34?G).

We will discuss the potentials for which our assumptions hold in Section III.
There we will also express b in terms of the Hamiltonians of subsystems, if the
potential vanishes at infinity.
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II. Proof of the Theorems

First we introduce smooth multiplication operators Ed

p which map onto states with
far separated subsystems. Let φ e ®(R), 0 ^ φ <, 1 obey φ(λ) = 1 if \λ\ ̂  1, φ(λ) = 0 if λ
7z2. For any equivalence class of partitions [g], labelled by p, we define

where fvg: = f + g — f-g. These χp(ξ) are smooth analogues of the projections

for fc = 0,l, . . . ,«.

The multiplication operators Ed

k have the following simple properties:

Σf=o£»=l. 11̂211 = 1 for all ^>0,

Pp(d)Ed

p = Ed

p, Pp(2d)Ed

p = Pp(2d), (4)

Ed

0FR = Ed

0 if R^2(N-l)<i .

Due to assumption ii) the following expansion is possible for any normalized ΨeS>:

= Σι<EdΨ,(H-aί)EdΨ)

(5)

On one hand we can estimate with bp(d) and b as defined in (2):

(6)

>2-N(b-a)\\Σκ

p=1E
d

pΨ\\2^2-N(b-a)(\\Ψ\\-\\Ed

0Ψ\\)2

MΨeΘ,

or in case b = oo the given quantity is bounded below by M(|| Ψ\\ — \\E%Ψ\\)2 for any
M<oo, V f e ^ , Vd^do(M).

On the other hand the same quantity is bounded above using (5) and (1):

(7)
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Now we set a = inϊσe(H). If we derive a contradiction for a < b, Theorem 1 is proved.
Choosing d and Ψ suitably we will show that the r.h.s. of (7) is arbitrarily small.

By an extension of WeyPs criterion (Theorem 1.2 in [5]) there exists an orthonormal
sequence ΨneS) such that \\(H — αl)ΨJ-»0 as n->oo. Let n0 be so big that Mn
^no:(K+l)2\\(H-aί)Ψn\\ < 2 " i V ( b - α ) l/6 (or M/6). Fix d'^d0 such that

So far we have used only assumption (i) and (ii). The remaining term in (7) will be
estimated using the compactness criterion.

(8)

by (4) for R = 2Nd'\ c is the lower bound of H.
The uniformly bounded sequence Φn = [it + H~] Ψn converges strongly to (ί

+ a)Ψn which converges weakly to 0. So Φn converges weakly to 0. The compactness
criterion states that FR[ii + H']~1 is a compact operator which implies that FRΨn

converges strongly to 0. We can choose n ̂  n0 such that (8) is bounded by (b — ά)2~N

• 1/6 (or M/6) and that || E% Ψn || ^ 1/4. Then (1 - || Ed

0 Ψn \\ ) 2 > 1/2. Thus a < b leads to
a contradiction of (6) and (7) and Theorem 1 is proved.

The functions Ed

k are symmetric under, permutations of identical particles, so
they map #? into itself. Furthermore, they are invariant under rotations and
reflections of the relative coordinates. If there happens to be another compact
symmetry group on J f one should take the mean over the group of the transformed
E's. Then the proof of Theorem 2 goes on the restricted Hubert space exactly as
before.

III. Applications

Hunziker proved Theorem 1 for potentials VeL2 + Lf [4]. Later it was extended
by several authors to larger classes of potentials, spin and symmetry groups were
included. (See e.g. the introduction of [5] and the references given there.) The most
general result for H = H0 + V defined as operator sum is given by Jorgens and
Weidmann [5]. If H = Ho + V is defined as quadratic form Simon [7] proved it for

. We will treat now the two cases separately.

a) Operator Sum Ho + V

We will show that our assumptions are weaker than those made by Jorgens and
Weidmann (p. 50—54 of [5]). The Hamiltonian is supposed to be bounded below
and essentially selfadjoint on CJ(IR3iV). In the case where exterior forces are absent
this is equivalent to H being essentially selfadjoint on ^ = CJ(IR3 i v~3)C^(//o)
n@ι(V). CQ is left invariant by multiplication with smooth functions f(ξ)9 g(ξ\
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therefore f{ξ)xp(ξ)sΘcΆ{H). Furthermore f{ξ)ψ{ξ)e9(H0)r\9{V) which allows
to compute for Ψe@:

KΨ,U(ξ/d)9lH9g{ξ/dfl]Ψ>\

^ | < . . . # 0 . . . > | + |<...F...>| . (9)

The double commutator in the first term is bounded by

Σ J l ± (2m,)'1 Kgraφ f(ξ/d) grad, </(^))|

) - 1 Kgrad, f(ξ) grad, g(ξ))\ £ const<Γ 2 .

If F is a local interaction (i.e. a multiplication operator in x-space) the second term
of (9) vanishes.

For non local V one can use that the potential is assumed to be (Ho- and
therefore) //-small at infinity. A simple calculation together with Corollary 6.7 of
[5] shows the desired decrease of (1). Therefore our assumptions (i) and (ii) are
fulfilled.

The compactness property follows from the well known compactness of FR(ί
+ Ho)~x and the boundedness of (1 + Ho) (it + H)'1 which is assumed in [5], (For a
detailed discussion of situations where the compactness criterion holds see Section
III of [1].) So all our assumptions are fulfilled for the previously treated operator
sum Hamiltonians.

b) Form Sum Ho + V

Simon [7] treats local pair potentials VeR + L™ which define semibounded
selfadjoint Hamiltonians H with Ά(H) = Ά(H0) = Ά(H0)n£(\V\). Since &{H0) is left
invariant under multiplication with smooth functions one has for all Ψe<3)
= @(H)Cl(H): fΨel(H) = l(H0)n£(\V\). The commutator estimate with Ho is
exactly as in the operator sum case and the potential-term vanishes. The
compactness criterion is fulfilled because H0 is form bounded by H (see Proposition
4 of [1]). Thus all our assumptions are fulfilled.

c) Calculation of b

In most of the physically interesting situations two far separated subsystems do not
interact. This is expressed mathematically by the H-smallness at infinity for the
potentials (see Section III of [5] for a discussion of this notion). We expand the
potential into a sum of terms corresponding to 2-, 3-, ...,iV-particle interactions.
For a given partition p we denote by Ip the sum over those potential terms which
couple the two subsystems and Hp = H — Ip is the Hamiltonian where only the
particles within the clusters interact. Now in the operator sum case Jorgens and
Weidmann assume that (if all particles are different)

\\IpΨ\\ £Vp(d)\\(* + H0)Ψ\\ SconstVp(d)\\(l + \H\)Ψ\\

for all ΨeC$cS>(H)c@{V)C®(Ip) where ψ(ξ) = 0 whenever for some
d, and

VJd)-+0 as d-+oo. (10)
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Thus infσ(Hp) ^ const Vp(d) + (1 + const Vp(d))bp(d) and

mϊσ(Hp)SHmbp(d). (11)
d->oc

Actually (11) is an equality, because Hp is invariant under translations of one
subsystem alone.

For two body potentials of the Rollnik class one can easily show the analogous
form bounds leading to the same results. Thus for asymptotically vanishing
potentials we obtain the commonly used formulation of Hunziker's theorem

inΐσe(H)^mininϊσ(Hp).
p

A proof of the opposite inequality for asymptotically vanishing potentials can be
found e.g. in [5, 7].
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