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Abstract. In the space of pure states of a generic physical system, a family 5£
of subsets is singled out and used to extend the quantum-mechanical notion
of "superposition" of pure states. ££ possesses a natural lattice structure and
corresponds to the lattice of closed subspaces of Quantum Mechanics.

1. Introduction

We have shown in a previous paper [1] that for any physical system described by
a set £f of states, a set (9 of observables and a probability function p(A, α, E\ (the
probability that the measurement of the observable A on the state α give a result
in the Borel set E of the real line R\ one can define a function T(α, β\ (α, βe^),
which is a generalization of the quantum-mechanical transition probability
between pure states.

Let us consider again a physical system with the same degree of generality
as assumed in [1], and denote by £fp the set of all its pure states. We shall show
that every subset ̂  of £fp determines a second subset ̂  of ̂  which will be called
the enveloping subspace generated by % and corresponds, in the case of a quantum-
mechanical system, to the closed subspace U, in the Hubert space H of the theory,
generated by the representatives of the states belonging to ύli.

Each subspace $ is associated with a real function T^(α, β) defined in ̂ px^p.
In Quantum Mechanics T^(α, α) is related to the norm of the projection on U
of the unit representatives of α.

As a consequence it is possible to extend to any physical system the quantum-
mechanical notion of "superposition of pure states", together with an appropriate
definition of the "relative phase coefficient" between distinct superpositions of
pairs of orthogonal pure states.

It is remarked that the set of all the enveloping subspaces possesses a natural
lattice structure, equivalent, in the case of a quantum-mechanical system, to the
lattice of closed subspaces of H. Such a structure is obtained here with no explicit
reference to the lattice of propositions [3,4, 5, 6].
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2. Reduced Transition Probabilities and Enveloping Subspaces

As in [1], our only assumptions on the probability function p(A,a,E) will be
Mackey's axioms I and II ([2] p. 62) expressing the fact that, for any fixed ob-
servable A and any fixed state α, p(A, α, E) = j daA is a probability measure on the

E

real line, and that the states and the observables are completely characterized
by their associated probability measures. Since in the sequel we shall only be
concerned with pure states, by "state" we shall always mean "pure state".

Consider an arbitrary subset ̂  of ί?p, an observable A and a pair of states α
and β (not necessarily belonging to fyl\ Denote by E% the range of A in corre-
spondence with tfl, defined as the intersection of all the Borel sets E of R such that
p(4,y,E)=l whenever ye^. Set ([1], and [2] p. 100)

and

(1)

(2)

The function T^(α, β) will be called the reduced transition probability between
α and β with respect to °U.

Γ^(α, β) is symmetric, not greater than 1, and T^p (α, β) coincides with the
generalized transition probability T(α, β) defined in [1]. The relation 7]f(α, β)rg
Γfφ, β) implies Γ*(α, β) ̂  Γ(α, j8).

In the last relation the equality sign holds whenever one of the arguments,
say β, belongs to ̂ :

(3)

Proo/.

Ifβe^then j ^=0, so that j d |/α^=0: therefore
* *

which implies (3).
We shall denote by ̂  the subset of ίfp constituted by the states α such that

T^(α, α) = 1, and by ?̂1 the subset of 5̂  constituted by the states α such that
T(OL, y)=0 whenever ye^. ̂  will be called the enveloping subspace generated by ̂
^ will be called the T-orthogonal complement of ̂  in £fp. We shall also say that
two subsets ̂  and i^ of 5̂  are T-orthogonal if T(α, jβ) = 0 whenever αe^ and βei^.
In particular two states α and β are T-orthogonal if T(α, jS)=0.

In the case of a quantum-mechanical system the results of |_1J immediately
imply that two pure states are T-orthogonal if and only if they are represented
by orthogonal rays in the Hubert space H of the theory.

Let the vector α of H be a unit representative of the pure state α, and denote
by Pυ the projection operator on the closed subspace U of H generated by the
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representatives of the states belonging to a given subset ^U of ̂ p. Then

T*(α,α)=||P l7α||4 (αe^), (4)

where || - || denotes the norm in H.

Proof. Let A be the self-adjoint operator associated with a given observable A\
denote by V the minimal closed subspace of H invariant under A and containing
17, and by 1^ the subset of ^p represented by V. Since the range of A in corre-
spondence with ̂  is just the spectrum of the restriction of A to F, one has Tf = 1%.
On the other hand, if β is a unit representative of a second state βe 6fp, the technique
used in [1] to express the scalar product <α,/?> and exhibit the relation |<α, β>|2^
TA(a, β) can now be applied in V, practically unchanged, to express <PFα, Pvj?)
and show that |<PFα, Pκβ>|2^T/(α,β), and therefore |<PFα,PF/?>|2^Tf(α, β).
In particular |<PFα, PFα>|2^ 7]? (α, α) and, since U C F, a fortiori KP^α, Pv^\2 =
llPt/^ll4^^!^^)- T° prove that the last relation holds with the equality sign
it is sufficient to choose A such that APua = Puu, Ay=Q whenever ylP^α and
yφU, Aγ = l/2γ whenever ylP^α and yεU: then p(A, α, 1)= ||Pt/α||2,
p(A,a91/2) = 0, so that 7]f(α,α)= £ p(4,α,;i)2= l l ^ t / α l l 4 which implies

λ = 0, l/2

T^(α, oO^Pt/αll 4 and therefore the assertion.
It is now evident that the enveloping subspace generated by <% in ̂  corre-

sponds to the closed subspace U of H, and that T-orthogonal complements in ̂ p

correspond to orthogonal complements in H.

3. Superpositions and Relative Phase Coefficients

On accounlt of the above considerations it seems natural to regard a state α as a
superposition of two states μ and v if α belongs to the enveloping subspace $
generated by the set %= {μ, v}, and is distinct from μ and v.

In Quantum Mechanics, if α, μ and v are pure states, the definition just proposed
coincides with the usual notion of "superposition". Remaining, for a while, in the
context of Quantum Mechanics, assume that μ and v are unit representatives of
two mutually orthogonal states μ and v in H, and that α and β are two distinct
superpositions of μ and v:

α = aμ μ + a v v , β = b μ μ + b v v .

In the choice of the unit representatives, the arbitrariness of the phase factors can
be exploited in order to make three of the four components, say αμ, αv and bμί

real and positive: then bv=\bv\eiθ(-π<θ^π) is well determined. We shall set
cos$ΞΞρ, and call θ the relative phase and ρ the relative phase coefficient of β with
respect to α in the (μ, v)-decomposition. One has

L2aμbμav\bv\

Although the phase factor eiθ is determined by ρ only up to complex conjugation,
it is possible to give criteria for the correct elimination of this indeterminacy
once a convention has been made on the sign of θ for a particular pair of states α
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and β1 (the opposite convention would correspond to a physically equivalent
representation of the states in a Hubert space H related to H by an antiisomor-
phism). Thus from the coefficients ρ and the transition probabilities it is possible
to reconstruct, up to unphysical factors, the coordinates of α andj? and therefore
the physically relevant elements of the Hubert structure.

We now remark that (5) can also be written in terms of transition probabilities
only:

T(α, β) - T(α, μ) T(β, μ) - T(α, v) ΓQ8, v)
2 ' U

In this form the expression for ρ makes sense for any physical system, whenever α
and β are superpositions of two T-orthogonal states μ and v.

The characterization of quantum-mechanical systems by this approach is not
attempted in this paper.

4. Remarks on the Lattice Structure of the Family of Enveloping Suhspaces

Let £g be the family of all the subsets of ̂  which are enveloping subspaces.
££ possesses a natural lattice structure, with the partial ordering defined by
inclusion. If Sp is regarded as the T-orthogonal complement of the void set, the
map $-*$L is an orthocomplementation of 5£.

In the case of a quantum-mechanical system the correspondence between
T-orthogonality of states and orthogonality of the representative rays implies that
cSf is isomorphic with the orthocomplemented lattice of closed subspaces of H.

Notice that in the present approach the construction of 5£ involves the
transition probabilities only, so that our only assumptions are the very natural
axioms I and II of Mackey's on the probability function (Section 2). No explicit
reference is made to the lattice of propositions, on which the classical analysis
of the structure of Quantum Mechanics are based [3-6].
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1 Suppose, for example, that ̂  = b'^ + b'vyelθ (b'β positive). Denote by φ and ρφ the relative phase
and the relative phase coefficient of β' with respect to β, and assume that θ has been chosen positive,
so that sin 0^0. Then φ = θ' — θ, sin θ' sin θ = ρφ — ρρ' and the sign of θ' is determined by the phase
coefficients. Analogous criteria can be found if α, β and β' do not belong to the same plane.




