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Abstract. The asymptotic character of deterministic and stochastic equations
whose solutions have a rapidly varying component is studied. Of particular
interest is the class of problems for which the limiting behavior can be described
in a contracted and simplified framework.

1. Introduction

The object of this paper is the asymptotic analysis of equations whose solutions
have the following three features: (i) rapidly oscillating components, (ii) rapidly
decaying components, (iii) rapidly varying stochastic components. The asymptotic
limit that emerges can be described in a considerably smaller space and is much
simpler than the original problem. This contraction of the description due to the
three features above is what we seek to analyze.

Naturally, problems of this form have received considerable attention due to
their frequent appearance in many different areas of physics and elsewhere.
Many of our references contain in one form or another such problems. In [1] and
[2] the passage from the linearized Boltzmann equation to the linearized Navier-
Stokes equation is considered. This problem is reconsidered here in Section 2.
Our analysis is similar to that of [3] and [4] and we employ it because it extends
easily to stochastic problems. We refer also to the work on Generalized Master
equations [5] and in particular to its mathematical development [6] which is very
similar to our problem. The work of Kurtz [7] also aims in the same general
direction as does the work on random evolutions [8, and references therein].

In Section 3 we consider the asymptotic behavior of problems in the form of
stochastic Boltzmann equations. Such problems are of interest in the study of
transport phenomena in random media [9] and elsewhere. In Section 4, we consider
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a concrete application of the results of Section 3 to stochastic differential equations.
We state the results in a more general form than direct application of the theorems
of Section 3 implies. This more general form, and the proof, is a simple extension
of the theorem given in [10] wherein additional references to work on the
asymptotics of stochastic equations are given. We also give an example illustrating
the theorem.

We note that the results of Section 4 may be considered as stochastic analogs
of the results of [11,12] on the analysis of stiff systems of ordinary differential
equations.

2. Deterministic Problems of Boltzmann Form

Let Lk>m, k, m = 0, 1,2,...,]V be Banach spaces with norms || | | f c m such that for
each m, O^ΞmrgJV,

and for each /c, 0 ̂  /c rg JV,

Lk,^Lk^.... (2.2)

We assume that each space is dense in the preceding one in the above inclusions.
Let A and B be linear operators such that

Ae£e(LktWLk^tm^\ Be^L^L^,). (2.3)

Here ̂  ( , •) denotes the collection of bounded linear operators from one space
into another. We assume that B and A + B/ε, ε>0, generate contraction semi-
groups on L0?0 which we denote by eBt and by e

t(A+B/ε) respectively. We assume
furthermore that for all ί e[0, oo) these semigroups map Lk m into itself, 0 ̂  k, m ̂  N,
with bound independent of ί and ε.

We are interested in the asymptotic behavior of et(A + B/ε) as ε JO, Orgί^T,
and in related questions. For this purpose we introduce the following additional
hypotheses concerning etB.

βίβ-^P,ί|oo, in Lktm, 0^ fc ,m^JV. (2.4)

Here P is the projection operator into the nullspace of B, that is, the closure of
the set {/ εLOΛ\Bf = Q} in L0>0. Note that we have

etBP = PetB=P, f ^ O , (2.5)

and on LΛ j W, m^l,

BP=PB = Q. (2.6)

We assume that

\\(etB-P}f\\k,m^Ck^me-^^\\f\\k^ Q^m^N. (2.7)

Here Ck>m and y f c > m are positive constants.
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In the following theorems it suffices to take N = 4.

Theorem 1. Assume that PAP generates a semigroup on PLo,o that maps
PLkm^PLkm, 0^/c, m^N boundedly on compact time intervals. Then for 0<f rg T

in L0 0 . (2.8)
ε j O

Theorem 2. Assume that PAP generates a group of isometries on PL0,o such
that etPAP maps PLh m-^PLk m boundedly for all t.

Let V ε&(PLktW PLk_2,'M_2) be defined by

V = PA $ (etB-P)dtAP . (2.9)

Let V eJ?(PLfc>m, PLk_2^2) be defined by

V= lim T-1 ί;°0

 + τ e~sPAPVesPAPds ,
T t o o J °

the limit existing uniformly in ί0^0. Specifically, assume that

2/(l + Γ)^ (2.9')

Assume further that V generates a contraction semigroup e^ on PL0 0 and that
etψ maps PLk>m->PLk>m, O^fc, m^N, O^f^T. Tfen /or O^f^T,

/e)u + l ϊ / β ) P=e ί P, (2.10)
ε|0

m L0 ? 0 απrf ί/ie error in the approximation is 0(|/ε).

Remark. If we do not assume (2.9') but define V merely as the limit as T| oo
then (2.10) is valid but we can no longer assert that the error is 0(|/ε). Note also
that V commutes with PAP.

Examples. 1. As we mentioned in the introduction, Theorems 1 and 2 are
simple abstractions of the situation encountered in the asymptotic analysis of
the linearized Boltzmann equation [1]. For this case the spaces Lk>m are Hubert
spaces of real valued functions in R3 x R3 with norm

where

ί 1 + ' + in - j

The operator B corresponds to the operator L of Grad [1, Section 2] and A =
-υ V. The properties (2.3) follow from (4.18) and (4.20) of Grad [1] for the class
of collision operators that he considers. Grad's a priori estimates [1, Section 6]
more than suffice for the analysis given here based on a priori regularity properties.
Theorem 2 above includes the averaging due to the pulling-back by the flow

e-tPAp jn p. 10) as was done by Ellis and Pinsky [2].
2. In order to obtain a better understanding of the asymptotic limit developed

in Theorem 2 we consider the following simple finite-dimensional example.
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Let A be an (N — n) x (N — n\ N>n, dimensional matrix with positive eigen-
values and let

B =
N-n

n N — n

0 , 0 -
- 1— -
0 ! -A

i.e. B has an ^-dimensional nullspace. Let A be an N x N matrix with block form

n N-n

A =
N-n

In1 A12

l21| A ,

where A11 is skew-symmetric. Clearly the projection operator P is

n N — n

N-n

0

0 , 0

and PAP = AH.
Consider now the linear system of equations for the vector functions

xε(t)eRn, yε(t)eRN~n:

dyε(t)/dt = -8'2A

According to Theorem 1,

x(t)~etAίl/εx, for 0^f^

for any constant C. Theorem 2 gives information in O^ί^C i.e., in a much larger
interval of time. In fact, we have here that

V= lim T'1 J£ e-A^s(Aι2A-lA2l)eA^sds
T t GO

and that

Thus, Theorem 2 characterizes the modulation e^ of the rapidly oscillating part
etAli/ε of xε(t) (recall that AH is skew-symmetric).

Proof of Theorem L From the hypotheses above follow the variation of con-
stants formulas

ft e(t

t(A + BIB) = t - s)(A + B/z

(2.11)

(2.12)

These formulas hold in L k m, l^k.m^N. They will be used frequently in the
sequel.
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First we show that

έ(A + B/ε\I-P)->0 in L0,0, ί>0. (2.13)

This follows from (2.12) and our hypotheses

et(A + B/^I_p^ = etB/s_p+ J*o #-*M + BMA^BlB_p)dSt (2.14)

Here we have used (2.5). For feLlΛ we have

||̂  + '/«>(/-P)/||0t0g^

The right hand side of (2.15) tends to zero as c->0, £>0. Since Lίtί is dense in L0 0

the assertion (2.13) follows.
In (2.15) and in the sequel we use C to denote any constant whose particular

value is unimportant. This simplifies the notation.
Now we work on the range of P only. Let A =A(s) [ 0 as ε j, 0, the precise

dependence to be chosen later, and decompose [0, ί] into m intervals of length A
so that m j oo as ε j 0. We have

\\(et(A + Blε}P-etPAPP}f\\Q,Q

= liy^Γ1

 e

kA(A + B/ε)reΔ(A + B/ε}_eΔPAP^e(m-k-l)ΔPAPpf | i

< γm-1 \\( Δ(A + Bfε) ~ΔPAP\ f π /9 i /:\= Lk=o \\(e ~e Λ l l o . o iz.ioj

Here we have set fk = e(m~k~ ί]ΔPAPPf which is in the range of P and we have used
the hypothesis that e

t(A + B/ε) is a contraction on L0 0.
For /eL2)2 using the variation of constants formulas and (2.5) we have:

J^ (esB/*-P)Afhds

+ $ f0 e
σ(A + B/ε}Ae(s-σ}B/£Afkdσds . (2.17)

Hence,

£ C ' ε \ \ f k \ \ l t l + C A 2 \ \ f k \ \ 2 t 2 . (2.18)

We also have that

\\eAPAPfk-fk-APAPfk\\0^CA2\\fk\\2,2. (2.19)

On combining (2.18) and (2.19) it follows that

?=o [C'βHΛIU.i + CJ^IΛL.J

(2.20)

The quantity (ε/Δ+Δ) will go to zero provided A is chosen appropriately, for
example A(ε) = yε. In this case (2.20) shows that we also have an error estimate
in the approximation, namely 0(|/εj.
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Proof of Theorem 2. Let

Uε(t , s) = e~ PAPtlEe(A + B/ε)(t ~ s^e

PAPs/ε, Q^s^t^T, (2.2 1 )

where we define et(PAP\I — P) = / — P. We note that Uε(t, s) is not a semigroup
since it does not depend on t — s only. One can easily verify, however, that with
the help of (2.5) and our regularity hypotheses, the following variation of constants
formulas hold in Lk >w, i ^ .

Uε(t, s) = e(t-s}B/ε2 + £-1 β e(t-σ)B/ε2Aε(σ)Uε(σ, s)dσ , (2.22)

Uε(t, s) = e(t - s)B/ε2 + ε ~ 1 β Uε(t , σμε(σ)έ?(σ ~ s)β/ε2rfs , (2.23)

- PAP)ePAPt/ε . (2.24)

From the regularity hypotheses on ePAPt and et(A + Blε} follows that Uε(t, s),
Orgs^f rgT, maps L f c m into itself with bound independent of ε>0, O r g / ς m r g Λ f .

We employ again, as in Theorem 1, the decomposition of the interval [0, ί]
into m intervals of length A(s) I 0 as ε I 0. We have the following

^
/ 2 f f c ) . (2.25)

Here we have also used the hypotheses that e'PAP and et< A+B/εί are contractions
in L0ι0.

We estimate /^ k first by using the variation of constants formulas (2.22) and
(2.23). Set fk = ekAVPf. Then

^ l ie" x ί£,+ 1)J (e"-^2

+ l|ε~2ί(/ i+i).ίlV1)/1t/ε(^Mε(s)
,o (2.26)

We estimate separately the last two terms on the right side of (2.26).

!, fc = m - l . (2.27)

We have used here the hypotheses about the smoothness preserving properties
of the semigroups, including etv, and (2.3) and (2.7). We recall also the convention
about constants that we are employing.
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We proceed to the second term on the right side of (2.26) which vanishes when
k = m—l. We have

U*(t, s)Aε(s)(e(s~«)Blε2-P)Aε(σ)Uε(σ, kΔ}fkdσds\\^

J?/1^ (2.28)

The estimates (2.27) and (2.28) combine to yield

2 . (2.29)

By choosing zi(ε)-»0 so that zl/ε2^oo as ε^O we see from (2.29) that Σ™=o llίk

goes to zero for Pf in L2 > 2.
Next we estimate / 2 > / c where,

I2.k= \\(PUε((k+ l)zl, /c/1)-^)/Jo,o - (2.30)

By iterating the variation of constants formulas we obtain the following identity
valid in L4>4.

^

/7c /7s? //« 4-P~4 Γ( f c +D^ fsi fs2 fs2 ^((fc+l)zl-sι)β/ε 2 / j ε / ς \ (si -s2)B/ε2 /<ε/ ς \ Γ / ε/ ς „ \as3as2asί-jrε ]kΔ ]kΔ ]kΔ JS3 e A (s^e A \s2)U ^s2, s4)

A\s4)e(S4-^B/ε2A\s^~kΔ}B/ε2ds4ds3ds2dSl. (2.31)

We observe that

etPAPP=PetPAP. (2.32)

From this observation, (2.5) and the definition (2.24) of Aε we may rewrite (2.31)
as follows.

PUe((k+ί)Δ,

(e(s>-s^2-

(e(sι "S2)B/ε2 - Pμε(s2)(e(S2"S3)B/ε2

2)[/ε(s2, s4)

(2.33)

From (2.33) we obtain further

\\PU*((k+l)A,kA)fk-fk-AVfk\\o,o

C3,3e-^^-s^2ds4ds3dS2dSί ||Λ||4ι4 . (2.34)

In the last two terms on the right side of (2.34) we have used (2.7) and the regularity
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hypotheses along with (2.3). Elementary calculations yield

\ \ P U ε ( ( k + l ) A , k A ) f k ~ f k - A V f k \ \ Q , 0

^^2 \ \ f k \ \ 4 Λ . (2.35)

We shall now analyze the first term on the right side of (2.35) which we denote,
without the factor A, by J\. First we observe the following.

PA^s^e^ ~S2}B/ε2 - P)Aε(s2}P=Pe-SlPAP/ε(A - PAP)eSl(PAP}/ε

ί(sι -s2)β/ε2 _ \-

Here we have used the definition etPAP(I - P) = I - P and (2.5). In view of (2.36)
we have

Γβ_ \\p2λ-ί C ( k + l ) A / ε 2 fS l p^-s^PAP p A( (s j -s2)B
Jk—\\εΔ jkΔ/ε2 j k A / ε 2 "

s2εPAPs2εPAP f Jc Jc Vf\\ <\\c2Λ~1 ϊ(k+l)A/ε2 -s^PAP Csie Jkas2as1— y j k \ \ 0 ; Q ^ \ \ ε Δ ]kΔJE2 e jkΔ/ε2

SίεPAPfkds1\\^0

P)dσAP)e^PAPfkdSl - Vfk\\0>0

(β^-P)rfσ^Pχ-^/^ιllo,o

= ̂ ,ι + Jb + ̂ ,3. (2-37)

For J£ ! we have the following estimate

\\fk\\3ι3. (2.38)

Here as usual, we have employed the regularity hypotheses and (2.7). For Jj[ j2

we have, using (2.9),

^
. (2.39)

The last inequality is hypothesis (2.9;). For J^ 3 we have

p <-p2 /^-l C(k+l)A/ε2^ Γoo ^ - y i . ! σJ-J „ || f \\ <Γp2 A ~ 1 I I f II Π 4ΠΊ
Jk,3=£ Δ }kΔ/ε2 ^ J S l -kzl/ε 2 C l , l e "σ^5ll! A l l 2,2 = Cε ^ II Λ l l 2,2- 1Z ̂ UJ

We return now to (2.35). Using (2.38), (2.39), and (2.40) in (2.37) and then in
(2.35) we find that

^ C5zl||/k |U,4]. (2.41)

Our hypotheses about V yield readily the estimate

. (2.42)
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Thus, from (2.41) and (2.42) it follows that

. (2.43)

Now if we choose zl(e)-»0 as ε->0 so that zj(ε)/ε-»oo then, the right side of (2.43)
goes to zero and so does the right side of (2.29). This proves the theorem.

For A(s) = ]/ε we find that the overall error in the approximation is 0(j/ε) as
asserted in the statement of the theorem.

3β Stochastic Problems with Rapidly Varying Deterministic Part

We adopt the same framework as the one described at the beginning of Section 2.
The operator B is defined as before including properties (2.4), (2.5), (2.6), and (2.7).
The operator A is now different and it is defined as follows.

Let (Ω, ̂ , P) be a probability space. For each t ̂ 0 and ω eΩ let A(t, ω) be a
linear operator in ^f(Ae,m> Ac-ι,m-ι) which is strongly measurable jointly in t
and ω. To simplify the discussion of questions of measurability we assume that
the spaces Lfc<wι, /c, m^O are separable. Let J^jc J ,̂ O^srgίgoo be an increasing
family of σ-algebras, that is

We assume that the conditional probabilities P(F\^S

0) have a regular version
Ps(F\ω) as in [3] and that P is mixing relative to ^\ as follows.

sup sup \P(U\W)-P(U)\ = ρ ( t ) l Q , f T ° ° , fo Q*(s)ds < oo . (3.1)

We assume that A(t) = A(t, ω) is 3F\ measurable for each t ̂  0.
We are interested in the asymptotic analysis of the stochastic equation

dyε(t)/dt = ε-1Byε(ή + A(t/ε)yε(t\ ί>0, yε(0)-^0, ε|0. (3.2)

Naturally, this equation will be analyzed under different conditions corresponding
to Theorems 1 and 2 of Section 2. First we make precise the sense in which (3.2)
is to be taken.

It is convenient to introduce the evolution operator associated with (3.2)

/(f)=E7E(i,s)/(s), O^s^ί. (3.3)

We state the relevant hypotheses in terms of Uε(t, s). We assume the following:
(i) Uε(t,s\ t^s are contraction operators on L0>0->L0j0 and strongly

J^/ε measurable. They are also bounded on Lk^m-*Lk^m for 1^/c, m^4.
(ii) The finite propagator property holds.

Uε(t, σ) Uε(σ, s) = Uε(t, s\ Q^s^σ^t, Uε(t, t) = I . (3.4)
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(iii) The variation of constants formulas hold in Lk >m, fe, m^ 1.

Uε(t, s} = e(t~s}Blε + $1 Uε(t, σ}A(σ/ε)e(σ-s}B/εdσ , (3.5)

Uε(t, s) = e(t ~ s}B/ε + f < e(t - σ)B/εA(σ/ε) Uε(σ, s}dσ . (3.6)

With these hypotheses we have the following theorems.

Theorem 1. Assume that the limit

l = lim T~l \\l + τ E{A(s)}ds (3.7)
Tt oo

exists uniformly^in ί0 = 0 and P A P defines a n operator i n ί j

Assume that PAP generates a semigroup of contractions etpAp in PL0j0 such that
etPAP maps PLkm into itself for O^t^T. Then for O^t^T

etppPf, in L0 0 . D (3.8)
ε|0

Theorem 2. Assume that the operator PAP in Theorem ϊ is identically zero.

PAP = Q. (3.9)

Let Ve^(PLk^ PL,_ 2 > m_ 2) be defined by

V=lim T~l γt°0

 + τ$s

toE{PA(s)(eB(s~σ)-P)A(σ)P}dσds (3.10)
T t oo

which we assume exists uniformly in £ 0=0 and is independent of ί0. We assume that
V generates a semigroup etψ on PL0ίQ such that etv maps PLkm-^PLkm for 0^ t ̂  T,
fe, m^ 1. Suppose Uε(t, s) satisfies, for all ω eί2,

||C/ε(ί/ε,Vε)/l!ι,ι^cι, i l l / I l l , i ' O^ί-s^ε, (3.11)

||L/ε(t/ε,s/ε)/||2,2^C2 j 2 | |/| |2,2, O^ί-s^ε. (3.12)

Under these hypotheses

. D (3.13)
ε j O

Theprem3. Assume that A(t\ ί^O, is a stationary process, that P/ΪPφO and
that PAP generates a group of contractions etPAP in PL0ί0 which maps PLkm^>
PLkm, fc,m^l, -oo<ί<oo. Assume that (3.11) and (3.12) hold for 0^ί-skτ.
Assume further that

V= $ PE{A(t)(eBt - P)A(ϋ)}Pdt (3.14)

defines an operator in <£(PLkίm, PLk_2^m_2) and that the limit

V=\imT-ί \l° + τe-sPlPVesp2pds (3.15)
Ttoo J °

exists uniformly in ί0^0, ™ independent of it and defines an operator in
PLk_2,m-2) Let V satisfy the same hypotheses as in Theorem 2.

Then for O^ί^T,

\ime~ (t/ε}ppE{U(t/ε,0)Pf} = etpPfJeL0 0 . D (3.16)
ε|0
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Remarks, L Note that Theorems 2 and 3 complement each other. The one
holds when PAP = 0 but A(t) need not be stationary although (3.10) holds uni-
formly in ί0. The other holds when PJΪPφO, generates a group and A(t) is
stationary. It does not seem possible to have PAPή=Q and A(t) non-stationary
at the same time and expect a limit like (3.13) or (3.16) to exist.

2. As we mentioned in the introduction, one application of these theorems
is in transport theoretic problems in random media [9]. An example is provided
by the Boltzmann equation of gas dynamics [1] which was discussed in Example 1
of Section 2 when A is not — v -V but, say, — v(t, ω) -V with v(t, ω) a random function
of time with values in R3. More complicated, space dependent, examples require
a considerable amount of effort to verify that all hypotheses of the theorems hold.
In particular, (3.1 1) and (3. 12) for Theorem 2 are not obvious and their strengthened
version in Theorem 3 is probably not true unless very special assumptions are
made.

Proof of Theorems 1, 2, and 3. The proof of all three theorems is very similar
to the proof of Theorems 1 and 2 of Section 2. Therefore, we shall not repeat the
details here but we shall present those portions of the argument which are
different. In particular we shall discuss Theorem 2, which is typical.

We begin with (2.25) including expectation values. We also change notation
so that Uε(t, s) stands for ί/ε(f/ε, s/ε). We have

||0,o^ ΣΓo \\(E{U\t9(k+l)A)

, kΔ)} - E{ Uε(t, (k + ί)A)}PE{ Uε((k + 1)A, kΔ)})ekΔVPf \\ 0, 0

+ ^^\\(PE{U\(k+i)Δ,kΔ)}-eΔψ}ekΔψPf\\,^ %£-* (/!.* + /!,*). (3.17)

The treatment of I ε

2 ί k for both Theorems 2 and 3, is similar to the one of Section 2.
The treatment of I\tk is where differences arise and the mixing hypothesis (3.1)
enters. We shall examine this in more detail.

We rewrite I\tk using (3.5) and (3.6) and recalling that Uε(t, s) stands for
Uε(t/ε, s/ε) here.

U*(t9s)A(s/ε2)

e((k+1]Δ-σ}B/ε2A(σ/£2)

8-^{k+ί)Δ U(t, s)A(s/ε2)

! C(k+ 1)A Q((k+ 1)A -σ)B/ε2

A(σ/ε2}Uε(σ, kΔ)dσ)fk}\\0^\\ε~1 J£+1>^ (e(t~^2 -P)E{A(σ/ε2)

L7ε(σ, k A ) f k } d σ \ \ o t o + \ \ s - 2 f ( k + uA J£+1)J E{Uε(t, s)A(s/s2)

(e(s-σ)Blε2-P}A(σ/ε2)Uε(σ,kΔ)fk}dσds\\0,0

+ He" 2 J( f c + iM ί£+1)J ίE(V8(t, s)A(s/s2)PA(σ/s2)Uε(σ, kΔ)}

~E{Uε(t,s)A(s/ε2)}PE{A(σ/s2)Uε(σJϊΔ)}^fkdσds\\Qί0. (3.18)

The first term on the right side of (3.18) is estimated in exactly the same way as
(2.27). The second term, similarly, exactly as (2.28). The third term in turn is
estimated in exactly the way I(k} in (2.24) of [3] was estimated. In particular
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Lemma i of [3] is used here again and, as for other calculations, hypotheses (3.11)
and (3.12). The remainder of the proof proceeds without any substantial
differences from the analysis of Section 2 and [3].

4. Application to Stochastic Differential Equations

Let (Ω,F, P) be a probability space and consider for (Xε(t\ Yε(ή) = (lε(ί,ω), 7ε(ί,ω)),
ω eΩ, the following system of stochastic differential equations.

\ Yε(t\ ί/ε2)

), yβ(ί), ί/ε2) ,

dYε(t)/dt= -ε~2A(2)Yε(t) + ε-1F(2\Xε(t), Y\t\ ί/ε2)

t\φ\ ί>0.

Here Xε(t) and 7ε(ί) take values in Rn and #m respectively, A(ί) is an n x n skew-
symmetric matrix, A(2} is an m x m positive definite matrix, F(1)(x, 3;, ί, ω),
G(1)(x, 3;, ί, ω) and F(2)(x, j, ί, ω), G(2)(x, y, ί, ω) are random vector functions in
Rn and Km respectively.

To analyze the asymptotic behavior of (Xε, Yε) as β j 0, 0 ̂  ί ̂  Γ, it is necessary
first to remove the rapidly oscillating term ε~2A(1}Xε by defining new dependent
variables as follows

P(t) = etA(ί)/ε2Xε(t}. (4.2)

The equations for (Xε(t\ Yε(ή) are

ε, 7ε, ί/ε2) + G(1)(Xε, 7ε, ί/ε2) (4.3)

Fε,ί/ε2), ί>0.

The vector functions F(1\ G(1), and F(2), G(2) are given by

, y, ί, ω) =

, 3;, ί, ω) =

F(2)(x, y, ί, ω) =

Without loss of generality we take ,4(2) = diagonal (a(2},a(2},...,a(2\ α(

k

2)>0,
fe=l,...,m.

Let ^C^, O^^^ί^ oo, be the family of σ-algebras introduced in Section 3
satisfying condition (3.1) with the strengthened assumption J^ Q1/5(s)ds<c®.
Denote by F(x, y, ί, ω) and G(x, y, ί, ω) the #"+m vector functions (F(1), F(2)) and
(G(1), G(2)). We assume the following
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(i) F and G are mappings from Rn+m x [0, oo] x Ω into Rn+m which are
jointly measurable with respect to their arguments and which for fixed x, y, t are
3F\ measurable functions of ω.

(ii) E{F(x,;M, )} = 0. (4-4)

(iii) |F(x, y, t, ω)\ + |G(x, y, t, ω)| ̂  C(l + |x| + \y\)

\DlF(x, y, t, ω)| + \D*G(x, y, ί, ω)| ̂  C

|DT(x, y, ί, ω)| + |^G(x, y, t, ω)| ̂  C(l + |x|p + Mp) , ί = 2, 3 .

Here Dl stands for any partial derivative of order i= 1, 2, 3 with respect to x or y,
I stands for norm of vectors or absolute value of scalars, C is a constant and p

is a nonnegative integer.
We state shortly a theorem characterizing the asymptotic behavior of Xε(t)

as ε-»0. The limit process is a diffusion Markov process and we proceed now to
introduce its infinitesimal generator.

We assume that the following limits exist independently of £0 = 0

aίj(x)= lim T"1 J£ + Γ J*0 £{Fίυ(x, 0, σ)FJ1}(x, 0, s)}άτds i,; = 1,..., n , (4.5)
7"t oo

+ Σ"= i £{^2)( '̂ 0. σ)e-<2)(σ-s)θFί.1)(x, 0,

+ l imT" 1 $'t°
 + τ E{G[1}(x,0, s)}ds, i=l,2,...,n. (4.6)

T"t °°

We assume moreover that the magnitude of the difference between alj(x) and the
integral in (4.5) is less than C(l + |x|2)/(l -I- T), T| oo, while the magnitude of the
difference between b^x) and the sum of the integrals in (4.6) is less than
C(l + |x|)/(l + T). In the space of twice continuously differentiable functions on Rn

we define the differential operator 3? as follows.

= Σ";=ι aίj(x)d2f(x)/dxίdxj+ ^lb
ί(x)df(x)/dxi . (4.7)

Let Ck'p(Rn) denote the class of functions on Rn that are fc-times continuously
differentiable and for which all partial derivatives up to order fc inclusive are
bounded by a constant times (l + |x|p), p a nonnegative integer. Consider the
parabolic initial value problem

du(τ, x)/dτ =&u(τ, x), τ > 0, XG Rn, u(Q, x) - /(x)e C4>p(Rn) . (4.8)

To insure that, for some p^O, (4.8) has a unique solution in C4ίβ(Rn) for 0^τ^τ 0

it is sufficient to assume that the matrix alj(x) has a square root clj(x) which is
sufficiently regular:

' )! ̂  C

(4.9)

Ito's calculus can be used to insure existence and uniqueness of a solution in
C4'P(Rn) [13]. The hypotheses (4.9) can be frequently verified from those on F
and G and (4.5), (4.6). When this is not possible, one may have to change (4.9) and
apply the theory of Oleinik [14].
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Theorem. Let the above hypotheses hold and let f(x,y)eC4>p(Rn+m). Let
u(τ, x) denote the solution of (4.8) with data /(x, 0). Then there exists an integer p
such that for all £ sufficiently small.

|£{/(Xε(τ, <j, x, y\ Y°(τ9 σ, x, y)W^} ~ [/(x, e'^^^y]

-/(x,0)]-w(τ-σ,x)|^ε-C(l + |xp+|j;n, 0^σ^τ^τ 0 <oo. (4.10)

Let X°(τ, x) denote the n- dimensional diffusion Markov process with infinitesimal
generator J£ and with X°(0, x) = x. Then as ε-»0, Xε(τ, 0, x, y) converges weakly
to X°(τ, x) as a process in C([0, τ0], Rn\ with x, y in a compact subset of Rn+m.

Remarks. 1. Limit theorems for stochastic differential equations are considered
in [12] and several references to the work of Stratonovich and Khasminskii are
given in [4, 10]. The theorem as stated here is an extension of the result in [10]
and its proof requires no essential changes at all.

2. As we mentioned in the introduction the theorem of this section can be
viewed as a consequence of Theorem 2 of Section 3 and this is the reason for
presenting it here. This is similar to the approach followed in Sections 3 and 4
in [3]. More specifically, the operator A(t) of Section 2 is given on smooth func-
tions by

A(t)f(x, y)= Σi=ι (ίl'U y, t)df(x, y)/dxt + εG|1)(x, y, t)df(x, y)/dXi)

+ T?=i(F\2\x9y,t)df(x,y)/dyi + BG?\x9y,tW^ (4.11)

The fact that A(t) has also terms of order ε is, of course, easily accomodated.
The operator B is given by

Bf(χ, y)= -Σϊj=ι 4?V/(χ, y)/8yt , (4.12)
so that

e*f(x> y) = f(x, e'A(2}ty\ Pf(x, y)= /(x, 0) . (4.13)

With this formal identification of objects and the type of analysis of Sections 3
and 4 in [3] one can obtain a result similar to the theorem of this section. However,
the result as stated here is considerably more general as far as the various
hypotheses are concerned and also regarding the conclusion. Therefore, for the
special problem (4.3) the direct approach of [10] is preferable. We note that,
with A(t) and B given by (4.11)-(4.13), the infinitesimal generator Sf of (4.7)
coincides with the operator V of (3.10) as, of course, it should be.

We shall conclude this section with an example illustrating the content of the
theorem.

Consider the following system of coupled oscillators

d2ξl(t)/dt2 + 2aidξl(t)/dt + ώ?ξ?(ί) = ε Σf= ! μ^ξ%t)

+ B2Gti\, dξl/dt,..., ξ*M, dξ*M/dt, ή , ί>0 . (4.14)

ξf(O) and dξΐ(Q)/dt given.

Here ξ (ί) represents the amplitude of the z t h oscillator. We assume that the

following hypotheses hold.

(i) αι=0, 0<α2^α3g...^αM, (4.15)
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(ii) μij(f) = μίj(t, ω), ij= 1,..., M, are real, symmetric (μ^μ^), 3F\ measurable,
stationary, zero mean processes a.s. bounded for all ί^O. The ωeΩ, (Ω, F, P)
a probability space, should not be confused with the circular frequencies ώt

(and ωt below), i = 1,..., M.

(iii) Gi(ξί,ηl9...,ξM,ηM9t) = Gi(ξί,ηί,...,ξM9ηM,t,ω)9 i=l,...,M are Ĵ [ meas-

urable stationary random functions satisfying (i) and (iii) of (4.4).

We transform next (4.14) so that we may apply the theorem.

Define the following

ω. = j/ώ?-α? (4.16)

cosωtt sinω f 1

cϋ cosω/ί]'

m }
\(t)ldt\

(4.17)

Let τ = ε2ί. Then Xε(τ) s Xε(τ/ε2) and Y\τ) = Yε(τ/ε2) satisfy a system of equations

having the form of (4.3), with τ replacing ί. The functions F(1), F(2), G(1), and G<2)

are identified in the obvious manner and we shall not write them explicitly. We

proceed with the application of the theorem. Let

Qίj.M = E{μίj(t + S)μkJ(s)} (4.18)

and set

β

L 7 J

'δι

= (2ωι) (ί) dt,

iίl ,
'

, ω^ sinφ, 0,..., 0)}
cosφ

dφ .

(4.19)

(4.20)

(4.21)
[κ2(r)\ v ι y J0 [smφ

The theorem now asserts that Xε(τ), which takes values in R2, converges weakly
to a diffusion Markov process X°(τ) in K2, 0^τ^τ 0. Moreover, because of (4.10),
moments of Xε(τ) converge to the corresponding moments of X°(τ). To describe
the limiting Markov process X°(τ) it is convenient to represent it in polar co-
ordinates

χ<>(τ) = r°(τ) cos^°(τ), X°2(τ) - r°(τ) sinθ°(τ). (4.22)

The infinitesimal generator of (r°(τ), 0°(τ)) is given by

ocr2d2/dr2 + (3α -δ2- κ2(r))rd/dr + (y + (x)d2/dθ2

(4.23)
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We omit calculations which are straightforward.
Let us also express Xε(τ) in polar coordinates

χ\ (τ) = r

ε(τ) cosθε(τ), XE

2(τ) = rε(τ) sinθε(τ) . (4.24)

From (4.17) it follows that

(rε(τ))2 - (ξ{(τ/ε2))2 + ωf 2(dξ,(τ/82)/dt)2

i.e., (rε(τ))2 is proportional to the energy of the undamped oscillator. Since the
theorem asserts that moments go to moments, we have that

)2}=^ r0 = r(0) (4.25)

limEMτ))4} -E{(r°(τ))4}-r^(24α-4δ2)τ . (4.26)
ε|0

In (4.25) and (4.26) we have also assumed that κ1(r) = κ2M = 0 which amounts to
Gί=0. Without this assumption explicit expressions as on the right sides of
(4.25), (4.26) cannot be obtained.

An interesting feature revealed by (4.25) and (4.26) is that the damped oscillators
can have a pumping as well as a damping effect on the undamped oscillator.
The parameters δ2 in (4.20) can be rewritten as the difference of two positive terms

- Σίl2(4ω1ωίΓ
1 f" e-'tQwMcosfa + cofrdt. (4.27)

Thus, it can be either positive or negative depending on the power spectra involved.
One naturally expects a damping effect and it is somewhat surprising that pumping
is also possible.
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