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Abstract. In the algebraic framework of quantum field theory we consider one parameter subgroups
of lightlike translations. After establishing a few preliminary properties we prove a certain cluster
property and then exhibit the close connection between such subgroups and a class of type III factors.
A few applications of this connection are also discussed.

Introduction

When looking for applications of spectrum condition together with locality
in relativistic QFT one finds that up to this time the possibilities of using lightlike
translation subgroups of the Poincare group in connection with geometric
properties of Minkowski space have not yet been fully realized.

In the present work we shall argue that, roughly speaking, "thinking in lightlike
terms" may be useful not only in elementary particle physics but also in general
relativistic QFT leading to

a) new proofs and strengthened versions of existing results,
b) entirely new results which would be specific for relativistic theories and

which could probably not be obtained otherwise.
In Section 1 we formulate our assumptions and state a few preliminary results

on lightlike translations in field theory, some of which will not be used in the sequel
of this work but might be useful in further studies.

In Section 2 we prove the main theorem, i.e. by use of the properties of lightlike
translations we show that the von Neumann algebras belonging to certain un-
bounded regions are always type III factors.

The applications (discussed in Section 3) are not very strong by themselves
and should be judged more from the methodological point of view; we hope,
however, that they will be sufficient to convince the reader that the role of lightlike
translations in relativistic field theory deserves more thorough investigation.

1. Lightlike Translations in Relativistic Field Theory

We shall work in the algebraic framework of QFT and assume:
α) <2I is a C*-algebra of quasilocal operators in a separable Hubert space ffl

and is generated in the usual way by local von Neumann algebras 5t($) which
belong to bounded open regions (b.o.r.) in Minkowski space JR"(rc^2) and are
subject to locality and isotony.
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β) We have a strongly continuous homomorphism τ:(a9A)^U(a,A) of,
into the set of unitary operators in J f such that

{ΘaΛ denotes the image of G when ^ ί acts as transformation group on R"); so
each U(a9 A) induces a ^-automorphism on 21.

γ) There is exactly one vector Ω in & which is invariant with respect to time
translations U(t), t eR; Ω is a cyclic vector for 91.

δ) Spectrum condition with a mass gap holds for the translation operators
{E/(α)}αeRW in tf.

ε) We have weak additivity for every algebra 9t(0).
By δ) Ω is invariant with respect to all translations, therefore also with respect

to all C/(α, A). The assumptions imply irreducibility of 91 in J4? and the Reeh
Schlieder theorem for all algebras 91(0) ([1], Theorems IV.1.5 and I V.I.6). Since
all assumptions are standard they need not be discussed in detail.

Once and for all we fix a lightlike direction - determined by the vector
(1, —1.0...0) - (no loss of generality by rotation invariance); then we consider
the one parameter unitary group of translations in this direction {U(a)},aeJR,
By Stone's theorem this group has a selfadjoint generator P^; the properties of
this operator which are relevant to our purpose are gathered in:

Theorem 1.1. We have: a) -P||^0 in 2tf b) Ω is the only vector satisfying:
P||Ω = 0; c) the spectrum of P^ in Ω1 — the orthogonal complement of Ω in ffl — is
absolutely continuous, i.e. we have:

w- lim U(a) = PΩ9 (1.1)

where Pφ denotes the projection onto the vector Φ e Jf\

Assertion a) is a trivial consequence of spectrum condition; b) can be extracted
from the methods used in the proof of the first lemma in the appendix of [2]
for c) see e.g. [12]. A straightforward proof of all assertions will also be given
in [3].

A first aspect of the particular properties of lightlike translations in Minkowski
space - demonstrating that these translations inherit properties not only from the
timelike side (positivity of P^) but also from the spacelike side - is revealed in:

Proposition 1.2. The group {U(a)}aE]R acts in a weakly asymptotically abelian
manner on 91, i.e. we have for all A e 9ί :

w- lim U(a)AU(-a) = (Ω, AΩ)= :ω(A). (1.2)
|α|-> oo

Proof. Let A be a local operator and consider the uniformly bounded set of
operators yi:={U{a)AU{-a)-ω{A)}a^0. There exists a b.o.r. ^CR" such that
all elements of 91 commute with all Be ${($). Therefore:

w- lim {\U{a)AU{-a)-ω{A)~\BΩ}
a—• + oo

(1.3)
= w- lim {B\_U(a)AU(-a)-ω{A)-\Ω} = 0

fl> + 0
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the last step resulting from the previous theorem. From density of $i{Θ)Ω in ^
we get:

w- lim U(a)AU{-a) = ω(Ά). (1.4)
α-> + oo

For a—> — oo the argument goes similar. Since every operator in 21 can be ap-
proximated in norm by local ones the statement follows.

Remark 13. In the proof we have used assumption ε) via the Reeh Schlieder
theorem; this assumption is really not needed; see Lemma 2.4 below.

Remark 1.4. It would be interesting to characterize the lightlike translations
as automorphisms of 21 in a representation independent way - as possible with
spacelike translations which act in norm asymptotically abelian manner on 2ί
([1], Chapter IV). But at present we can do no better than Proposition 1.2 because
we need the boosts in proving absolute continuity of P^.

In any case we learn that the subgroup {U(a)}aeR inherits a certain clustering
property from the spacelike translations which though notably weaker than
norm asymptotic abelianness - might, together with positivity of P||, be useful in
investigating properties of representations of 21 subject to α)-ε).

2. The Main Theorem

An old problem of algebraic QFT consists in determining which kind of
implications the axioms of the theory have on the algebraic structure of the local
von Neumann algebras.

Although it is known that the local algebras of e.g. free relativistic scalar fields
are in general type III factors ([4, 5]) - for the notion of type of von Neumann
algebras see the brief account in [1], Section II, If- the abovementioned problem
remains largely open up to now, apart from the question of fmiteness ([6, 7]).

In this respect the theorem proved below has an interest in its own in establish-
ing a connection of this type for a class of algebras characterized by a simple
geometric condition.

In order to introduce this condition we first state:
Definition 2.1. Let Θ be open in 1R" with nonvoid causal complement Θ' and

let it be shaped in such a way that - possibly after a suitable rotation - exactly
one of the following two conditions is satisfied with respect to our lightlike group

L+)ΘaDΘb for a>b

L')ΘaCΘb for a>b.

Such a G must clearly be unbounded and as usual we define the von Neumann
algebra 9t(0) to be: (\J&ce>9l(&))" where Θ runs through all b.o.r. contained in Θ.
L+) and L~) immediately carry over to the algebras SR{Θ) by isotony. Regions of
this type as well as their corresponding algebras will be called "lightlike monotone";
the set of all such 9ΐ in our Hubert space Jtf will be denoted srf.

A simple example of such a set is:
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After this definition we state our main:

Theorem 2.2. All lίghtlike monotone algebras are type III factors, more specifi-
cally they are type IIIX factors in the terminology of [10].

Proof. 1) Let 9ί e srf and assume first that Q is a nontrivial projection in the
center 3(91) of 9Ϊ. Then we see that by the very construction of lightlike monotone
algebras we must have:

(Ω, Q U(a)QΩ) = (Ω, Q U( - a)QΩ) (2.2)

for all αelR: assume e.g. L") to be satisfied (this is the case for 91(0 0) - i n c a s e

of L+) the argument goes the other way round), then for α < 0 we have Qa^3(^a)
and thus it commutes with Q, because 9lαl)9ϊ. For all α>0, however, we have
Q e 9ζD W a n d (2.2) holds, too. Positivity of P^ yields a bounded entire function
and Liouville's theorem gives:

\\QΩ\\2 = \(Ω,QΩ)\2. (2.3)

By construction of 9ΐ and the Reeh Schlieder theorem Ω is cyclic for 91' so we get
from (2.3): Q = 0 or Q = l, a contradiction. Thus 9ΐ is a factor.

2) The type III property of 9ΐ could possibly be proved by using more classical
methods than we shall do, but the preceding argument immediately suggests
application of the Tomita Takesaki theory [9]. According to this theory the
vector Ω determines a one parameter group of automorphisms of 91, namely
the corresponding modular group Σ={σt}teJR.

The subalgebra 9ΐΣ of 9ΐ which consists of all elements in 9ΐ which are invariant
with respect to Σ contains precisely those elements B e 91 which fulfil:

(Ω,BAΩ) = {Ω,ABΩ) (2.4)

for all A e 91 ([8], Theorem 3.6). But this formula immediately shows that the
reasoning following (2.2) may be repeated literally with Q e 3(91) replaced by
B e 9Ϊ1 because with respect to the invariant vector Ω the statement B e 9Ϊ1 is
equivalent to U(a)BU(-a) e [£/(α)9W(-α)]Σ. So we have 9 ί*=C i

3) Assume now 9ί to be semifinite, i.e. not type III. This is equivalent to saying
that all automorphisms σt are inner ones ([9], Corollary 14.2). This in turn means
that the Connes invariant T(9t) ([10], Chapter 1) is equal to all of R For t e T(9i)
we get on the other hand by Theorem 1.3.2a) and c) in [10] that σt is implemented
by a unitary ut in the center of 9ίΣ, in our case this would mean that all σt are
trivial by 9ΐI = (C 1 But this would mean that all elements A e 9ϊ are invariant
with respect to Σ, a contradiction. So 91 must be type III.

4) According to the classification theory of Connes [10], the class of type III
factors is divided into subclasses IΠλ, λe [0, 1]. First by [10], Corollary 3.2.5a)
we get for the second Connes invariant 5(91):5(9?) = spectrum (A) with A the
modular operator belonging to Σ. From Theorem 4.2.6b) and c) we then see that
91 cannot be in one of the classes lllλ, λe(0,1); finally Theorem 5.2.1a) shows
that 9ϊ cannot be in class IΠ 0 either, so 9ί is class I Π ^ q.e.d.

This theorem requires various comments:
A) The statement 9ί I = (C l in fact implies much more for 9Ϊ than just the

type lll1 property.
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We mention only one simple corollary - an easy consequence of the Radon
Nikodym theorem for von Neumann algebras ([8], Theorem 5.12):

Corollary 2.3. For any 9iejtf the only normal weight on 91 invariant with
respect to Σ is the state ρΩ.

This corollary demonstrates that a Poincare invariant vacuum is in some
sense a very "extremal" object.

B) Note that in the proof of the theorem we only needed Ω to be cyclic for 9V.
Therefore the theorem holds true for any algebra of the form:

9W=(UgcW, (2.5)

where 501 is any finite or infinite set of operators in some 9i(&), Θ any b.o.r. in IR".
This remark emphasizes the geometric content of the theorem.

C) We give two generalizations of the theorem. The first one consists in taking
into account superselection. To this end we adopt the situation as described in
[11], where each 9t(0) is contained in some field algebra %(Θ); the field algebras
being subject to the usual requirements. Then the projection Q onto 2IΩ may be
nontrivial; but since Q e 91' for all 9ΐ e s$ we see that Q has central support / in 9Ϊ'
by the Reeh Schlieder theorem for the %(Θ) - provided we have the usual statistics,
i.e. 9?(#1)Cg($2)' whenever Θ1 is spacelike to Θ2:Θ1 x Θ2. So the reduced algebra
9?Q ([16], § 1.2.1) is isomorphic to 9ΐ for all 91 e jtf, so everything is reduced to the
vacuum sector. The second point consists in dropping ε) from the assumptions
altogether thus emphasizing the predominant role of spectrum condition in our
argument. We show that without ε) Ω is nevertheless separating for a large number
of 9ΐ e J / . This follows from:

Lemma 2.4. With assumptions α)-δ) Ω is separating and cyclic for 9l(Θ) e s$
if Θ and &' both contain balls of arbitrarily large radius.

The proof of this lemma can be given analogous to the one of the second lemma
in the appendix of [2].

Remark 2.5. The reader should note a marked difference between the timelike
and the lightlike case. Namely if we generate a timelike 91 starting from a finite
family 9JΪ of operators in some 9t(0) we will not in general obtain a factor as in the
lightlike case.

If, however, a factor is obtained then it is type I by [13], Theorems 1 and 2.

3. Applications

In this section we shall concentrate on one particular aspect, namely we ask
what kind of information can be obtained from the known structure of the 9ί's
about the local algebras 9i(Θ). We shall later make use of the fact that Theorem 2.2
provides us with a kind of "Misra condition" ([14], Definition 12), i.e. every
9i(Θ) may be embedded in some type III factor, the obvious choice being
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That in our case 9ΐ + does not belong to a bounded region containing G is com-
pensated for by our knowledge that 9ΐ+ is type III and that it may be chosen
to have G at its "edge".

First, however, let us point out a few methodological clues by strenghtening
a well known result ([6, 7]), namely we prove:

Theorem 3.1. With assumptions α)—δ) the local algebras cannot be finite if we
merely assume that no 9Ϊ(0) is trivial.

Remark 3.2. If ε) is assumed, too, the theorem becomes an almost trivial
consequence of the main theorem because "91(0) finite and Ω cyclic for 91(0)"
implies that 9ί(G)' is finite, too ([16], Exercise III.2, No. 2); but for bounded
0CRn 91(0)' contains elements of the set ja/, a contradiction as every subalgebra
of a finite algebra must be finite.

We shall now prove the same thing without using ε); thus adding to a clarifica-
tion of the relation between non-finiteness of the 9Ϊ(0) and our general assump-
tions — in [6] and [7] ε) was essential via use of the Reeh Schlieder theorem. We
show that finiteness of the 91(0) contradicts 9ίΣ= {(C 1} for appropriate 9Ϊ e si\
therefore the proof indicates that also such comparatively subtle properties of
the 9l's may be useful in QFT.

Proof of Theorem: 1) Assume there is a b.o.r. G in R" such that 9Ϊ(0) is finite;
then for all b.o.r. 0 C 0 91(0) is finite, too. Fix a translate Φ of 9l(0o) contained
in 91(0)'' by Lemma 2.4 Ω is cyclic for this $R. Again let Q denote the projection
onto 9t(0)Ω, i e. βe9t(0) ' and QΩ = Ω; we see that Ω is cyclic in QJt? for the
reduced algebra 9Ϊ(0)Q and for the reduction by Q of the von Neumann algebra
generated by 9i and Q - in symbols: (9ΐ(5R, Q))Q - which obviously is a subalgebra
of 91(6% (for the second statement note that Ω is cyclic for the set {Q&Q} by
Lemma 2.4).

But as now Ω is cyclic for the finite algebra 9t(0)β i
n 6^> b o t h algebras 9t(0)β

and (9?(ίR9 β))β must be finite; as they have both Ω as cyclic and separating vector
in Q^ we have: <$ί{Θ)'a = (9t(5R, Q))Q by Kadison's result ([6], Lemma III.2).

2) Next choose Θ1 open, 0^6?, in such a way that Qx%aCΘ for α from some
neighborhood of {0} in R"; if Qx denotes the projection onto 9 1 ( 0 ^ we have
by isotony: Qί a^Q for all a from the given neighborhood; a standard application
of spectrum condition via the "edge of the wedge theorem" yields: Q1 a^Q for all
αeR".

This means that for arbitrary A e 91(0!) and arbitrary α eR n we have:

(3.1)

Now choose r G R " such that 9ir = 9t(0lff.) is contained in 5R'n9l(0)'; take
then βAβ G 9Ϊ(0)Q; choose C l 5 C2 G 9l(ύ?j and B = QBQ, where B G 5R, then we get:

(C19Ω9IB9QΛQ]C2Ω)

= (CiΩ, BQAQC2Ω)-{C1Ω, QAQBC2Ω) (3.2)

= ( C ^ , BC2QAΩ)-(C1QA*Ω, BC2Ω).
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By (3.1) we may eliminate Q in the last two terms, thus:

(CiΩ, [B, QAQ]C2Ω) = {C1Ω, [B, A]C2Ω) = 0. (3.3)

Therefore QAQ commutes with all QBQ in Qffl and consequently with arbitrary
products of such operators; but these products just generate (9Ϊ(5R, Q))Q and so
according to 1) we must have QAQ in the center of 9i{G)'Q for all A e 91,.. From
this we get - choosing arbitrary A, B e 91,. - :

0 = (Ω, [(λ4β, β#β]Ω) = (Ω, ABΩ) - (Ω, J&4Ω) (3.4)

and so, if 9ϊ(0) were finite we had Ω as a trace vector for 91,..
3) Now let Qx as above, then 9i(Θ1)Qι is finite with Ω as trace vector by 2) and

thus by [15], p. 90], we have 9 1 ( 0 ^ finite with Ω as trace vector, too.
Choose now Θ2CΘί such that Θ2,aCΘ1 for a from a (possibly different from

the first one) neighborhood of {0} in R"; then for appropriate seW1 we have:

s K ί ! ) ' ; i.e.for 4 e 9 ί and 5 ( 2 , s )

we have:

(Ω,Q1AQ1QίBQ1Ω) = (Ω,AQίBΩ) = (Ω,ABΩ) (3.5)

as Q1BΩ = BΩ by the same argument as in 2). But from this it follows that:

(Ω,ABΩ) = (Ω,BAΩ) (3.6)

because Ω was a trace vector for ^ ( ( P ^ but (3.6) in turn means that B e 5R is in
9lΣ - according to Theorem 2.2 this implies that 9l{&2) *s o n e dimensional, a
contradiction, q.e.d.

Remark 3.2. The result raises the general question as to whether nontriviality
of all 9ί(0) can replace weak additivity on a wider scale; at present we don't have
a satisfactory answer to it and so this question remains open.

Let us next consider two different sets Θi9 i = 1, 2, where we assume from now
on Θί xΘ2. In order to to express the supposed independence of events in Θί}

resp. Θ2, people have defined a number of concepts going beyond pure locality.
We shall consider two of these concepts and therefore we define:

Definition 3.3. A) Two von Neumann algebras 91(0^, 9i(Θ2) with

Θ1 x Θ2 have the Schlίeder property iff A1Ά2 = 0

implies A1=0 or A2 = 0.
B) The two algebras will be called strictly local iff for an arbitrary projection

Pe9lί and any normal state ρ^ on 9Ϊ2 we can find Ψ e Pϊtf such that ρφ/
(ίl2 =

ρφ/9i2 (Ω is separating for all %, so all normal states are vector states).
The Schlieder property (SP) is important being equivalent to statistical

independence of C*-algebras ([16]); strict locality (SL) tells us that no measure-
ment in Θi can give any information concerning any observable in &2. For a more
detailed discussion of these concepts see [17-19] and references quoted there.

For both of the previously defined properties there is - as far as we know -
only one proof in each case deriving the property from general principles; Schlie-
der's proof when adapted to the case of open &, however, needs the extra assump-
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tion G1 ( ί x G2 for |ί| ^ δ, δ > 0 arbitrary, thus leaving open the question for arbitrary
spacelike Gί9 Θ2; Kraus' proof of SL ([18]) needs too many assumptions which
cannot be considered as physically equally well founded as the standard ones
and which one would therefore like to eliminate altogether at least in particular
cases.

In order to make a step forward in this matter we first define:
Definition 3.4. Let Gl9 Θ2 be two b.o.r. in 1RΠ with Θ1 x Θ2. The algebras 5R(ύ?f),

z = l, 2, are lightlike disjoint iff 9^ may be imbedded into some lightlike monotone

algebra 9tc9t'2.
Then we can state:

Theorem 3.5. If 9?i? ί= 1, 2 are lightlike disjoint they obey SP and SL under the
assumptions of Section 1.

Proof, a) For SP the assertion is an immediate consequence of Definition 3.4
and the classical result of von Neumann for factors and their commutants ([20],
p. 30).

b) By assumption we can find 9ΐ e s$ with <ίi1 C 9ΐ C 9ί2 \ then by known theorems
(here we need 2tf to be separable) every projection P e 9^ is infinite and therefore
equivalent to / in 9ί (a type III factor!); therefore there exists a partially isometric
operator U e9ΐ such that: U*U = I, UU* = P.

As Ω is separating for all algebras involved (here we assume of course ε) again)
every normal state σ on 9ί' is a vector state σφ, Φ e &P. But by construction Φ and
UΦ yield the same state on 91', therefore we have also σφ/

<iR1 = σUφ/yί2. q.e.d.

Now this result again raises the question as to whether its limitation to lightlike
disjointness is merely accidental or whether there is something real behind it.
In order to support the conjecture that the latter may be true we state:

Lemma 3.6. Let Gί9 Θ2 be disjoint open sets in W1'1 (to be taken as the hyperplane
{t = 0}) and let Gu Θ2 denote their respective causal shadows. Then lightlike disjoint-
ness of 9Ϊ($1) and 9l((92) is equivalent to existence of a(n — 2)-dimensional hyperplane
in 1R""1 which separates Θ1 and Θ2.

The proof is very easy and will not be given here. In such a situation consider
now the two backward lightcones from Θι resp. G2 Our lemma then tells us that
each of the G{ receives influences from an arbitrarily remote past which cannot
disturb events in the other region. This seems to correspond very well to the
intuitive idea of having no correlation whatsoever between events in G1 resp. G2>

Our results allow immediate generalization to the case of a finite number of
commuting algebras {9ϊ(^ί)}" if these algebras lie spacelike to each other in such
a way that our argument can be applied to each pair (U?=i SRO )̂)" and 9ί(Gk+1)
successively. This is, however, not sufficient to cover all relevant cases but gives
support to the conjecture that SP and SL may be true under even more general
circumstances.
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