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Abstract. We give new (necessary and) sufficient conditions for Euclidean Green's functions to
have analytic continuations to a relativistic field theory. These results extend and correct a previous
paper.
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I. Introduction

The passage to purely imaginary times has proven to be an extremely powerful
tool both for the construction and for the discussion of relativistic quantum field
theoretical models1. Obviously for such a procedure to make sense it is important
to know how to go back again to real time.

In a previous paper "Axioms for Euclidean Green's functions" [12] (henceforth
quoted as OS I) we claimed to have found necessary and sufficient conditions
under which Euclidean Green's functions have analytic continuations whose
boundary values define a unique set of Wightman distributions. These conditions

* Supported in part by the National Science Foundation under Grant MPS73-05037 A01.
Alfred P. Sloan Foundation Fellow.

1 For verification of this assertion the reader should consult the 1973 Erice Lectures on Constructive
Quantum Field Theory [19], where also references and historical accounts can be found.
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were
(£0) Temperedness
(£1) Euclidean covariance
(£2) Positivity
(£3) Symmetry
(£4) Cluster property
As it turned out, a technical lemma (Lemma 8.8) in OS I is wrong (see Remark 2

below) and at present it is an open question whether the conditions (E0 — E4)
as introduced in OS I are sufficient to guarantee the existence of a Wightman
theory. They are certainly necessary. In this paper we give two different sets of
sufficient conditions.

In Chapter III we replace the temperedness condition (£0) by a much stronger
distribution condition (£0) and prove a new equivalence theorem: (£0), (Eί — £4)
are necessary and sufficient conditions under which Euclidean Green's functions
define a Wightman theory. Although E0 restores the equivalence theorem E+-+R,
this new condition is not suitable for application because it seems to be difficult
to check. In Chapter IV we therefore introduce a condition (£0') which is only
slightly different from the original (£0): instead of simply assuming temperedness
we now postulate that, roughly speaking, the order of the distributions Sn (the
Euclidean Green's functions) grows at most linearly in n, with bounds that grow
no worse than ot(n\)β for arbitrary α and β. We call this the "linear growth
condition". Assuming (£0'), (£1 —£4) we can again reconstruct a Wightman
theory with Wightman distributions $Bn which also obey a linear growth condition
(R0f). The construction of the Wightman distributions requires two main steps:
first we analytically continue the Euclidean Green's functions to complex times
(Chapter V). Second we establish estimates for these analytic functions, which
allow us to prove that their boundary values are tempered distributions: the
Wightman distributions (Chapter VI). It is interesting to note that the analytic
continuation alone can be done using the old temperedness condition (£0)
together with co variance (£1) and positivity (£2). It is only because the analytic
continuation of one particular Schwinger function Sπ involves infinitely many <3fc

that we need some control over the growth of the order of Sfc to obtain the necessary
estimates. Our linear growth condition seems to be quite reasonable. It certainly
.holds for all field theory models for which the Wightman axioms have been
established so far and a recent result of Glimm and Jaffe [7] shows that it will
also hold for a φ\ model, provided it exists, and if the two point function is a
distribution in «9"(IR8).

Remarks. 1) The proof of Lemma 8.8 in OS I was first questioned by Simon
[16]. Subsequently one of us (R.S.) found the following counter example: F(x, y)
= exp(—xj/), x>0,j ;>0 is the Laplace transform of a tempered distribution in
each variable separately, but not jointly.

2) A preliminary report of the results of this paper was presented by one of us
(K.O.) at the 1973 Erice Summer School on Constructive Quantum Field Theory,
see [13], p. 71. It should be pointed out that condition £0' in [13] was a linear
growth condition on the difference variable Euclidean Green's functions. Condition
£0' of this paper refers to the Euclidean Green's functions directly; it is more
general, more natural and certainly more convenient for applications than
£0' in [13].
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3) The construction of the analytic continuation of Schwinger functions
which satisfy £0, Eί, and E2 was found simultaneously by Glaser [6], who also
eastablished the connection with his earlier work [5] on the interplay between
positivity and analyticity. He too noted that in order to prove temperedness on
the boundary of the analyticity domain an assumption stronger than £0 seems to be
necessary, but he remarked that E0—E4 lead to a modified Wightman theory
with vacuum expectation values which are hyperfunctions but not necessarily
tempered distributions.

4) Nelson's axioms [11] imply the Wightman axioms and hence by OS I
also E0—E4. It is also easy to derive E0 — E4 from Nelson's axioms directly;
the crucial step is to prove positivity E2 using the Markoff and the reflection
properties, see [19], p. 104. E0' seems to be related to Nelson's "scale condition",
see Nelson [11]. On the other hand, to derive Nelson's axioms from £0', Eί — E4
one has to introduce additional assumptions, see Frόhlich [3] and Simon [15].
Nelson's axioms are more restrictive than £0', £ 1 — £4 and thus lead to a richer
structure. On the other hand they seem to be harder to work with in constructive
field theory: for none of the non-trivial models, constructed so far, has the Markoff
property of Symanzik and Nelson (Relation (1) in [11]) been verified.

5) Though in this paper we deal with the theory of one real scalar field only,
the results can be extended in an obvious way to theories with a denumerable
number of arbitrary spinor fields, see Chapter 6 of OS I.

6) With the obvious changes the connections between subsets of the axioms
for the Euclidean Green's functions and subsets of the Wightman axioms are as
discussed in OS I.

7) Constantinescu and Thalheimer have extended the scheme of axioms
£0/£0', £1 - £4 to Jaffe fields [1],

Acknowledgements. We thank Prof. A. Jaffe and Prof. K. Pohlmeyer for helpful discussions
and Prof. V. Glaser for sending us a copy of his paper prior to publication. We also thank Prof.
G.-F. DelΓAntonio for his warm hospitality at the Universita di Napoli, where part of this work was
done.

II. Notations

In this section we introduce some (partially new) notation and restate a few
technical results from OS I.

Unless stated otherwise, x denotes a point in IR4 with coordinates (x°, x1, x2, x3)
ΞΞ(X°, X). A point in IR4" will be written as

X = ( X 1 ? . . . X π ) ,

For integrals we write J . . .d 4 M x or simply J . . .d

We will use the following open sets

IR4. = { X G 1 R 4 | X ° > 0 }

IR4." == {xe1R4 M |X;Φxj for all 1 ̂  i<j^n}

<C+ = { z e C | R e z > 0 }

<C"+ = {(zi9 . . . z B ) | z j e C + for all7= 1, ...n}.
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On the Schwartz space ίf (lRm) we will work with the following norms

1/1,= sup \(ί+xψ2(D«-f)(x)\, (2.1)
xeRm

where peΈ + = {1,2, ...},/e<9^(IRm). We use the standard multiindex notation:
m m ( f) \ α ' m

α-(α1,...αm);|α| = Xαι , Z ) ^ Π I T - * 2 = Σ (*/)*•
1 1 \Oxi/ 1

By 5 0̂(1R4") we denote the topological subspace of ̂ (IR4") of all those functions
which together with all their derivatives vanish on the complement ~lRo" of
IR4".

As in OS I we denote by ©π(x) the Euclidean Green's functions and by 2Bn(x)
the Wightman distributions. The "difference variable" Euclidean Green's functions

and Wightman distributions W^_i(£) are formally defined by

6,(20 ^S,-!®

respectively, where ξk = xk+1 — xh, k= 1, ...w — 1. The Wightman axioms will be
labelled as follows: (RO) Distribution property, (JRI) Relativistic invariance, (R2)
Positivity, (R3) Local commutativity, (R4) Cluster property, and {R5) Spectral
condition.

The remainder of this section will be needed in Chapter III only.
For 0 an open set in IRm, £f(β) denotes the subspace of ̂ (IRm) of functions with

support in O, given the induced topology. The dual space of the topological
quotient space ^(lRm)/^(O) is the polar of 5^(0), which is the set of all tempered
distributions with support in ~ 0 . By ίfφ) we denote the set of C00 functions
on O which decrease strongly with all their derivatives as |x|->oo in 0 and whose
derivatives all have a continuous extension to the closure O of O. On £f(O) we
define a topology by the norms

\g\p,o=sup\(ί + xψ2(Da-g)(x)\: (2.2)
xeO

is of coursejiot a subspace of ^(IR"1), but as the following^ lemma shows,
an element in £f(O) can always be regarded as the restriction to 0 of an element
in

Lemma 2.1. Let 0 be an open set in lRm. Then £f(d) is isomorphic to

This lemma follows from the fact that the set of functions /+ in Sf{jΰ) which
are restrictions to 0 of functions fe 5^(IRm) is dense in &Φ) and from Whitney's
extension theorem, see Whitney [21], Hormander [9], Vladimirov [20] and also
Lemma 8.1 in OS I. From Whitney's extension theorem it follows immediately
that the norms

^o=Jnίd)\9 + hlp (2.3)

are equivalent to the norms defined by (2.2), (g e Sf (1RW)) In particular, for
O = V+ ={x\xf>0 and (x?) 2>x?, all i= 1, ...w}, we have the following
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Lemma 2.2. Suppose f+e6f(V£) and peΈ+. Then there exists a function
g e y{p)(lR*n) such that g(x) = f+ (x) for xeV* and

P,v?ύ\\g\\P,v?ύy\f+\2P,v? (2.4)

with y = γ(n, p) = [c2n(p + l ) ] 2 p + 1 for some constant c independent of n and p.

Here ^(/?)(IR4") is the closure of ^(IR4") in the topology defined by the | |p-
norm. Notice that the first inequality in (2.4) is trivial. The second one is a sharp
form of Whitney's extension theorem and follows from a detailed analysis of the
proof given in [9]. We omit the details.

As an easy consequence of Lemmas 2.1 and 2.2 we get

Lemma 2.3. Let W be a distribution in <S '̂(IR4") with support in V" such that

Then W also defines a distribution in <9*'(F+), again denoted by W, such that for

allf+e.nVΪ) \W(f+)\SW-7\f+\2P,v?, (2.5)

with γ as in Lemma 2.2.

For fe ^(IR4") and g e IR4" we define

f{g) = J exp [- Σ (q°x° - ίqjx^ f(x) d*»x . (2.6)

The following lemma follows immediately from Lemma 8.2 in OS I.

Lemma 2.4. The map f^f defined by (2.6) is a continuous map from ^(1R4")
to 5^(IR4") with dense range and trivial kernel.

Now we define 5̂ (1R+") to be the linear space Sf (lR+n) equipped with the topology
given by the family of seminorms

I / I > l / W , p = l , 2 , . . . . (2.7)

Note that S?φϊ?) is not complete. By Lemma 2.4 the topology of S?(JR%n) is
weaker than the original topology of y(IR4n) and hence

? % n ) . (2.8)

III. The Equivalence Theorem Revisited

In this section we introduce a new distribution property (£0) for the Euclidean
Green's functions and prove that ϋΓθ together with E1 — £4 is equivalent to the
usual Wightman axioms. The new condition is as follows

-e^ΌOR 4"), <SO=1

^ e ^ ' ( K ^ ) , n = l , 2 , . .

Theorem E<->R (revisited). The conditions E0, E1 — E4 for the Euclidean
Green's functions are equivalent to the Wightman axioms R0—R5 for the Wightman
distributions.
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Although £0 restores the equivalence theorem £<-•£, this new condition is
not very satisfactory from the point of view of applications. In praxi the continuity
of Sn_i with respect to the | |p-norms is a condition which seems to be difficult
to check; as we shall see below, £0 immediately implies that Sn_1 is the Fourier-
Laplace transform of a distribution Wn-ι that has the desired support properties.
From the point of view of constructive quantum field theory the results of the
next section will be the crucial ones.

We now turn to the proof of Theorem £<-•#. The derivation of EO, Eί — E4
from the Wightman axioms follows the arguments of OS I; all that remains to be
verified is the additional condition Sn_1 e^'OR^"' 1 *)- As in OS I, Chapter 5,
we show that for fe ^{R%%

Sn.ί(f)=Wn.ί(f)9 (3.1)

where Wn-ι is the Fourier transform of Wn-l9 interpreted as a distribution in
^'(01+"), see also Lemma 2.1. This implies that for some /?,

\Sn-Λf)\<\ffP (3.2)
and hence £„_! is an element in e$^'(IR+('I~1)).

Let us give an alternative and simple proof of (3.1)/(3.2). For ξ eIR+(π~1), the
function

j j j
7 = 1

is an element of ^ ( K " " 1 ) , depending continuously on ξ. Thus by Lemma 2.3
we may write Sn_ι(ξ) as

S π _ 1 ( έ ) = » ; . 1 ( Λ J ) . (3.3)

Then for fe ^(IR+ ( "~ 1 } ) with compact support we define

1>ζ

the right hand side of (3.4) being taken as an ordinary Riemann integral. We now
claim that for such /

SWn-.1(hi)f(ξ)d«»-1)ξ = Wn_ί(f), (3.5)

which proves (3.1) for a dense set in ̂ OR^"" 1 *) by continuity. For a proof of (3.5)
we w r i t e / a s

and approximate it in ̂ ( F + ) by Riemann sums.
Now we show how to modify the proof of E-+R. Starting from £„_ x e ̂ '(]R%n)

we define Wn_ 1 by (3.1). This defines Wn_ ι on a dense set of £f 0Rt") - see Lemma 2.4
- and_by assumption JEΓO, Wn-γ is continuous with respect to the topology of
^(IRt"). Hence Wn.ι has a unique extension to a distribution in ^'0RV) The
proof of the remaining Wightman axioms now proceeds as in OS I. Equations
(3.3)/(3.4) are easily verified, which shows that the Sn are indeed the Euclidean
Green's functions of the Wightman theory thus obtained.
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IV. The Main Result: Another Reconstruction Theorem

IV.ί. Linear Growth Condition and Statement of Results

As we have shown in the last chapter the equivalence £<-•# can be established
if we are willing to introduce the distribution property £0 for the Euclidean Green's
functions. In this chapter we show that we can avoid £0 and the | | -norms
altogether.

A sequence {σn}neΈ+ of positive numbers is said to be of factorial growth
if there exist constants a and β such that

for all neΈ + .
We now define what we call the linear growth condition for the Euclidean

Green's functions.

(£00

S o = 1, S n e 5^o(IR4n) and there exist s e Έ+ and a sequence
{σn} of factorial growth, such that

!©„(/)! ̂ σJ/U
(4.1)

The following condition is slightly stronger than £0'.

S o = 1, SM G Sf'(1R4") for all n e Έ+, and there exist seΈ+ and a

(£0")

sequence {σn} of factorial growth such that

(4.2)

The following theorem contains the main result of this paper.

Theorem E' (or E")-+R'. a) A sequence of distributions {δn}^°=0 satisfying
£()' (or E0") and £1 —£4 is the sequence of Euclidean Green's functions of a
uniquely determined Wightman quantum field theory.

b) The Wightman distributions {2BJ of that theory satisfy all the Wightman
axioms R0—R5 and in addition

(Rθf)

there exists wEΈ+ and a sequence {ωn} with 0 < ω n ^ a β " 2

for some constants α, β and all neΈ+i such that

(4.3)

Remarks. 1. As £0" implies £0' (see Appendix) it is sufficient to prove E'-*R'.
It is however worth noticing that a direct proof of E" ^R' would be much simpler
that the proof of E'^R1 presented in this paper. This will be explained in the
introduction to Chapter V. Clearly, £0' does not imply £0". Superficially speaking,
while £0" requires Sw(x1...xπ) not to grow faster than Π ( ^ + : x ? ) s / 2 f° r

values of the arguments, £0 ' allows for a growth of the order of (\ + ]Γ xf\ns/2

9

\ ί I
and similarly for the singularities of (Zn at points of coinciding arguments.
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2. In constructive quantum field theory £0" holds for all models for which
£0— £4 has been verified so far, see Glimm, Jaffe, and Spencer [8] remark below
Theorem 1.1.8, and Frohlich [3]. It is also reasonable to expect that £0" holds
for models that live in the real world with three spatial dimensions: a recent result
of Glimm and Jaffe [7] shows that in a (φ 4 ) 4 model £0" would follow essentially
from the fact that S 2 is an element of 5^(IR8).

3. Our methods do not allow for a factorial growth estimate on ωn in R0f.
On the other hand, assuming R0\ R1 - R5 and ωn of factorial growth, we can derive
£(y, £1 — £4; but the bounds we obtain for σn are of the form aβ"2. This follows
easily by first applying (2.4) on hξ in Relation (3.4) and then using arguments of
OS I with a sharpened version of Lemma 2.2 in OS I. Were it not for the obstacles
of establishing the factorial growth bounds on σn and ωn respectively, one could
again prove an equivalence theorem E'+->Rf.

IV.2. Proof of Theorem E'-^R'

In this section we explain how to reconstruct the Wightman distributions
from a given set of Euclidean Green's functions satisfying £0', £1 (Euclidean
invariance) and £2 (positivity) and verify the distribution property R0f. The
remaining Wightman axioms can be established as in Sections 4.2-4.5 of OS I.
The proofs of the theorems stated below will be given in subsequent chapters.

The existence of the Wightman distributions follows from an inductive
construction of the analytic continuation of the Euclidean Green's functions and
from bounds on these analytic continuations which are established inductively
too. We always assume that we are given a sequence of Euclidean Green's functions
{©„} satisfying £0', £1 and £2. By Sn_1 we denote the difference variable Green's
functions. The initial step in our inductive procedure is to prove the following
theorem.

Theorem 4.1. (Ao) Real Analyticity: There are functions Sk(ζ) = Sk(ξ + ir[)
analytic in some complex neighborhood of IR+k such that for all fe k

d*kξ. (4.4)

(T£ o) Temperedness Estimate: The functions Sk(ξ) satisfy

\Sk(£)\ £ xk [(l + max \ξή (l + £ ξή (l + ££ ή ( £ (4-5)

for some sequence τk of factorial growth, some positive integer t (not depending on k)
andallkeΈ+,allξe1RXk.

In the r'th step of the induction we construct open subsets C[r) ofC+ and prove
the following theorem.

Theorem 4.2. (Ar) For fιxedj={ξu ...ξk) the functions Sk(ξ° \ξ) = Sk(ζ) have

an analytic continuation Sk{ζ°\ξ) to the region ζ° = ξ° + iff e C{

k\ Sk(ζ°\ξ) is

continuous in the variables ξ.

(TEr) For ζ° e C^ and ξe R 3 k the functions Sk(ζ°\ξ) satisfy

ί° ll)| ^ cfc ffl + max iξ ή ̂  + Σ 1^0 ί1 + Σ ( R e φ - ^] f c ί ' (4.6)
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for some sequence ck, such that ck ̂  aβk for some α, β > 0, some positive integer t\
not depending on k and r; and all k = 1, 2,... .

The subsets C[r) are increasing: Ck

r)cCk

r+1); Ck°
} is just the k fold product

of the positive real axis and most importantly, the union (J Ck

r) of all
r

the subsets is all of C+. Parenthetically we remark that only the bounds TEr

require the linear growth condition (4.2). For the other results the original
temperedness condition (EO) of OS I is sufficient.

The final result of our induction is summarized in the next theorem.

Theorem 4.3. There are functions Sk(ζ°\ξ), analytic in the variables ζ°, con-

tinuous in the variables ξ for ζ°e<C+ and ξ e IR3fc, such that (4.4) and (4.6) hold.

By standard arguments (see Vladimirov [19], p. 235ff.) Theorem 4.3 implies that
there exist unique distributions Wke &?'(lR4'k) with support in lR+fc such that Sk

are the Fourier-Laplace transform of them:

= ί ) j
As in OS I we conclude that Wk is the Fourier transform of the difference variable
Wightman distribution Wk.

Furthermore, again using (4.6), we find that for he

= hm ΪSk(η0 + iξ°\ξ)h(ζ)d*kξ
η9-*0+ ~ ~ ~

satisfies the inequality

\Wk{h)\ύWk\h\kt.. (4.7)

for some sequence Wk^a\β')k2 and t" = —-+5, see Vladimirov [19], p. 235,

Eq.(14).
It remains to derive R0' from (4.7). Let fe ^ ( I R 4 " ) and set hXί(ξ) = f(xu x2...xn)

where ξk = xk+ι — xk for k= 1, ...n— 1. Then

^<-iί\Kί\kt"^x1^ωn\f\kt'"

for some new sequence ωn g α"(/?")"2 and t'" = t" + 4. This concludes our proof of
Theorem E' ->JR'.

In the remaining chapters we explain the inductive procedures in detail and
prove Theorems 4.1 and 4.2.

V. The Analytic Continuation

In this chapter we construct the analytic continuation of the Euclidean
Green's functions to "real times" and prove (Ar) for r = 0,1, 2,.... No use will be
made of the linear growth condition EO' at this point; all we assume for the moment
is EO, Eί (invariance) and E2 (positivity).
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As we have seen in Section IV.2 we have to analytically continue Sfc(ξ) = Sk(ξ° | J)
in the "time variables" ξ° only; the "spatial variables" ξ_ play the role of parameters.
There are two different ways of dealing with the spatial variables in a rigorous
fashion:

Method A: To treat the spatial variables as distributional variables throughout.
More precisely for fik e ^(IR3) and fn = (fln9 . . . , / J we define with ξ? = x?+1- x?,

Positivity will play an important role in this and the next chapter, and Sπ_ 1(ξ° \J)
was defined such that it still satisfies a positivity condition:

for all finite sequences {h0, hl9 ...},hoe<£,hne ^(1RM

+) and all fike ^(IR3), where
SJnχJm is the function

Jnn\X\)"' Jln\Xn) Jίm\Xn+l)'"Jmm\Xn + m) •>
χnr\ ίθ — tμO μO μθ\
a n α ς — {ζn-ί9 ζn~2> ••• C i λ

Method B: To show that Sk(ξ° 11) can be regarded as a continuous function of
the spatial variables; this makes smearing out redundant.

Method A was sketched in [13]. It is simple, mainly because it allows for the
reconstruction of the Wightman distributions without using SO 4 invariance of the
Euclidean Green's functions. The drawback of this method is that in order to
derive a temperedness estimate for the analytically continued Euclidean Green's
functions, we need a distribution assumption slightly stronger than £0', such as
E0". Though it is true that E0" is most probably satisfied in all reasonable
quantum field theory models - see Glimm and Jaffe [7] - the weaker assumption
E0f is more satisfactory from an axiomatic point of view: besides being more
general it does not make use of coinciding arguments of the Euclidean Green's
functions. This justifies our use of the more complicated method B in this paper.
Extending a geometrical argument of Glaser [6] we use SO 4 invariance to prove
that the Sk are real analytic functions in all variables. Then we derive a tem-
peredness estimate for these functions from their behaviour as distributions.

Let us first summarize some results of OS I (in a slightly changed notation).
In terms of the difference variable Euclidean Green's functions Sk the positivity
axiom E2 requires that for all finite sequences {fθ9fuf2> •••}> /oG^»/«G ^(^%k)

(5.1)

where ξ = (ξu...ξn_1),ξ' = (ξ'u...ξ'm_1),H = (Hi,:.Hn-1),$ξk = (-ξ°k,ξk) and

finally J = ( ί B _ 1 , . . . ί 1 ) .
As in OS I we construct a Hubert space Jf and furthermore j f -valued distri-

butions Ψn(x,ξ) such that for / e ^flRΐ"), g e

with scalar product
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or, in the sense of distributions,

(Ψ»(x,ξ\ Ψm(x\ξ')) = Sn+m_1(-$ξ, -Sx + x'9£). (5.2)

The set of vectors ΨJtf)Je£fφXn\ n = 0, 1, 2,... (for n = 0J must be in C, of
course) is total in Jf.

By the arguments of OS I, we can construct a weakly continuous semigroup

of self-adjoint contractions e~tH on Jf, t Ξ> 0, H = H* ̂  0, such that (in the sense

of distributions) e-'«ΨH(x^) = ΨH((x0 +1, x),ξ). (5.3)

Furthermore for τ e <C+ = (0, oo) + iIR

(Wn(x^le^HTJx\n)^Sn+m.A-HAx° + xOf + ̂ ~x + n^) (5.4)
defines an analytic continuation oϊ Sn+m_1 in the n'th time variable: by OS I
the right hand side of (5.4) is an analytic function of the variable z = x° + x0 ' + τ
for Mez>0, while still being a distribution in all the remaining variables. (It
was at this point in OS I that the wrong Lemma 8.8 was used to continue Sk

in all the time variables simultaneously to the /c-fold product of <C+.) In the following
we use (5.4) and Euclidean covariance £2 to show that Sk(ξ) is the restriction
of a function Sfc(ζ), analytic in a complex neighborhood of IR+k, i.e. assertion (Ao).

V. I. Real Analyticity

For 0 < γ < π/4 we define

Uy) {χ (χ,χ)\χ>\
and

RΐΠ(y) = {2c = (x1,...xΠ)|x f celRί(y),/c=l,...w}.
Obviously 1R+ (y) is the largest cone in IR+ which under an arbitrary rotation

0t{a, φ) about an axis a through the origin, by an angle φ :g y, stays in IR+. Euclidean
covariance implies that for any ξ e IR+fe(y) and 0 ̂  φ ̂  γ

Sk(a(a,φ)£) = Sk(£)9 (5.5)

where Λ(α, φ)ξ={Λ{a, φ) ξl9... @{a, φ) ξk).

For fixed ye(0,π/4) let eμ = eμ(γ)9 μ=ί,...4, be four linearly independent
vectors in 1R+ (π/2 — y\ the dual cone of IR+ (y). Then there are rotations
^ μ = βl(aμ, φμ) with 0 ̂  φμ < y such that

Λ Λ = (l,0,0,0). (5.6)

Now let ξe]R\k(y) be fixed and u = (ul9... uk), where u( = (uf,uf9uf,uf)9

4 4

wfe[0,oo). Writing u e for the vector \Σuϊe

μ> •••Σukeβ] i n R ? ( π / 2 - y ) we
now consider ^ ^

as a distribution in the variables w{J. By (5.5) we find that for μ = 1,... 4

S fc(| + M β)= S Λ (Λ μ | +u ^ μ e ) , (5.7)

where 01 μe stands for the four vectors ^ μ e v , v = 1, ...4. By (5.4) and (5.6) the right
hand side of (5.7) can be analytically continued to <C+ in each of the variables
uf, i = 1,... k9 (one at a time), while it is still a distribution in all the other w-variables.
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o
Now we pass to variables sf = lnuf and set T(s\, ...st) = Sk(ζ + u e). According
to the above argument we can find functions

which are analytic in rf = sf + it$, \tf\ < π/2, and have values in & with respect
to the variables s}, . . .$ , ...sj. All the Tiμ analytically continue the same dis-
tribution f. It follows now from the Malgrange-Zerner theorem, see Epstein [2],
which deals with a degenerate case of the well known "tube theorem" (see e.g.
Vladimirov [19], p. 154), that there is an analytic function

Γ(r)=Γ(ri, . . . ,rί)

analytic in the convex envelope &~ of the union of all the flat tubes

such that T continues all the Tiμ. We find that ZΓ = \r\, ...r£|£|Imrf|<7r/2J.
I i,μ i

Going back to the variables uf and to S we have therefore shown that there exists
a function

o

analytic in ^ ~ ~ (5.8)

jw|Σ|argwf|<π/2l,
o o

whose restriction to real arguments defines the distribution Sk(ξ + u e\ with ξ
and eu ... e4 playing the role of fixed parameter. Assertion (Ao) is now an immediate
consequence.

For the benefit of Section VI. 1, where we establish the bound (7Έ0), we now
derive an estimate on the size of the region of analyticity of the function Sk(ζ)
obtained above.

Lemma 5.1. For fixed ξelR+k, the functions Sk(ζ + ζ) are analytic in the
poly disc

Γ(£) = {ζ\\ζϊ\£Q,for l£iZk,l£μZ4},
where

c

k

for some constant c e (0,1) independent of k or ξ.
o

Proof. For given ξ we define y and ξ by

tg2y= min ξ°j/\ξj\ and
^ ^ k (5.10)

0 0 0 0 i o ~"

| = ( I I J IΛ)> ^ = (ϊίf > ίί)» l^i^k,

and we choose the vectors eu ...e4 as follows:

β 1 = ( 2 c t g y , 1,1, 1)

. , - ( 2 . ^ 1 , - 1 , - 1 )

e3 = (2ctgy,-1,1,-1)

β4 = (2ctgy,-1,-1,1).
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Obviously 0 < y < π/4, ξ e HR.%k{y), eμ e R f (π/2 - γ) and eι,... e4 are linearly
independent. (5.11) implies

(l,0,0,0) = 2- 3tgy(e 1+e 2 + e3 + e4)

(0,l)0,0) = 2- 2 ( e i + e 2 - e 3 - e 4 )

(0,0,i,0) = 2-2(eι-e2 + e3-e4)

(0,0,0, l) = 2- 2 (e 1 -e 2 -e 3 + e4)

and

ξ, = l + 2-*ξ?tgy Σ eμ

ξι + ζι = l+ Σ (2-4ξftgr + 2-3tgyζ? + 2-2 £>r μ ί ϊW (5.12)
μ=l\ r=l I

μ = l

where σ r μ is equal to 4-1 or — 1 and may be read off Eq. (5.11'). It follows from (5.8)
that Sk(ζ + ζ) is analytic for those values of ζ for which £ |argwf|<π/2. It

i,μ

71

therefore suffices to assume that for all i, μ |arg wf | < -^377, which is implied by

By (5.12) the wf are given as functions of the £?, and (5.13) is satisfied if we restrict
if by

^ 5 ^

By (5.10), tgy<i tg2y = i min (^/ |ζ | ) and hence Sk(l; + ζ) is analytic if

m<^Iξΐ-rmn(ξy\ξJ\). (5.14)

This implies Lemma 5.1, with c = 2~9π.

V.2. Towards the Real World

Having established the real analyticity of Sk(Q we now proceed to construct
the analytic continuation «Sk(C° \ξ) of Sk in the time variables to the ra-fold product
of <C+. (Notice that iζ°n are actually the times, hence at the boundary of <C+ we will
arrive at real times.) Our method is to verify inductively the following sequences
of statements:

(AN) There are analytic continuations Sk(ζ°\ξ) of Sk(ξ°\ξ), which are
continuous in ξ e 1R3 k and analytic in ζ° e C{

k

N) C <Ck+. For N = 1,2,..., C{

k

N) is the
envelope of holomorphy of

(5.15)
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(PN) There are Jf-valued functions

Ψn(x°,ζ°\x,ξ)

defined for (x,f)eIR3" and (x°iζ°)eD^)C(09 oojxCV1, where for JV=1,2,...

D^ = {(x^C°)|x°>0,(??2Λf)eC^_1}, (5.16)

such that the scalar product is given by

(5.17)

Notice that the passage from N — ίto N takes place in (5.15), where C[N) is defined
in terms of the regions D^"^. Later we will show that \J Cjf) = <C+, which
completes the analytic continuation. N

In the rest of this chapter the spatial variables will always play the role of
parameters and we therefore drop them completely in our formulas. Continuity
with respect to them will be evident at each step. Also we will drop the super-
scripts °, hence ζ will now stand for (£?,... ζ£), etc.
To start the induction we set

..fc}, (5.18)

OJ=U...n-ί}. (5.19)

Then (Ao) follows from the results of Section V.I. We claim that (Po) follows from
(Ao) and (5.2). Notice that (5.2) was valid in the sense of distributions only, while
(Po) asserts that it also holds in the sense of functions, i.e., pointwise. For a proof
smear both sides of (5.2) with two functions fv e Zf (R%n), gv e ^ 0R+"), which as v
tends to infinity tend to δ-functions and take the limit.

Now assume (AN) and (PN) have been verified for 0 ̂  N ̂  M — 1. We will
prove (AM) and (PM).

By (PM_ y) we can define

for (x,ζ)e D{

n

M~υ and (x\ζf) e D^'1]\ this analytically extends Sk, k = n + m - 1,
to C(

k

M) and hence, because C[M) is the envelope of holomorphy ofC[M\ there is an
analytic extension of Sk into Ck

M\ This proves (AM).

Now take a point (x,ζ)eD{

n

M\ defined by (5.16), and observe that with (x9ζ)
o

the whole cone of points of the form (x9ζ) with x > 0 , |argζx | ̂  |argCt-|, i= 1, ...n— 1,
is contained in D{

n

M\ We therefore can find points ξt e (0, oo) and numbers rf > 0,
such that the whole polydisc

P={(x,ζ)\x = l\ζi-ξi\<ri9i=i,...n-i}

is contained in Z)^M) and (x,ζ) e P, see figure below.
o °

Now we define the vector Ψn(x,ζ) by

^ i ^ (520)
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complex ζ\ - plane

Fig. 1

where the derivatives of the vector Ψn are taken in the strong Hubert space topology.
The right hand side of (5.20) converges in norm, for

ii d-ξr-/dw ψ\{χOj2

ί < W o o , (5.21)

and the right hand side of (5.21) is just the remainder term of the Taylor expansion
0 Q 0 <- Q

of S2n_i(C, 2x,C) about the point ( |,2x,^) and thus tends to zero as we let t
go to infinite. Relation (5.17) follows easily from (5.20). This establishes (PM).

Finally we have to prove that (J Cψ] = C+. But this is a consequence of the

following stronger result, which we will need in Section VI.2.

Lemma 5.2. For allN,n,keΈ+,
(a) D(

n

N) contains the set

(b) C(

k

N) contains the set

where

and

Proof. By construction the regions C£N) and D{"] are mapped onto tubular
domains under the transformation ζi = e

Wί = eUi+iVi. We define 4 N ) and 4 N ) t 0

be the closure of the bases of these tubes:

, i^i^k,{ewl...eWk)eC{N)}
(5.22)

Note that 4N ) and df * are subsets of [- π/2, πβf and of [- π/2, π/2]" respectively.
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From the inductive definitions (5.15/16), (5.18/19), and from the tube theorem
we find for r= 1,2...

ck

N) = convex hull of
{v\v = (-v\ v, υ"\ where (0, v')e df~ι\ (0,/)ed^W, \v\ ύπ/2) (5.23)

4"MMK-£,0,iOe4Ti} (5.24)

4 0 ) = {(0,...0)}, rf<°> = {(0,...0)}. (5.25)

Observe that all the sets c[N) a n d ^ΛV) a r e convex. Moreover if (vl9 . . . ^ e c f 1

(or ^ N ) ) , then the whole hyperrectangle with corners (±vί9... ±vk) is also con-
tained in ck

N) (4N ) resp.).
For a proof of Lemma 5.2 we show inductively that the points (0, vl9... ι̂ n_i)

with |t7£| == ^(/, iV) are in d{^\ This establishes part (a); part (b) follows from (a)
and the equation Sk(ζ) = (β, Ψk+1(x,Q)

We first construct a function ftf, i = 1,2,..., JV = 1,2,..., such that for all
s = ° f = *' w»(s, t ) = (O^O^O, A?,ΛJ,...Λ?)e d}!?,. (5.26)

t

We choose Λ? = 0 for all i. By (5.25), w°(s, t) e d\°^s. Suppose now we have already
constructed hf for all i: ̂  1 and N = 1,... M, such that (5.26) holds. Then by (5.23)
the following points are contained in c^+J/. j

(_ hf,...- fcf, - /if, 0 ^ 0 , π/2,Λf, .../zf_ x)
2 ί - l

and
(-/if_ t -/if, - π/2,0^,/if,/if,.../if).

2 ί - l

Because c^+o-ik convex it also contains the point

2 ί - l

This means [by (5.24)] that with

i(Λf+ π/2) (5.27)

W + ̂ i ) , 1 = 2,3,...

the points wM + x(s, t) defined by (5.26) are again in d{%s

+ υ .
We take (5.27) as inductive definition of /if. A simple calculation shows that

the solution of (5.27) is

From (5.26) we now conclude that in particular all the points

w > - l , l ) = (0,/ιί,.../i^_1)

are in d^\ This ends the proof of Lemma 5.2.
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For later purposes we remark that ρ(i, N) ^ -y (1 - 2~N/2yi\ where

(5.28)

Hence (b) of Lemma (5.2) implies the following corollary.

Corollary 5.3. C{

k

N) contains the set

^ m a x |θ, y ( l -

VI. The Temperedness Estimate

In this chapter we derive the estimates (4.6) for the analytic continuation
Sfc(C°|£) of the Euclidean Green's functions. It is at this stage only that we have to
use the linear growth condition. We point out that using £0" instead of £0'
would simplify and shorten our argument considerably.

In a first step we derive from (£0') the temperedness estimate (4.5) on the real
analytic functions Sk(ξ). This is the most complicated part of this chapter and it
will be discussed_in Section VI. 1. The estimate (4.6) for the analytically continued
functions Sk(ζ°\ξ) will be proven by induction in Section VI.2.

VI. 1. From Distributions to Functions

At a first glance it might look rather trivial to derive an estimate of the type
(4.5) from £0' and from the fact that Sk(f) is given by the ordinary Riemann
integral lSk(Qf(ξ)dξ, with S ^ e C 0 0 , say. The following example however
illustrates that more detailed information about Sk(£) must be available for (4.5)

o
to be true: Let T(x) be a positive C00 approximation of the function T(x) that
equals exfor xe[n,n + e~ln\ neΈ + , and that is0otherwise. Then |JT(x)f(x)dx\
S suρ|/(x)| for all fe «S"(IR), but T{x) is not polynomially bounded.

In Section V.I we constructed the function Sk(ξ + ζ), analytic in the polydisc
Γ(ξ) = {ζ\ \ζf\ < ρ}9 where ρ was a function of ξ EJRX\ see (5.9), Lemma 5.1. By the
mean value theorem for harmonic functions (see e.g. Stein, Weiss [18])

(6.1)

where ΩΊ denotes the surface of the unit sphere in <C4, ΩΊ = {ze<C4| \z\2

4 2 k

= £ \zμ\2 = 1} and |Ω 7 | = —y π 4 is its surface area; dΩ(z)= ]~] dΩ(zt ), where

dΩ(zι) is the element of surface area on Ωη. Furthermore rz = (r1z1, ...,rkzk)
with η > 0 such that Id l + *•»•<£• Here and in the following ξ and ρ = ρ(ξ) take
fixed values. Notice that ρ is always less than 1. Let now h(-) be a positive C00

function with support in β , 1] such that for some c > 0 , p > l

\h\nSφ\)p and Sh(r)rΊdr= 1 . (6.2)
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Such a function h exists (for any p > 1) by the theorem of Carleman-Mandelbrojt-

Ostrowski, see e.g. Mandelbrojt [10] (take e.g. k(x) = const.

• e x p [ - (1 - x)~β] with β> ). We now set for z e C 4

P~ 1/

gβ() \ Ί Γ ( Q
a n d

kρ(z) = Sgρ(z-z')gρ(z')d8z'

where dsz' =d4xfd4y',z' = x' + iy'. Hence

suppkρe{ze€4\\z\<ρ/4},
and (6.3)

$kρ(z)d*z=ί.

Notice that kρ is a function of \z\ only. We therefore may combine (6.1) and (6.3)
to obtain with ke(z) = f | /cρ(zί),

i

Sk(ξ + 0 = JSk(£ + C +1) fcρω d8*z, (6.4)

whenever |ζ f | <ρ/2, / = 1, ...,/c. By Fubini's theorem the order of integration on
the right hand side of (6.4) is arbitrary. We thus may define

ρ l l x (6.5)

such that (6.4) becomes

Sk(ξ + ζ) = STk(ξ + ζ + ίI)d4kyd4ky'. (6.6)

(Notice that Tk depends on j ; and j ; ' also via kρ) Finally taking into account the
support properties of kρ and of gρ we find that the integration in (6.6) goes only
over the region where \yt\ < ρ/4, |y|| < ρ/8 and therefore

\Sk{ζ)\£ sup \Th(ξ + iy)\. (6.7)
bil<β/4
bίl<β/8

The remainder of this section is devoted to the derivation of a bound on Tk which
combined with (6.7) gives the temperedness estimate (4.5).

The main idea is simple. By (6.5), Tk(ξ) is a regularization of (the distribu-
tion) Sk. Just as Sk9 Tk satisfies some positivity property; in other words, Tk(ξ)
can be written as the scalar product (Ψi9 Ψ2) of two vectors in Jf. Then (Ψί,e~zHΨ2)
defines an analytic continuation of Tk(ξ) in one variable (as in Section V.I), whose
absolute value is bounded by || ̂  || | | !P 2 | | . Bounds on | | ^ | | follow from £0'.
Repeating this procedure 4fe times we obtain analytic continuations of Tk(Q in
4/c linearly independent directions. Analytic completion then leads to the function
Tk(ξ -f ζ), the modulus of which we can estimate by using the maximum principle.
This will give the bound (4.5) on Sk(ξ) by (6.7).

o
For given ξ eR+ we define ξ, y, 0ίμ G SO 4 and the vectors el9... e 4 as in (5.6),

(5.10/11). We use gρ(0lμx + iy) = ge(x + iyy9 kρ(0tμx + iy,y') = kρ(x + iy,y') and
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we simply write gQ(x) and kρ(x) for gρ(x + iy) and kQ(x + iy, y') respectively. Then
using Euclidean co variance and (6.5) we find for all u\ ̂  0, and lrgrc^/c, l ^ μ ^ 4 ,

g()(x')kQ(ξ'-λf)d*in-1)ξd4{k-n)ξ'd4xd4xf. (6.8)

Here λ = (λu . . .^-x) and 2' = (λ n + 1 , . . .4), where X^M^ + u^eeR4- and
1 ^ n rg /c. For later purposes we remark that

^2ξ2 + 2(4ctg2y +3) Γ^uf]2, by (5.11) (6.9)

^ const, ρ

as ctgy^2(l + c t g 2 y ) ^ 2 c ρ ~ 1 by (5.9) and (5.10).
o

Equation (6.8) exhibits Tρ(ξ +ue) as the scalar product (Ψu Ψ2) of the two
vectors

j
and J'1 (6.10)

As in Section V.I we find the analytic continuation of Tk in the variable uμ

n

by sandwiching e~iv"H between Ψγ and Ψ2' for we^nμ, where

[ = 0 for ί + n or/and v φ μ } ,

- i ι ; " H ϊ r 2 ) ϊ and (6.11)

W, uniformly in rJJ.

We defer the proof that by E0' for some sequence σn of factorial growth,

l l 1 l l ^ n ρ (

/
and correspondingly for || Ψ21| with n being replaced by k — n + 1 and

\

by Σ λf) Combining (6.9) and (6.12) with (6.11) we find for w e 0>nμi

i=n+l I
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where σk is again of factorial growth. This b o u n d holds uniformly in the parameters
j ; , y on which Tk also depends. In order to get the last factor in the expression on
the r.h.s. of (6.13) we have used that 1 + Σw ' ^ |1 + Σ w Ί We now may study the
functions

rv

i=\nwv

i) which is analytic in the tube $~nμ= { r | | Imr{J |<π/2, Imr^ = O for ίή=n
or/and v Φ μ} and whose modulus is uniformly bounded there by

>2. (6.14)

For Im r = 0, the functions Rlμ(r) are all equal, independent of n, μ [namely,

equal to (1 +Σuv

i)~ksTk(ζ + ue)']. Hence the Malgrange-Zerner theorem applies

and there is a function Rk(r), analytic in the convex envelope ^~ of ZΓ = (J &~nμ,
nμ

which continues all the ΛJμ(r). We claim that \Rk(r)\ is again bounded by (6.14)

for all r in ^\ For a proof let us assume # k (r) takes a value ^ at a point r e 2Γ ~ ZΓ,

which it does not take in ^\ Then (R^-A)'1 is analytic in an open neigh-

borhood 2Γ c & of ZΓ but not in all of ZΓ. This is impossible, because &~ is the

envelope of holomorphy of # . Hence

sup \Rk(r)\ = suj) |-Rfc(r)| (6.15)

and the assertion follows. The function

o
7i(<ς + we) = (1 + ΣWf) κfc(lnw)

analytically continues Tk(ξ + ue) to the domain ® = j w | £ | a r g w Ί < π / 2 l and it
I t\ v J

satisfies the bound (6.13) for all w e ® .
o

Now we go back to (6.7) and use (5.12): ξ + iγ = ξ + we, where

3

~2 Σ σrμ/i
r = l

and, as tgy ^ 1, |y?| < ρ/4, \yt\ < ρ/4,

Also note that (I)2 = ( i ξ ? ) 2 + ξf < (ξd2. Hence from (6.13), (6.7), and (5.9) we get

(6.16)

for some sequence τk of factorial growth and ί = 5(s + 8). Inequality (6.16) is the
temperedness estimate (4.5).
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It remains to prove the bound (6.12) on HίFJ and ||?P2|| respectively. From
(6.10) and (5.2) we get

• gβ(-9x'-λn) Π kβ{-H'n-i-λddxdx'dξdξ

gβ{-&yn-k)n

^σ2n- sup
x,y

n - 1

n-ί

Σ * ί + Σyf) D/gβ(xβ-λn) Π kβ(x,-xι+1-λt)

• D/gβ(yn - λn)

By (6.3), the function under the sup in (6.17) is nonzero only if

| x n - J . B | < ρ / 8 , | x i - x i + 1 - A i | < ρ / 4 for ΐ = l , . . . n - l

n

and similarly for yv This implies that |xj < \λn\ + ρ/8, |x f |< ^ |/lj| + (w
J = l

and [as (M— l)ρ/4 is always smaller than 1]

1+Σ*?+Σ3^8n2(l+Σtf). (6-18)
ί = l i = l \ i = l /

Furthermore by (6.2/3), for some c > 0

This together with (6.17/18) yields (6.12).
This completes the proof of the temperedness estimate (4.5).

VI.2. Continuing the Estimates

In this section we prove the temperedness estimates (TEk) for keΈ+. In
essence we will repeat the arguments of Section V.2 but carrying along the estimates
on the analytic functions Sk(ζ°\ξ). Our main tool will be the maximum principle,
see (6:15). In order to dispose of the spatial variables ξ we let 8&pn be the Banach
space of all continuous functions on IR3w, satisfying

| | / | | p = _sup 1(1+ max | ί ί h " V ( θ < o o . (6.19)

Then Sk(ξ°\ •) are real analytic functions in the ξ° variables, for ξf > 0, with values
in Λkttk. By (4.5)

(6.20)
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for some constants α > 0; β > 0. We write Sk{ξ°\ •) simply as Sk(ζ°) or as Sk(ξ)- thus
suppressing the superscript 0.

Suppose now we have already shown that Sk{ζ\ •) = Sk{ζ) defines a real analytic
function from C{

k

N) to &kt>k. Then we define

\k-l+ε-rktSk(ζ + ε), (6.21)

where ε is the vector (ε,... ε), ε > 0. Now let k = n + m — 1, (x, ζ) e Dj,N) (x,ζf)
and z = x + iye<E+. Then the Schwarz inequality

| |S k(5,2x,Γ)ll*^(l^^ (6.22)
is an immediate consequence of PN, Eq. (5.17), and of the definition (6.19) of the
norms || | | r Inequality (6.22) holds for S.ε as well: For k = n + m— 1,

To get (6.23) from (6.22), we only have to prove that for Re £t > 0, Re ζ\ > 0, x > 0,

n-ί _ m-1 \|2fc

f Σ Ct + 2z+ Σ ίί (6.24)
l l /I

" "
2 m - l

( 2 m - i)~
\ i /

and
(/c"1 ^ ε " 1 ) 2 ^ [ (2n- I ) " 1 - h ε " 1 ] 2 n - 1 [ ( 2 m - I ) " 1 + ε " 1 ] 2 w " 1 . (6.25)

Clearly (6.24) follows if we can show that

n-l

1 1

2k

^r.h.s.of(6.24). (6.26)

Both inequalities (6.25) and (6.26) can be brought into the form

r + sj \ r I \ s j

for A and B both positive; (6.27) follows from the convexity of the function
fix) — lnx.

We now claim that for ζ e C{

k

N\

\\S (Oil <oίkβk - 2βkN (6 28)

with α and β as in (6.20). We prove (6.28) by induction. For N = 0, (6.28) follows from
inequality (6.20). Now assume we have verified inequality (6.28) for N = 0, 1,... M
and for all keΈ+, all ε>0. Then for (x,ζ)eD{

n

M\ (x,ζf)eD{Jf\ z = x+iye£+,
k = n + m— 1, we have by (6.23) and the induction assumption

S [α(2n - I f 2 " " l ) 2β{2n~1)M α(2m - i)^2m~ υ 2 ^ 2 w " 1 ) M ] - (6.29)

<ockβk 2βk{M+i)
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As C[M+1) is just the envelope of holomorphy of the region

303

n+m—1= k

we can use the maximum principle (see (6.15) and e.g. Vladimirov [19] p. 178),
to conclude that (6.28) holds for N = M + 1. We argue first point-wise, i.e. for fixed
values of the spatial variables j ; and then take the norms || ||Λf.

Our final step will be to eliminate N from the right hand side of (6.28). (Notice
that the right hand side of (4.6) does not depend on N either!) For a given ζe(Ck+
we want to find an N = N(ζ) such that ζeC[N\ Choose s such that |arg£r| :§ |arg(J
for all ί^r^k. Now

|argCs| + arc sin s = π/2, hence
ICJ

ICJ
Choose the integer N = JV(ζ) such that [with yk as in (5.28)]

(6.30)

Then by Corollary 5.3, ζ e CίN). Inserting (6.30) in (6.28) shows that

ifOi 2βk

<<xkβk 7 k

1/2

2βk
2βk

We combine this with (6.21), choose ε =

to get for ζ°e<Ck

+,ξeJR.3k,

in Reζf and " u n d o " the norm || | |k ί

kt

and

\Sk(ζ°\ξ)\^ck
ί [(1

\-iγ\(2β + t)k (6.31)

where ck = ak{β~t)k(ykπ)2βk2{t~β)k. From (5.28) one easily gets yk<ck for some
c> 1, and hence ck<abk2 for some constants α,b>0. Inequality (6.31) is the
desired temperedness estimate (4.6) with t' = 2β + t.

Appendix (by Stephen Summers)

Theorem. Condition E0" implies E0'.

Proof. We prove the equivalent statement that for R") with

(Al)
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for all ft e ^(1R) and some fixed r, it follows that

\T{g)\ύcn\g\n.t (A2)

for all g e ^0RW), some fixed constant c not depending on n or g and t = 2r + 7.
We use a Hermite expansion for T, see Schwartz [14]. (Hermite expansion

can also be used to prove the nuclear theorem, Simon [17].) Writing Ht for
Hh®Hi2... ®Hin, where Ht is the i-th Hermite function, we get

where i = (iu ...in), ikeΈ+, and τ^Tity, yi = SHi(x)g{x)d"x. We set (1+j)

= Π (1 + ifc) and obtain
fc=l

(A3)

where c\ = ^ (1 + j) 2 = ( Σ (1 -H) 2 . To finish the proof, we have to determine

\ Ji = 0

s such that |(1 +j)~S τ/l i s uniformly bounded in j .
"̂

Introducing^ 1 =—^-(xkTdk), we have αfc

+ H ίk = l/l +ίkHik+1 and k

= ]/%Hik_u akak Hik = (ί + ίk) Hik = (t + xl~ d2

k) Hik. Furthermore (dropping the
index k for the moment)

i | Γ = sup ||(1 +x

^ c2 sup || x^ θα Ht II2 (Sobolev inequality)

(A4)
^ c 3 supHα1 . . . α 1 / ^ ! ^ ( ^ 2 r + 1 factors α + or a")

Here and in the following cm denote constants that depend on r only. By (Al)
and (A4),

|Ti| = 17(̂ )1 ύΠ\Hΰr

^ ^ ( i - f - i T + 1 . ( A 5 )

Choosing s = r+ 1, we dominate the second factor in (A3) by cj. Finally

1(1 + i s + 2 yj = ί(Π (1 + *f - Sir2Hik{xk)\ g(χ) dx
k

S c"5 sup 1(1 + x2)"12 Π (1 + x\ - d2

ky
+2g(x)\ (A6)

^ c«6 sup 1(1 + χψ*+s+v D*-g(x)\ S c\ \g\nt,
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where t = 2s + 5 = 2r + 7, and

cn

5 = |J(1 + x2Γn/2 HL(x) dnx\ £

Substituting (A5) and (A6) we obtain (A2).

+ x2Yndnxf .
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