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Abstract. The spectral theory (eigenfunction expansion theorem) is developed for Schrόdinger
and Dirac operators with classes of potentials including g exp(— μ|jc|)/|x|2 in the Schrodinger case and
#exp( — μ|jc|)/|jt| in the Dirac case.

1. Introduction

In the last decade an extensive literature has been devoted to the spectral and
scattering theory for Schrodinger and Dirac operators [1-16] and references
therein. One of the most powerful methods in this area is that initiated by Ikebe
[2]: the generalized eigenfunction expansion method. Although, since the appe-
arence of Ikebe's paper, his proof was generalized and simplified [3-7] it is still
rather technical and not general enough to handle singularities like 1/|JC|2 in the
Schrodinger case or 1/|JC| in the Dirac case [actually in the Dirac case the Yukava
potential, g exp( —μ|x|)/|jc|, is the most interesting from the physical point of view].

The aim of this paper is a further generalization and simplification of the proof
of the generalized eigenfunction expansion theorem. As a result, our proof applies
both to Schrδdinger and Dirac cases with singular potentials. Let us point out
that we shall not deal here with the most general case we can handle with our
method. The reason is that the proof would loose in simplicity requiring minor
but long technical details, while no significant gain of relevance to physics is
obtained by relaxing, for example, the exponential fall-off at infinity of the potential
up to a \x\~λ fall-off as far λ> 1, or allowing space-dimensions greater than three.

Recently, results on the absence of the singular continuous spectrum and the
asymptotic completeness for Schrδdinger operators with singular potentials have
been obtained using other methods by La vine [9], Pearson and Would [10,11]
and Babbitt and Balslev [12]. Actually though La vine states the results only for
locally LP potentials with p>n/2 (which rules out l/|x|2 singularities) it appears
that his method requires, besides conditions at infinity, only \V\ί/2 to be H^2

bounded with relative bound less than one. As far as the Dirac case is concerned,
we do not know about results of this type for singular potentials. However, a
complex and powerful theory has been created by Kuroda, Agmon, Schechter
[13-15] which could possible be used also in the Dirac case1.

1 1 am grateful to the referee for an extensive comment concerning these points. In particular he
pointed out that asymptotic completeness for Schrδdinger operators in three dimensions, when
V e L1 and |K| 1 / 2 is HQ/2 bounded with relative bound less than one follows [4, Lemma IV. 10] from the
fact that (H + E)~ι — (Ho + E)~1, E -> oo is trace-class, by an easy extension of the argument in the proof
of Theorem 11.37 in [4] (this fails, however in the Dirac case or for greater space dimensions).
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However the generalized eigenfunction expansion method in the form presented
here is more convenient from the physicist's point of view for several reasons:
it is conceptually and technically simpler; provides the mathematical setting of the
familiar formal manipulations with Born series, Lippmann-Schwinger equations
etc; works both in Schrodinger and Dirac case, and, more important, provides
explicit formulae, via the generalized eigenfunctions, for the matrix elements of
the scattering operator.

Our proof contains the same main steps as the original proof of lkebe. However
we changed the proof of each step. First of all we shall show that if \V\1/2 is \H0\

1/2

bounded with relative bound less than one, and if | F | 1 / 2 is \H0\
3/2 (instead of

\H0\
1/2) compact, then (H — E)'1, where H = H0 + V in the form sense, is mero-

morphic in <E\τ(H0). This proves that σess(i7) C σess(H0) and allows to define the
generalized eigenfunctions in the usual manner. The second main step is the
connection between the generalized eigenfunctions and the resolvent of H. Here
we shall use a formula obtained from the rearrangement of the Born series, and
viewed as a relation between bounded operators both in L2 and in some weighted
L2 spaces. This avoids the use of the Fourier transform of the kernel of (H — E)~1

[2,4] which does not work in the Dirac case and for n ̂  4 in the Schrodinger case,
as well as the need of truncated potentials used in [5 — 7]. The final step is the
limiting procedure in the formula relating the resolvent and the spectral measure
of H. Again the original lkebe argument works only for Schrodinger case and
n = 3. As the available methods to overcome this difficulty are rather technical
[5-7] we shall give a simple method to obtain the estimates needed to validate
the limiting procedure.

2. The Results

A. Let Ho be the Hamiltonian for a spinless nonrelativistic free particle
[1, p. 297], i.e. the unique selfadjoint extension of -Δ over 1R3. Let us remind that
Ho has only absolutely continuous spectrum σ(H0) = [0, oo), the generalized
eigenfunctions φ°(p; x) = (2π)~ 3 / 2 exp(ίpjc), p e 1R3 and its resolvent is an integral
operator with the kernel

G0(xiy;E) = (4πΓ1exp(iλ\x-y\)/\x-y\; λ = ]/E, l m ^ O . (2.1)

For a real function we shall denote by F, | F | 1 / 2 , F 1 / 2 the operators of multiplica-
tion with V(x), \V(x)\lί2 and [sign F(JC)] |F(JC) | 1 / 2 respectively. Let V(x) with the
property that there exists μ > 0 such that exp (μ| |/2) |F | 1 / 2 is # 0

1 / 2 bounded with
relative bound less than one i.e. ̂ (exp(μ| |/2) |F| 1 / 2 )D^(i/ 0

1 / 2 ) and there exist
a < 1, b < oo such that for all / e ®(# 0

1 / 2)

llexp^l-l/^IFI^/p^αll^/p + foll/H2. (2.2)

Let H be the selfadjoint extension of Ho + V in the form sense (see [4,
Theorem 11.7]). Our result for the Schrodinger case is contained in:

Theorem 1. (Schrodinger case). Let V satisfying (2.2). Let £ a c and £ s i n g be the
projections on H& c and Hsi for H = H0 + V (in the form sense). Then there exists
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a discrete set δ C1R, bounded below2 and a family of functions φ(p x) defined for all
peJR3 with \p\2 φ δ so that

i. For any f e L2

(Γϊ)dx (2.3)
exists.

ii. (Ea c / ) (x) = \.i.m$ f(p)φ(p; x) dp (2.4)

l.i.m. here means L2 limit as R-+ oo and WNOO/ f \ .

iv. Let 9t = [0, oo)\{δn [0, oo } and [a, ft] C ̂ . 77ẑ n

ll^α,b]/ll2= ί2 l/(p)l2dp. (2.6)

v. H has no singular continuous spectrum.
vi. / G @(H) if and only if

(2.7)

and in this case3

(Hf)(x) = him. S\p\2f(p)Φ(p; x)dp + (EsingHf)(x). (2.8)

Remarks. 1. By a well known inequality [1 p.307] if

then V satisfies the conditions of the Theorem 1.
2. Let F(jc)^0and e x p ( - μ | |/2)F 1 / 2 be tf0

1/2 bounded. Then formulae (3.5),
(3.6) below are valid so that Theorem 1 extends to this class of potentials, in
particular for potentials satisfying

3. Although we stated and we shall prove Theorem 1 only for three dimensional
case, the generalisation to n ^ 4 presents only minor technical difficulties in
proving that [ | F | 1 / 2 ( # 0 + 1 ) " 2 | F | 1 / 2 ] is compact [19].

4. For the sake of simplicity we imposed an exponential fall-off of the potential
at infinity. It is a matter of handling the Holder and Young inequalities and use of
Theorem 1 V.31 in [4] in proving that the Theorem 1 (and also Theorem 2 below)
remains true (with the difference that δ is no longer discrete but only closed and
of zero measure, and therefore the existence of singular continuous spectrum is
not ruled out) for potentials for which (1 + | | ) 1 + ε | F | 1 / 2 is Hi12 bounded with
relative bound less than one.

2 Actually it can be proved that E is finite.
3 In fact if φn(x) is the complete set of orthonormal eigenfunctions, /„ = (/, φn) then

£ s i n g ./ = Σ f.Φ. HEsintj = Σ EJAn •
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B. Let (L 2) 4 be the Hubert space of the (Devalued functions Ψ(x) = (v>*(*))?= t

with the usual scalar product

(Ψ,Φ)= ί

The Hamiltonian Ho of a free Dirac particle of unit mass is given by the selfadjoint
extension in (L2)4 of the following differential operator [1]

•*+>•> - C ό) H i 1 _?J <™
w h e r e σ = ( σ l 5 σ 2 , σ 3 ) a r e t h e P a u l i 2 x 2 m a t r i c e s , 1 2 i s t h e 2 x 2 u n i t m a t r i x a n d

3 P

fc=l ϋ * f c

//0 has only absolute continuous spectrum

σ(H0) = (-oo, - l ] u [ t , oo) (2.12)

and its generalized eigenfunctions are

Φί6±(p;x) = (2π)-3l2ui'±(p)Qxp(ipx); ΐ = l , 2 , (2.13)

where

σp -x,); Xι = \o); Z2 = ( i ) ' ( 2 1 4 )

l±ε(p)
and

£(p) = ( l / Ί 2 + 0 1 / 2 (2.15)

The integral kernel of the resolvent is given by

G0(x,y;E) = (aPx + β + E)(4πΓiexp(iλ\x-y\)/\x-y\, (2.16)
where

2 2

Theorem 2. (Dirac case). Let V(x) be a 4 x 4 hermitean matrix and V the
operator defined by

(VΨ)t (x) = Σ VtjWψjix) 1=1,2,3,4. (2.17)

Let V satisfying the conditions
Di There exists μ>0 such that exp(μ| |/2)| V\1/2 is \H0\

i/2 bounded with relative
bound less than one.

D2 exp(μ|'|)F0.( ) e £ 2 .
Let Ea c and £ s i n g be the projections on the absolute continuous respectively

singular subspaces of H = H0 + V in the form sense [17]. Then there exists a
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discrete set $C(— oo, — l ] u [ l , oo) and a family of functions Φu±(p;x) defined
for all peIR 3, ±ε(p)φS> such that

i. ForanyΨe(L2f

φu±(p) = li.m. J £ ψj(x)Φ)>±(p;x)dx i = 1,2 (2.18)

ii. (Ea,QΨ)(x) = U.m.ίΣψi,±(P)^±(P^)dp- (2.19)

iii. I|ΪΊI2= Σίl^,±(P)l2^+ll-Esin gTII2 (2.20)

iv. α.Let @ = σ(H0)\$ and [α,fc]C«n[l, oo). (2.21)

I I % , ^ I I 2 = Σ ί lv<i+(p)l2dp. (2.22)

b. Lei [α,b]C^n(-oo, - 1 ] . T/zerc

H«[«.b]Ί 2=Σ ί l^i,-(p)l 2^. (2.23)

v. // /zαs no singular continuous spectrum.
vi. Ψ E ̂ (H) if and only if

<.±(P)\2dp<π; E s i n g .^FG0(JΪ) (2.24)
ί, ±

and in this case

(HΨ)(x) = fli.m. Σj±ε(p)^±(p)Φi'±(p;x)dp\+(EsingHΨ)(x). (2.25)

Remarks. 5. Again a known inequality [1, p. 307] shows that if

HI VWill S v exp(-μ|* |)/ |x | , 0 ̂  v < 2/π, (2.26)

where |||F(JC)||| is the usual 4 x 4 matrix norm then V satisfies the conditions of the
Theorem 2. However we expect that potentials satisfying (2.26) with 0 ̂  v < 1 to be
physically acceptable. But for v ̂  2/π even, the definition of the Hamiltonian (the
construction of a distinguished self-adjoint extension) is a nontrivial problem [18].
In [19] we shall show that the theory of perturbation by quadratic forms can be
extended to provide distinguished self-adjoint extensions for potentials satisfying
(2.26) with v < 1 for which the method of this paper applies.

6. Theorem 2 is true without the condition D2 on the potential. We added D2

to simplify the proof of compactity of [ |F | 1 / 2 // 0 - 2 |F | 1 / 2 ] [19].

3. Proof of Theorem 1

As stated in the introduction, we shall give the detailed proof only for
Theorem 1 leaving the reader to rewrite the proof for the Dirac case. The proof
proceeds in a series of points

4 The use of L2

y is not new in spectral theory of Schrδdinger operator. See for example [16].
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Of course L% = L2. We shall consider operators defined by the kernels

= \V\ll2(H0-E)~1V112; (Ho -EY'V^2 {V^^-ET1. (3.2)

We shall denote by Ty(E) = [T(£)] r [(#0 - E)~x V1/2\ etc. the operators defined
in L2 by T(£), {Ho - I ) " 1 V1/2 etc. Taking into account the factor exp(-μ|x|/2),
we refer to [4, p. 17 and 37] for the proof of the following statements

a. Ty(E); l\V\1/2(H0-E)-%; KHQ-E)-1 F 1 / 2 ] y are bounded operator valued
functions of E analytic in <E\σ(H0).

b. ϊίm | | T y ( £ ) | | ^ α 2 < l . (3.3)
E-* — oo

2. [_(H0 — £ ) - 1 ] y is a bounded operator valued function analytic in <C\τ(H0)

+ |2x|)" J (exp(-lmA|x-y|)|Λy)|/|x-y|(H-|y|)")dy (3.4)
W<2|*|

+ \2x\γ + sup ^ p ^ ' ^ i ^ ] J(exp(-

3. Taking into account (3.3) the following operator is well defined for suffi-
ciently negative E

(3.5)
We refer again to [4, the begining of the proof of Theorem 11.34] for the proof of
the fact that for £-» — oo

R0(E) = (H-EΓί. (3.6)

4. Let us consider the following operator

fy(E}=Ty(E)-Tγ(E0)=(E-E0)UV\1'2(H0-E)-1(H0-E0)-1V1'2l

lm/l0 > μ/2.

Then in the variable λ, fγ(E) is a compact operator valued function analytic in
lm/l> -μ/2. For, let us remark that (2.2) implies that \V\1/2eL2. [This can be
seen taking in (2.2), /(x) = exp( — μ|x|/2)].

On the other hand

<.\λ-λo\ Qxp(-lmλ\x-y\)/4π for lm/l>-μ/2
(3.8)

and for α > 0
exp(φ - y\) ̂  exp(φ|) exp(α|y|). (3.9)

Introducing (3.8), (3.9) in (3.7) it results that actually fy(E) is Hilbert-Schmidt.
5. Let now y0 > 3/2 be fixed. Then for γ = 0, γθ9 [1 + Ty(£)]"" \ in the variable λ

is meromorphic for 1mA > — μ/2.



Eigenfunction Expansions 227

For, let Eo < 0 such that lmλ0 > μ/2

max{| |T 0 (E 0 ) | | , | |TJE 0 ) | | }<l. (3.10)

Then for γ = 0, y0

= (1 + Ty(E0)) (1 + (1 + Ty(E0))~1 fy(E)).

Now (1 + T ^ E Q ) ) " 1 is bounded and fy(E) is compact, so that the moromorphy
of [1 + Ty(Ej\~ι follows from a well-known result about analytic families of
compact operators [4,20].

6. Let for y = 0, y0

£y = {telR\t = ReE [1 + Ty{E)~]"x does not exist} (3.12)
and

(3.13)

From the previous point $ is a discrete set (actually it can be proved that δ is finite).
7. Because y o > 3/2, φ°(p; x) are Lyo-valued functions of p, uniformly con-

tinuous in 1R3.
8. We shall define the generalized eigenfunctions φ(p, E; );peIR3, l m E > 0 ,

ReE φ $ as elements of L2

yo by

0(p,E;O = 0 o ( p ; O - [ ( H o - ^ (3 1 4)
9. Let ̂ />0 and

^ A c = {E|ReEG [α, b] C [0, oo)\f l m E e [0,c], c > 0 } . (3.15)

Then exp( — f/| |)φ(p, E; •) is a Ly0-valued function of p and E which has a uniformly
continuous extension on 1R3 x #α,b,c, This follows from (3.14), 5.7. and the fact
that [exp( —f/|Ί)(H0 — ^ " ^ ^ ί y o ^s a bounded analytic function for
1mA > max {— η, — μ/2}. The last assertion can be easily proved using the (general-
ized) Holder [21, p. 527] and Young [22,p.8] inequalities.

10. It is easy to verify that for σ φ σ (Ho)

t(Ho-EΓ1-]yoφ
o(p; ) = (\p\2-EΓ1φ°(p; ) (3.16)

11. From (3.14), (3.16) for E e ^ h i C , lm E > 0

12. We are able now to make the connection between (H — E ) " 1 and φ(p, E; •).
Let ψ(x) e C$. We shall define

;x)dx. (3.18)

It follows from 9. that ψ(p, E) is a uniformly continuous function of p and E on
1 R 3 X ^a,b,c Let E 6 SFa^c, lm E > 0. Then, as ψ e L2, from (3.6)

y y y 0 ^

= $(\p\2-EΓ1ψ(p)Φ(P,E; )dp (3.19)
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where Λ stands for Fourier transform. The integrals in (3.19) are understood as
Bochner integrals in L2

ΊQ whose existence as well as the possibility of introducing
Rγo(E) under the integral sign is assured by standard results about Bochner
integral [23]. Let now φ(x) e C£

((H-EΓ1ψ,φ) = (ψΛH-EΓ1φ) = ttψ(x)S(\p\2-EΓ1φ(p)φ(p,E;x)dp}dx

= (\p\2-EΓ1ψ(p,E)φ(p)dp (3.20)

which leads to

(H-Ey1ψ(p,E) = (\p\2-EΓ1ψ(p,E). (3.21)

The interchange of integrals in (3.20) is permitted because φ, φ £ CJ.
13. From (3.21)

\\(H — E)~ιψ\\2 = l\\p\2 — E\~2 \ψ(p9 E)\2 dp . (3.22)

14. From this point the proof of the Theorem 1 is identical with the final
parts of the proofs of Lemma IV 29 and Theorem IV.25 in [4] and will be not
reproduced here.

In the Dirac case where ί/ε2(p) φ L1 and also in the Schrδdinger case for n ̂  4
we need a better estimation on ψ(p, E). Again we shall write, for the sake of simpli-
city, the estimation for the Schrδdinger case. Let ψ e CQ. The relation (3.21) can
be written as

(H0-Eίy
ί{H0-E)(H-Ey1ψ(p,E) = (\p\2-Eιy

1ψ(p,E), (3.23)

where lmE1>0. On the other hand it is easy to see that

[(H — E ) - 1 F 1 / 2 ] = \(H —E)~1{H —E ] [{H —E ) - 1 F 1 / 2 ] (3.24)

and from (3.5), (3.6) we have

(H0-Eiy
1(H0-E)(H-Ey1 (3.25)

It follows from (3.23) and (3.25)

sup ί | ( | p | 2 - £ i ) | ~

+ 2||[(i/ — £ 1 ) ~ 1 F 1 / 2 ] | |2 (3.26)

sup ||[1 + T Q ^ ) ] " 1 II2 sup —-i'n'— Λ-
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