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Abstract. A detailed investigation is made of the simplest type of general relativistic
perfect fluid cosmological models that possess a singularity at which all physical quantities
are well-behaved. These models are spatially homogeneous, axisymmetric generalisations
of the open (k = — 1) Robertson-Walker universes. A pictorial description of the evolution
of the models is obtained by using the qualitative theory of differential equations.

The most surprising feature that emerges is that for some (non-empty) models the
matter density may become zero, within a finite time, on a null hypersurface which acts
as a Cauchy horizon for the models. This result is generalized to most other types of spatially
homogeneous models.

It is also discovered that the behaviour of the models varies dramatically with the
type of matter content. This casts some doubts on the validity of assuming definite equations
of state in general relativity, and suggests an investigation of the structural stability of
Einstein's field equations.

1. Introduction

Ever since the discovery that the spatially homogeneous and isotropic
Robertson-Walker models of the universe possess a "big-bang" sin-
gularity, at which the density of matter and the curvature of space-time
become infinite, conventional cosmology has seized the opportunity to
interpret it as a theoretical triumph heralding the birth of our universe.
Moreover, any suspicions that the existence of the singularity is a
consequence entirely of the very high symmetry of the models have
since proved to be unfounded. Powerful theorems, established chiefly
by Hawking and Penrose ([1], and references cited therein), require
that, under certain reasonable conditions, any sufficiently general
solution of Einstein's field equations of general relativity will possess a
singularity; subsequent work of Ellis, Sciama, and Hawking [2,3]
shows that our universe will indeed satisfy the requirements for the
theorems to hold.

However, the type of singularity that the Hawking-Penrose theorems
entail is more general than the big-bang sort. Rather more subtle concepts,
relating to the inextendibility of causal (timelike or null) curves in the
space-time manifold have had to be introduced.
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Contemporaneously with the development of these theorems,
cosmologists were generalising the Robertson-Walker models in an
effort to study the behaviour of more realistic universe models. For
reasons of both physical plausibility and mathematical tractability, the
assumption of spatial homogeneity was retained, while that of isotropy
was relaxed. This led from a suggestion of Godel [4], through the
pioneering works of Taub [5] and Heckmann and Schϋcking [6], to the
establishment of a classification scheme for the ten (Bianchi) types of
spatially homogeneous anisotropic cosmological models [7], and to a
subsequent extensive investigation of each type [6-10].

The singularity that occurred in these anisotropic models was
generally either proved or tacitly assumed to be of the big-bang type,
and even when Shepley [11] pointed out that some other sort was
possible, cosmologists still clung to the viewpoint that such examples
were far-fetched and did not typify any general state of affairs. Whilst
this may turn out to be correct, the reasons for believing it to be the
case were based to some extent on wishful thinking and dangerous
extrapolation, and a rigorous investigation of the nature of the singularity
in spatially homogeneous anisotropic models has commenced only
recently. Ellis and King [12] show that, in a moderately large subclass
of these models, there is a "breakdown of prediction", caused by the
hypersurfaces of homogeneity, S, changing their spatial character, so
that the worldlines of the matter content can pass, within a finite time,
from a spatially homogeneous region into an inhomogeneous but
stationary region l. The interface between these two regions of spacetime
is a Cauchy horizon ([15], called colloquially a "whimper" in [12]),
H+(S). All physical quantities are well-behaved on H+(S\ but never-
theless the models are singular in a well-defined sense. The type of
singularity that arises is naturally free of difficulties relating to the
physics of elementary particles at high energies, such as are prevalent
in the simple big-bang singularities. The detailed examination of what
may happen beyond H+ (S\ and of the possible combinations of whimpers
and singular beginnings and ends of different universe models, forms
the subject matter of Ellis and King's paper.

The restriction to spatial homogeneity is made by cosmologists with
some degree of resignation. One would naturally like to know, for
instance, the nature of the singularity in general inhomogeneous universe
models, but this question appears to be extremely difficult, having eluded
all rigorous attempts to come to grips with it. The advantage of
homogeneous models rests primarily on the study of ordinary (as

1 Taub-NUT space is a vacuum solution which has similar properties. It consists of a
spatially homogeneous region, investigated by Taub [5], which separates two stationary
inhomogeneous regions considered by Newman, Tamburino, and Unti [13]. Further
details are given in the work of Misner and Taub [14].
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opposed to partial) differential equations; even this can involve a fairly
complicated analysis owing to the highly nonlinear nature of the field
equations. Computations are facilitated whenever a Lagrangian for-
malism can be introduced (cf. [8,16] and references cited therein), and a
potential wall description can then give a vivid intuitive picture of the
behaviour of the solutions. However, this method is not always reliable,
and a more precise procedure (based for instance on the qualitative
theory of differential equations) can reveal its inadequacies [17]. One
would anticipate that the detailed examination of the whimper sort of
singularity would involve fairly delicate arguments, for which a Lagran-
gian formalism (even if it existed) could not be employed, and in that
case an alternative method would have to be sought. Ellis and King use a
combination of topological arguments and a detailed analysis of the
field equations, employing differential inequalities. The qualitative
theory of differential equations would provide a second possibility, but
it suffers from the disadvantage that it can be employed only for suf-
ficiently simple systems. However, there is one case where this theory
can be used successfully to analyse in extensive detail the behaviour of
the simplest type of model that admits whimpers: an axisymmetric (i.e.,
locally rotationally symmetric, or LRS) Bianchi type V model containing
a perfect fluid with equation of state p = (γ—i)μ, where γ is a constant,
p is the isotropic pressure, and μ is the total energy density. This model,
which generalises the open (fc = — 1) Robertson-Walker model, has been
considered in the case of dust (incoherent matter; p = 0) by Farnsworth
[18], Shepley [11], and Shikin [19], and for more general matter content
by Stewart, King, and Ellis [10,20].

It is the purpose of the present paper to investigate further these
models, particularly with a view to analysing their asymptotic behaviours
(big-bangs, whimpers, etc.) and to extending the models analytically
beyond their Cauchy horizons. In Section 2, the necessary formalism is
set up. Some brief remarks are made in Section 3 on how the qualitative
study is performed, and in Section 4 the behaviour of models is described
for various values of γ [the most physically relevant values being 1 (dust),
4/3 (radiation) and 2 (Zeldovich stiff matter)]. Stationary inhomogeneous
counterparts are discussed in some detail. Certain results obtained in
this way are generalised to more complicated models (e.g. to other
Bianchi types) in Section 5, and Section 6 concludes with some remarks
which in particular highlight the results of Section 4.

2. The Models: Formalism

(i) Spatially Homogeneous Region. A spatially homogeneous model
of the universe is described in terms of a continuous group of isometries
which acts transitively on a family of spatial hypersurfaces, S(f), param-
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etrized by a time variable, t. One can then employ an orthonormal
tetrad technique ([8-10], and references cited therein) to analyse the
field equations. Using a "normal basis" {n, eμ} in which n is the geodesic
normal to S(f) and eμ (Greek indices take values 1, 2, and 3, and Latin
indices take values 0, 1, 2, 3) is a basis of vectors which spans S(t) and is
invariant under the group, we form the commutation relations2

[eκ, eμ~\ = (εκμτn
τv + δv

μaκ- δv

κaμ) ev

where nμv = nμv(t) = n(μv\ aκ = aκ(t) and n«βaβ = 0.
This last requirement forms the foundation for a group classification

scheme, and when naβ = 0 and aβ Φ 0 the group is said to be of Bianchi
type F. A space-time is locally rotationally symmetric (LRS) if at each
point there is a group of rotations about a spacelike axis, under which
all covariantly defined quantities are invariant [20]. In the particular
case of a LRS model that is spatially homogeneous of Bianchi type F,
a coordinate system can be chosen [10,18] so that the metric is of the
form

ds2 = - dt2 + X 2 ( t ) dx2 + Y 2 ( t ) e~2x(dy2 + dz2} . (2.1)

The matter will not in general move along the normals, w, to S(ί), and
its flow vector u is conveniently described using a hyperbolic angle of
tilt, ^ = 0' where coshφ:=— u-n, u-u= — i and fi n= — l; thus
ψ = OOM = iί. There are three pairs of equations:

(i) the conservation equations

2
(In wAT cosh φ) = — tanhφ (2.2a)

X
and

V

(In r sinh ψ)' = —~, (2.2b)

(ii) the field equations

X 2X Ϋ 2
— -f —r̂ - — =2- = ̂ (μ — p)-r(μ + p) sinh2 ψ , (2.3a)

-Λ. Λ. Y 1±
and

Y Ϋ2 X Ϋ 2 1

^Γ + -TFT + ~^^~ ~ ~^2~ = 2(μ-p}> (2.3b)
1 I A I A

and (iii) the first integrals

2 /I 7 N

X\X =^ + ̂  sinh ψ cosh ̂
2 Given two vector fields, X and Y, the commutator [X, F] is the vector field with

components [X, Y]l= Yl

;jX
J — Xl

;jY
j; it is also characterized as the Lie derivative of Y

along X.
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and
2X Y Y2 3 , 2 . U2—=— — -Ύ -^Y = ~^2~ + A* cosh ip -f p smh φ . (2.5)

In these equations, a dot(') denotes differentiation with respect to f, the

quantities w > 0 and r>0 are defined for μ>0 by := ,
w μ + P

—: = — , and we have taken the cosmological constant to be
r dμ μ + p

zero. If we now make the substitutions

Y:=e , X' = ϊ~τϊ2~9 A'.-

and p = (γ — l)μ, where y is a constant satisfying 1 ̂  y ̂  2, we can rewrite
Eqs. (2.2)-(2.5) in terms of two new dependent variables β and v: = tanhφ,
and an independent variable Ω (cf. [8, 20]); derivatives with respect to Ω
will be denoted by a prime ('). The quantity e~Ω measures average length
scales in the hypersurface 5(ί), β is a measure of the degree of distortion
of the metric from isotropy, β' measures the dynamical importance of the
shear of the normals to S(t), x measures the importance of matter, and v
is the magnitude of the peculiar velocity of the matter relative to S(ί).
Upon eliminating the matter terms, Eq. (2.2) yield a single equation for ψ:

l+(2-7)s2

where s:=sinhι/; and c:=coshι/λ Similarly, by eliminating Ω terms
from Eq. (2.3), they yield

β" = 2 A2 β' + f(2 — y)xβ' -f yx(2-f β')s2 (2.30

whilst Eqs. (2.4) and (2.5) become

yxsc = Aβ' (2.40
and

4 = β f 2 + 4x(l + ys2) -f 4,42 . (2.50

By eliminating A from (2.40 and (2.50 we arrive at a quadratic equation
for the variable x, whose solutions for ψ ή= 0 are

Γ \ ' I / —— L.Γ \ ' i / ' I \ Γ /J /r\ f\

2y2s2c2

In the spatially homogeneous region, x = 3-^ = ®> anc^ so we must

choose the positive root in Eq. (2.6). Using Eqs. (2.2')-(2A') and (2.6)



136 C. B. Collins

v —

and

β' Γ0..2

y»[l -»2(y-

1 Γ O Λ . / O

1)]

" 4yV
 l"' v ' p '" ' L~'v~ r ;" ι r v " ' ~ / V i " '

we finally arrive at a pair of autonomous propagation equations for v
andβ':

- 2 - - - - 2 1/2

(17)

(2.8)

where Δ : - β'2[l +(γ- l)ϋ2]2 + yV(4- β'2). The expressions for x,
,4, t/, and β" in Eqs. (2.6)-(2.8) for ψ = 0 can be obtained from continuity
requirements (i.e. by letting φ-»0), except in the case where β'-+Q also,
when the square root term gives rise to a directional limit. Note that
Eq. (2.7) assumes a particularly simple form for the case γ = 1 (the Farn-
worth dust solution).

(ii) Stationary Inhomogeneous Region. We examine stationary
inhomogeneous models of Bianchi type V by generalising our require-
ment of Section 2(i) that φ be real. In those models which possess
whimpers, the hypersurfaces of homogeneity change their spacelike
character and become timelike. This means that values of ι; = tanhtp
exceed unity, and so ψ becomes imaginary, being of the form

ιp = φ + ̂ j- (2.9)

where φ is real. Then sinhip —ίcoshφ and coshιp = zsinh0. We can
therefore determine how the formalism of King and Ellis [10] and of
Section 2 (i) above will change on substituting Eq. (2.9) throughout. The
term X2(t) in the metric (2.1) changes sign; thus X becomes purely

imaginary, whilst Y(ϊ) remains real. This means that for υ> 1, —— and
dΩ

—— = —— remain real. Since dt2 changes sign, Ω2 becomes negative,
dΩ dΩ

and therefore x==^-p-2-<0. The negative root in Eq. (2.6) is now ap-
ύώ

propriate; this implies that β'2^4. Equations (2.7) and (2.8) maintain
their validity. They hold also for stationary space-times, in which v
always exceeds unity.

Note that for v > 1 and γ Φ 1 it is possible for the term i—v2(y—i)
in the denominator of (2.7) to vanish. We shall see in Section 4 that this
gives rise to a variety of possible behaviours in the stationary region,
but that none of these is analogous to the behaviour exhibited by the
dust model (γ = 1) in which this denominator term cannot vanish and a
matter singularity is encountered within a finite time.
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Note also that in general the extension of a universe model across
its Cauchy horizon H+(S\ is not unique. Uniqueness can be achieved in
the perfect fluid case by assuming, for instance, that the continuation
across H + (S) is analytic, which is equivalent to demanding that the
continuation admit locally a continuous 3-parameters isometry group
acting transitively on timelike hypersurfaces ([12]; cf. the vacuum
Taub-NUT space, which possesses at least two distinct analytic extensions

[14]).

3. The Qualitative Method

The qualitative theory of ordinary differential equations yields a
pictorial description of solutions of a pair of coupled non-linear ordinary
differential equations of the form

x = X(x, y)V y) (3.1)
y = Y(χ,y),

a "plane autonomous system", where a dot ( ' ) denotes differentiation
with respect to some extraneous variable. In general relativistic cos-
mology, this theory has been utilized by the present author and by
Shikin [17] to obtain diagrams which depict the evolution of a class of
spatially homogeneous anisotropic models in which the matter flows
orthogonally to the hypersurfaces of homogeneity (i.e., ψ = 0). A set of
"streamlines" is obtained, each one representing the evolution of a model
(or a subset of models), and information relating to such questions as
initial and final states can be immediately determined.

The solutions of Eq. (3.1) are visualized as continuous curves in the
x — y phase-space, and can be interpreted as the streamlines of a fluid
particle moving in two dimensions. In order to obtain a global theory,
it is assumed that phase-space does not have the topology of the torus,
y x 5̂ , i.e., that the dependent variables do not both behave as angles
(with this assumption, any streamline provides a barrier for any other:
a closed curve necessarily divides the plane, ^ x ,̂ or the cylinder,
^ x ̂ , into two parts, whereas this need not happen on a torus. Phase-
space is necessarily formed as the Cartesian product of two variables).
In the cases that we shall be considering, this topological condition will
be satisfied.

The first step is to determine the local behaviour, i.e., to examine
the behaviour of the streamlines in the neighbourhood of "singular
points" [these are points (x, y) for which X = Y = 0 in (3.1)]. It is usually
required that these singular points be isolated, although this is not
always essential [cf. Section 4(v)]. We consider the linearized equations
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(in the neighbourhood of each singular point). These can be solved
exactly, or put into a canonical form and classified. It is then shown that
under certain circumstances the inclusion of the non-linear terms does
not cause any qualitative change in the local behaviour of the solutions.
Further information can be gained by considering the "isoclines" (for
which either X = Q or Y = ty: details may be found in the standard
books [21].

If in addition to the local behaviour we can determine the behaviour
of streamlines at infinity (whenever this is relevant), then in order to
obtain a completely global picture we need only join up local to distant
portions. This procedure can often be carried out in a unique fashion,
but one major obstacle that remains is the possible existence of "limit
cycles", or closed streamlines. Considerable understanding has been
achieved towards the resolution of the question of limit cycles, several
important results being due to, or arising from, the work of Bendixson
[22]. Details of these results can be obtained in the standard works on
the subject [21].

In the next section we carry out the qualitative analysis of the plane
autonomous systems (2.7) and (2.8). Instead of using the quantity υ as
the tilt-variable, it will be more convenient to consider V: = 2(1 + v2)~1,
which assumes values in the interval [0,2] and thereby confines our
diagrams to a finite region of the plane. Each figure will consist of a
part (1 < F^2) representing spatially homogeneous regions of space-
time, and a part (O^F<1) representing stationary inhomogeneous
regions. The interface (V = 1) will depict the Cauchy horizon (whenever
this exists). In these diagrams (see Figs. 1-5), each streamline will describe
the evolution, either in time (1 < F^2) or in space (0^ V< 1), of a
family of models; consequently each figure depicts simultaneously the
behaviour of an entire class of solutions. These diagrams contrast, there-
fore, with the conformal space-time diagrams (cf. [12,15]) for the models,
in which each point represents a 2-surface diffeomorphic to ^x^;
consequently each conformal diagram represents the behaviour of any one
member of a class of solutions.

4. Tilted LRS Models of Type V

We now examine the different behaviours of tilted models (ψ φ 0
or φ φ 0) which are invariant under a 4-ρarameter isometry group acting
multiply transitively on hyper surfaces S(ΐ) and which contain a perfect
fluid3 with equation of state p = (y — l)μ. It is convenient to consider

3 King and Ellis have shown that the only tilted spatially homogeneous LRS perfect
fluid models are of type V [10].
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five qualitatively distinct types of behaviour, according as (i) y = l ,
(ii) 1 < y < 4/3, (iii) 7 = 4/3, (iv) 4/3 < 7 < 2 and (v) y = 2. The results are
tabulated in Table 1, in which for completeness have been included the
Robertson-Walker models. From Eq. (2.4') we see that these are the
only non-tilted models (ψ = 0 or φ = 0 => β' = 0 and ψ = 0).

(i) 7 = 1. In this case the matter consists of dust (p = 0). This model
was first examined by Farnsworth [18] and studied further by Ellis [20]
and Shikin [19]. There are three types of tilted model (see Fig. 1):

(A) The simplest type is one for which the entire manifold is stationary
and inhomogeneous and in which there are two timelike matter sin-
gularities, both attained within a finite time. The expansion and shear
of the matter congruence become infinite, but similar quantities relating
to the normal congruence remain well-behaved (see Table 1 for details).
The singularity is of the pancake type (see Thorne [23] for a description
of matter singularity types in terms of "pancakes", "barrels", "points",
and "cigars").

Fig. 1

Figures 1-5 depict the evolution of perfect fluid LRS Bianchi type V models, in terms
of the variables β' (which is a measure of the dynamical importance of shear anisotropy)
and V\ — 2(\ +tanh2φ)~1, where ψ is the "hyperbolic angle of tilt" which measures the
inclination between the 4-velocity, ua, of the matter and the normals, na, of the homo-
geneous hypersurfaces according to coshtp= -uana. Values of V in the range 1 < V^2
(ψ ^ 0) correspond to spatially homogeneous regions, and values in the range

φ + ——, φ ̂  Oj correspond to stationary inhomogeneous regions, whilst

V = 1 corresponds to the interface between the two (i.e. a Cauchy horizon). Disjoint parts,
consisting of a subset of models with the same qualitative behaviour, are bounded by
thick lines, and small circles denote the initial and final states of the evolution of the models.
Arrows are drawn so that in the spatially homogeneous part the models are expanding
either from an initial state of zero volume or towards a final state of zero density. The
isotropic Robertson-Walker models which have zero tilt and shear, lie at the point (2,0)

and are denoted by R W
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ψ =0

RW

Fig. 4

(B) The next simplest type of solution is one representing universe
models in which the matter expands out of a highly anisotropic (cigar)
infinite-density singularity (a big-bang). The fluid shear and expansion
become infinite although the curvature scalar of the homogeneous
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w =o

RW

hypersurfaces tends to zero. At large times the models approach isotropy
(/?'-> 0, ψ->0) and the matter density becomes negligible (cf. [9]).

(C) The third type of solution possesses a Cauchy horizon, H+(S). It
was exhibited by Shepley [11] as an example of a solution to the Einstein
field equations in which the existence of a singularity does not necessitate
an infinite matter density. It is the simplest model with this property;
further details can be found in [12]. In the spatially homogeneous region
the homogeneous hypersurfaces tilt so much that they become null
within a finite proper time; as the ίlowlines pass through H+(S), all
physical quantities connected with the matter flow remain well-behaved.
Analytic continuation through H + (S) shows that, in the stationary region,
a pancake matter singularity is encountered within a finite proper time.
We see from Fig. 1 and Table 1 that at large times these models approach
isotropy (/?'-> 0, φ-»0) in the spatially homogeneous region [9].

(ii) 1 < 7 < 4/3. There is now a great variety of possibilities in the
inhomogeneous region, as depicted in Fig. 2a-d, for l<y<10/9,
y = 10/9, 10/9 < y < 6/5, and 6/5 ̂  y < 4/3 respectively4.

(A) A large proportion of stationary inhomogeneous models possess
two singularities, which are encountered along the flowlines of the matter
within a finite proper time. The fluid shear, expansion and acceleration
become infinite, although the matter density remains finite. The sin-
gularity is therefore of the "conformal curvature" type (cf. [12]). This
is the only sort of stationary inhomogeneous model for values of y
satisfying 1 < y < 10/9.

(B) The remaining inhomogeneous solutions (10/9 ̂  y < 4/3) possess
only one conformal curvature singularity. The worldlines of the fluid
can be extended away from this singularity for infinitely large values of

4 In drawing Fig. 2a we have assumed that no limit cycles (closed stream-lines) occur.
The existence of limit cycles would not change the nature of the solutions.
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proper time, f, the complex angle of tilt becoming infinite for values of y
in the range 6/5 ̂  y < 4/3.

(C) As in Section 4 (i) above, there are manifolds which are spatially
homogeneous throughout. These start at a highly anisotropic cigar
singularity (at which the fluid density, μ, expansion, θ, shear, σ, and
acceleration, ΰ, are all infinite, but the curvature scalar, R* of S(t) is zero)
and at large times they approach isotropy (/?'-» 0, φ->0).

(D) The final type of model is one which admits a Cauchy horizon.
The properties are similar to those of the dust case, except that in the
inhomogeneous region a conformal curvature singularity is encountered
(θ, σ, and ύ infinite yet μ and jR* are finite and non zero) within a finite
time.

(Hi) y = 4/3. The matter now consists of an ultrarelativistic gas, which
could be the appropriate content for a model of the early stages of the
universe. The various possible cases (see Fig. 3) are similar to Case (ii)
above, except for the late stages of the spatially homogeneous models.
The difference in this case is that the angle of tilt, ψ, becomes infinite.
Thus although the models do approach isotropy in some sense (σ/θ-»0,
where θ and σ are respectively the expansion and shear of the normals),
they do not in others: ψ -> oo and the fluid shear, expansion and accelera-
tion approach finite but non-zero limits (cf. [9]).

(iv) 4/3 < y < 2. These models are similar to the radiation Case (iii)
above, but the tilt of these models never tends to zero in the spatially
homogeneous region. Thus provided that the matter is hard enough, it
will prevent the models from approaching isotropy in the sense of [9].
Moreover, the spatially homogeneous models do not last indefinitely,
but expand out to infinite proper volume within a finite proper time.
Details are shown in Fig. 4.

(v) y = 2. In this limiting case, there are three types of solution (see
Fig. 5):

(A) These are the stationary inhomogeneous models in which the
world-lines of the fluid can be extended for infinitely large proper times in
both directions. In one direction, μ, σ, and ύ remain finite and non-zero,
θ->0 and yet length-scales remain finite. This situation is achieved
within a finite "normal" time, t. In the opposite direction, μ, θ, σ, and ύ
all tend to zero and length-scales become infinite.

(B) Some solution give rise to manifolds which are spatially homo-
geneous throughout. These start at a matter singularity at which μ, 0,
σ, and ύ are all infinite. If the limiting value of βf is greater than — 2, one
obtains a point singularity (length-scales along all eigendirections of the
shear tensor σab tend to zero), however, in the case where /?'-> — 2 a new
type of singularity is attained, in which length-scales tend to zero along
the preferred axis of symmetry, but become infinite in spatial directions
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orthogonal to this axis. Such a singularity might be called a "slab" or
"infinite pancake". In this case the angle of tilt, ψ, is in general non-zero
at the singularity. All of these models expand indefinitely for infinitely
large proper times. They do not approach isotropy since the ratio of
shear to expansion tends to a non-zero limit. Moreover the angle of tilt
becomes infinitely large, and in a sense these models only just fail to have
Cauchy horizons.

(C) In Fig. 5, the streamlines for β' > 0 cross the β'-axis within a
finite proper time ί. One might therefore expect a Cauchy horizon,
H+(S\ to exist as in Cases (i)-(iv) above. In the spatially homogeneous
region, Dl9 matter starts out at a big-bang singularity (where μ, θ, σ,
and ύ are infinite) which may be of the cigar, barrel or point type depend-
ing on the initial value of β'. Hence the curvature scalar of the homo-
geneous hypersurfaces may be infinite, finite and non-zero, or zero. As
time progresses, the angle of tilt, φ, increases monotonically from its
initial value (φ = 0), but as tp-» oo the fluid expansion, shear and accelera-
tion become infinite while the matter density tends to zero. This means
that near to H+(S) the fluid density drops off so rapidly that no fluid
crosses the horizon. On the other hand, all quantities associated with the
normal congruence remain well-behaved [cf. Cases (i)-(iv) f°r 1 ̂  7 < 2]
and the fluid lines end in a conformal singularity.

One can continue this spacetime across the horizon by analytic
extension along the streamlines in Fig. 5. In the stationary inhomo-
geneous region, D2, the worldlines can be extended for only a finite
normal time, ί, but for an infinite proper time, ί, and the limiting behaviour
is the same as that in the corresponding situation in Case (vA) above
(0->0,μ, σ, and ύ finite and non-zero).

This extension procedure can be expressed in terms of the propagation
along a (timelike) curve of initial value data on H+(S). Imagine a timelike
curve which crosses H+ (S) at some point P, and denote the unit tangent
vector to C at P by Xa. In general the quantity RabX

aXb would be
infinite at P, but provided one could arrange for the matter density to
decay sufficiently rapidly it is possible for RabX

aXb to be well-behaved
at P. Such a peculiar situation was not considered by Ellis and King [12],
because they made the restriction to positive energy density throughout
the manifold, M{μ>0 in M}. The behaviour of the solutions that we
have found raises the question of whether or not any results of Ellis and
King remain true under the weaker assumption

{μ^Oin M, μ > O o n S }

where S is some initial (spatially homogeneous) hypersurface. In the
next Section we show that the matter density may tend to zero on H+(S)
in other, more general, space-times, and that this peculiar behaviour
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is not a feature which is entirely dependent upon the symmetry of the
model, but is more a reflection of the fact that the matter content of the
universe is very stiff (p~μ) on H + (S).

5. Generalizations

As we have explained in Section 3, the qualitative theory is really
only applicable to plane autonomous systems of ordinary differential
equations. However, some results pertaining to our analysis of LRS
type V models can be generalized. For instance, we now show that in all
types of spatially homogeneous models in which a breakdown of predic-
tion can occur, it is possible for the energy density of matter, μ, to be
zero on the Cauchy horizon, and non-zero elsewhere. This contrasts
sharply with Theorem 4.1 of [12], in which it is shown that under the
restriction μ>0 everywhere, Cauchy horizons occur only in a certain
subclass of models (Class B), although it is well-known that Cauchy
horizons occur in vacuum models which are not of this class (e.g. Taub-
NUT space [5, 13, 14]).

Theorem 1 (cf. Theorem 4.1 of [12]). There exist tilted homogeneous
cosmologies possessing Cauchy horizons for every group type excluding
Type /, and for solutions with both zero and non-zero vorticity (i.e. rotation
of matter) for every group type excluding Types I and II.

Proof. We need only determine consistent initial data on the null
hypersurface H+(S) defined by the relation tanh/l=l. The constraint
equations (00 and Ov; Eq. (2.17) in the normal basis of [10]) must be
satisfied, and so must be contracted Bianchi identities (the conservation
equation Tab.b = 0: Eqs. (1.28) and (1.29) of [10]). We shall assume, in
common with [12], that the matter content satisfies the reasonable
conditions

O ^ p ^ μ , O^-^-^l. (5.1)

Choosing finite values at time ί = 0 for the expansion tensor, θaβ, of the
normals to H+(S) and for the geometric quantities naβ and aβ (see
Section2), it follows from the constraint equations that (μ + p)sinhtpcoshι/;
and μcosh2φ-hpsinh2ι/; are both finite (and possibly zero) on H+(S).
With restrictions (5.1) in force, it follows that μ = 0(e~2ip) and p = 0(e~2φ)
as ιp-> + oo, i.e. that μ->0 on the horizon. However, we have as yet no
guarantee that μ Φ 0 off the horizon. For most reasonable equations
of state, p/μ will approach a well-defined limit as μ->0, and henceforth
we shall assume this to to be the case; this means that μe2ψ tends to a
finite limit on H+(S).
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To establish that there exist fluid-filled models, we consider the
conservation equations [10]

5 L _ ι _ o ryOδ 4- 9 rβ — r(rβryβ } -4- tanh in ΓP rβ rδ ny

ΊΓfcαy<5<- i<5 ^"aβL C α V C L Uβy) ^ lαllll ψ \_c.aβyL L IΊδat
~n _ (5'2)

d

and

' r^fl =Ω (531*.ϋ ^. u*.*.*.*.*. ̂  j , v^ \^ ^nr β vy ? V /

αf

_d

dί
-~τ ln(wΓ3 coshφ) - 2aβc

β tanhip = 0 , (5.4)

where cα is the (unit) direction of the projection of the fluid flow vector
in the hypersurfaces of homogeneity, S, $α/J is the expansion tensor of the

normals ri* to S, f φ 0 is an average length defined by y- -pr = ̂ θα

α = : jθ,

Ωa is the rate of rotation of the {eμ} triad along nβ, t measures proper
time along the normals, and w(w>0) and r (r>0) are matter variables
defined for μ > 0 as in Section 2:

dw dμ Λ dr dp dμ
- : = —-ί— and -

w μ- fp ^ dμ μ + p

Equation (5.2) merely determines the rate of rotation of cα along the
normals, whilst Eqs. (5.3) and (5.4) effectively determine the propagation
of the energy density, μ, and the angle of tilt, ψ.

We next confine the initial data so that

where the suffix 0 refers to the time ί = 0. There is clearly ample freedom
to ensure that the restriction (5.5) is satisfied for all group types. Upon
eliminating the derivatives of the matter terms in Eqs. (5.3) and (5.4)
we find that

——1 [θ — 2αβc
β tanhφ] — cαcβθΛβ+ —— tanhφ —cothφ —-~- = 0,(5.6)

dμ] \dμ j at

and using restriction (5.5) it follows that —r~-Φ 0 when f= 0. This
at

condition guarantees that the homogeneous hypersurfaces change their
null character off t = 0. / v / \ ι / 2

Now for μ->0 the restrictions (5.1)=>w0 — J ̂  w^ w01 —J ,

and we have seen that the limit of μe2φ must be finite. Let us suppose
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first that it is zero. Then μ = o(e~2ψ)=> w = o(e~ψ) as f->0. From Eq. (5.4)
it follows that w = o(e~ψ) on H+(S)=>w = Q in some neighbourhood of
f=0. This is possible only in the case μ = 0, which we seek to avoid.
Consequently μe2v must tend to a non-zero limit and so μ φ 0 off H+ (5).

We have therefore found that it is possible to choose the initial data
for a non-empty model whenever one can determine finite aK9 nτμ and
§Λβ such that on H+(S), the restriction (5.5) is satisfied and μe2ψή=o(i).
This last condition is equivalent to the conditions [10]:

(i) either

3ακσκ

α-εα κX"σ%Φθ or cα = 0 (α = l,2,3) (5.7)

and (ii)

θ (5.8)

where σaβ'. = θaβ — ^θδaβ is the shear tensor. The constraints (5.5) and
(5.8) may clearly be satisfied in all models. The only case of a tilted model
in which it is impossible to satisfy constraint (5.7) is for Bianchi type
I(aκ = 0, nτμ = 0). For such a model ψ = 0, and there is no Cauchy horizon.

The vorticity, ω, is non-zero if and only if n(xynβ

γc°ίcβ φO [10].
Consequently the only cases of tilted models where this is impossible are
for Type /(ακ = 0, nτμ = ϋ) and Type J7(ακ = 0, nΛβn"β = (n\)2 > 0) (cf.
[12]). D

One would imagine that if the energy density of matter were ever
zero at any finite time, then it might perhaps always be zero. Indeed a
theorem on these lines has been proved by Hawking [24], but our result
can be reconciled with his when it is recalled that Hawking's theorem is
valid in a compact region whose boundary consists of two parts, one
on which the energy density vanishes, and the other whose normal is non-
spacelike. No such region exists in our case.

It is easy to show that whenever the energy density vanishes in the
above manner on the Cauchy horizon, the equation of state of the
matter is of the form p « μ in a neighbourhood of the horizon. More
precisely, we have

Theorem 2. Suppose that a perfect fluid spatially homogeneous universe
model possesses a Cauchy horizon, H+(S\ on which the energy density is
zero and the commutation functions (αα, naβ, θaβ, Ωa) in the normal basis
are all finite, and that inequalities (5.1) are valid everywhere. Suppose also

that — — approaches a finite limit as μ— »0 (this will be satisfied for most
dμ

reasonable equations of state). Then — -- > 1 ana -- > 1 on H+ (S).
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Proof. Let L: = lim -/-. If Lφ 1 on H+(S) it follows from Eq. (5.6)
μ-*o dμ

that —r̂ r is bounded as ί-»0, and so w does not tend to infinity, a contra-
dt

diction. Consequently L= 1, and letting μ->0 with (5.1) holding shows

P_
μ

that-^—>1. D

6. Conclusions: Empty Cauchy Horizons and Structural Instabilities

We have examined the locally rotationally symmetric models of
Bianchi type F, and we have depicted their qualitative properties for a
variety of equations of state. This has been achieved in particular by
employing methods of differential equation theory, and the results are
depicted in Figs. 1—5. Table 1 shows the asymptotic values of the im-
portant quantities relating to the normal and fluid congruences.

Several interesting results emerge from our analysis, the most
surprising of which is the possibility that a universe model, M, may
consist of two disjoint regions in which the matter density is non-zero,
separated by a Cauchy horizon on which the matter density is zero. This
result was first obtained by studying a special class of models: axisym-
metric generalizations of the open (k = — 1) Robertson-Walker solutions.
The question then arises as to how dependent this type of behaviour
is on the symmetries of the particular model under consideration, and
to what extent it is influenced by the particular equation of state of the
matter content. We have shown that a wide class of models containing
spatially homogeneous regions do indeed possess "empty Cauchy
horizons", and there are indications that some inhomogeneous models
may have analogous properties. However, it has been shown that when-
ever the commutation functions are finite near the Cauchy horizon,
H+(S), the matter content must mimic that of stiff matter

i.e.—; >1, » l o n H + ( S ) l . Thus to obtain such empty Cauchy
dμ μ ]

horizons one must be prepared to admit a very stiff matter content during
some stage of the universe's history. For moderate values of the energy
density one would expect 0 ̂  p ̂  ̂ μ and to this extent one would not
consider these empty Cauchy horizons to be realistic5.

Another result which is apparent either from our previous discussion
or immediately by inspection of Figs. 1-5 is that the behaviour of the

5 Preliminary calculations by King (private communication) indicate that upon
relaxing the finiteness condition on the commutation functions, empty Cauchy horizons
may exist for a wide variety of equations of state.
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Table 1 gives the initial and final states of evolution of the models, for various equations
of state. Tabulated are the most relevant quantities: matter density (μ), curvature scalar of
homogeneous hypersurfaces (JR*), fluid acceleration (M), hyperbolic angles (ψ, φ\ fluid and
normal proper time (ί, ί), fluid and normal expansion (θ, 0), fluid and normal shear (σ, σ),
and length-scales in the rest-spaces of observers moving along the fluid and normals (/, /).
The normal acceleration and the fluid and normal rotation (vorticity) are all zero. Entries
are listed as 0, /, and oo, corresponding respectively to zero, finite and non-zero, and
infinite limiting values (real or complex: in the inhomogeneous region some, quantities,
e.g. θ, are imaginary). Models are described with the initial state (in the sense of evolution
in Figs. 1-5) in the first line, and the final state in the last. An intermediate stage (the horizon)

is described for whimper models

Value of y Description t t
[p = (y— l)μ] of model

R* Ψ

7 = 1 (A)
(dust) Inhomog. /

2 pancake /
matter sing.

(B)
Homog. /
1 cigar oo
matter sing.

(C)
Whimper /

1 pancake /
matter sing, oo

1 < γ < 4/3 (A)
Inhomog. /
2 Conf. Curv. /
Sing.

(B)
Inhomog. GO
1 Conf. Curv. /
Sing.

Homog. /

1 cigar oo
matter sing.

(D)
Whimper /
1 Conf. Curv. /

Sing. oo

ί
/

oo

/
/
00

/
/

00

/

/
00

/
/
oo

oo
GO

oo
0

oo
/
0

00

GO

0
00

GO

0

00

/
0

ί
oo
0

/
00

0

/
/

0

/
GO

0

/
oo
0

CO

00

00

0

00

/
0

00

00

0
oo

GO!

0

00

/
0

',
00

0

/
00

0

/
/

0

/
00

0

/
CO'

0

0
0

0
oo

0
/
GO

/

/

00

/
0
00

/
/
00

ff
0
00

/
0
00

/
/

00

/
0
oo

/
0
00

00

00

00

0

00

/
0

/
/

0

/

oo
0

/

/
0

',
0
0

/
oo
0

/
/

0

/
0
0

/
oc'
0

0
0

0
0

0
0
0

00

00

0
00

00

0

00

/
0

— 0
— 0

0 —
0 —

— 0
oo oo
0 -

— /
— /

— /, oo

— /

0 —
0 —

Γ

GO- oo
0 —

γ = 4/3 (A)

(radiation) Inhomog. / / O O / Q O / / / / / O O —

2 Conf. Curv. / / O O / Q O / / / / / O O —
Sing.

(B)
Inhomog. o o o o / 0 / 0 oo oo 0 0 / —
1 Conf. Curv. / / O O / O O / / / / / Q O —
Sing.

/
/



Cosmological Singularities 149

Table 1 (continued)

Value of y Description ί
[p = (y—i}μ] of model

4/3 < y < 2

y = 2

(ZeΓdovich
stiff
matter)

1 < 7 < 2

(Q
Homog. /
1 cigar oo
matter sing.

P)
Whimper /
1 Conf. Curv. /
Sing. oo

(A)
Inhomog. /
2 Conf. Curv. /
Sing.

(B)
Inhomog. /
1 Conf. Curv. /
Sing.

(Q
Homog. /
1 cigar /
matter sing.

(D)
Whimper /
1 Conf. Curv. /
Sing. co

(A)
Inhomog. oo
Nosing. GO
(B)
Homog. /
1 point or oo
slab
matter sing.

(Q
Whimper /
1 Conf. Curv.
sing. 1 point, /
barrel or oo
cigar matter
sing.

Robertson-
Walker
homog.
1 point
matter sing.

t θ θ σ σ 1 ΐ

f oo oo oo oo 0 0

o o / O / O o o o o

/ 00 / 00 / / /

/ / o o / o o / O
oo 0 0 0 0 oo oo

/ oo / oo / / /
/ 00 / GO / / /

oo oo 0 oo 0 oo oo
/ 00 / 00 / / /

/ co oo oo oo 0 0
co oo 0 oo 0 oo oo

/ co / oo / / /
/ / oo / oo / 0
oo 0 0 0 0 oo oo

/ 0 / / 0 / /
co 0 0 0 0 oo oo

/ co oc oo oo 0 0

oo 0 0 O,/, 0 oo oo

oo

/ oo oo oo oo 0 0

/ 00 / 00 / 00 /

/ 0 / / 0 / /

/ oo 0 0

oo 0 0 oo

μ R* ύ ψ φ

oo 0 oo 0 —
0 0 / oo —

/ / oo - /
f CO f 00 00

0 0 0 0 —

/ / oo - /
/ / oo - /

0 0 0 — o o
/ / oo - /

00 0 0,/GO 0 —

0 0 0 o o —

/ / oo - /
f CO f CO 00

0 0 0 f —

f oo / — 0
0 0 0 - / o o

00 00 00 O,/

0 0 0 o o —

oo O,/, oo 0 —

CO

O / o o o o o o
/ oo / — 0

oo oo 0 0 —

0 0 0 0 —
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models under consideration varies dramatically with the equation of
state: the field equations are structurally unstable against changes in
the matter content (cf. [17]). This is a rather disturbing feature of our
models, because one might hope that in a realistic model of the universe,
any broad properties would be stable against small changes in the
matter content. Particularly disquieting is the fact that there is evident
structural instability of the dust, radiation and ZeΓdovich stiff matter
universe models. From an examination of the conservation equations,
it seems likely that this property is held in common with more general
types of tilted models, and one is therefore led to wonder if such structural
instabilities are very special, or if they really do apply on a wider scale
to other considerations in cosmology. How well, for instance, do dust
(p = 0) models of the universe approximate to the late stages of the real
universe (p « 0)? Are the radiation models (p = ̂ μ) stable approximations
to the early stages of the universe (p « ̂ μ)? The answers to such questions
would seem to play a crucial role not only in our understanding of the
idiosyncracies of Einstein's field equations, but also in our perception
of the evolution of the universe.
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