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Abstract. We prove that the relative entropy is decreasing under a trace-preserving
expectation in B(4'!), and we show the connection between this theorem and the strong
subadditivity of the entropy. It is also proved that a linear, positive, trace-preserving
map @ of B(') into itself such that || @] < 1 decreases the value of any convex trace function.

The main object of this note is to prove that the relative entropy
is decreasing under a trace-preserving expectation from B(A") to a
von Neumann subalgebra (Theorem 1). We will show the connection
between this theorem and the property of strong subadditivity of the
entropy functional in quantum statistical mechanics [1]. The theorem
is a generalization of a result by Umegaki [2] [for the case B(#)]
and hence of an inequality in information theory [3]. The proof rests on
a result by Lieb [4] on a generalized Wigner- Yanase- Dyson inequality.

The intuitive content of Theorem 1 is that an expectation always
decreases the information content of the states, especially it makes it more
difficult to distinguish two states from each other. Theorem 2 makes a
similar but weaker statement for a larger class of maps: a positive,
tracepreserving map of B(¢') into itself with norm at most equal to one
decreases the value of any convex trace function on B(¥).

Let A, Be T, (X") (the positive trace class operators in a separable
Hilbert space 7). The entropy of A is defined by

S(A)=TrS(4), S(A)=—AlogA.

If {Ji>} is a complete orthonormal set of eigenvectors of A or B then
we can define the relative entropy? through

S(A|B)=2<i| (Alog A— Alog B+ B — A)|i>

(see [5] for details). In [5] it was shown that if S(4|B) <o we have

S(A|B)=TrS(A|B)

! For 4 read # throughout.
2 In [5] this was called the conditional entropy.
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where
S(A|B)=sup, S,(4|B)e T.(¥) (1)
S (A|B)y=A"'[S(AA+(1 — A) B)— 18(4)— (1 — ) 8(B)], 2€ (0, 1)

S,(A|B) is monotonously increasing when A— 0.
The following properties are elementary: if A,>0, £A;=1, then
T 4:S(4;) £ S(Z1;4,) (concavity)

S(UAU*)=S(A4) for unitary U,
S(A+B)=S(4)+S(B) if AB=0,
S(4|B)=0,=0 iff A=8B,

S(UAU*|UBU")=S(A|B) for unitary U,

S(A1 +A2|B1 +Bz)=S(A1|B1)+S(A2|Bz)
A,;A,=B,B,=A4,B,=A,B,=0.

if

An expectation from a von Neumann algebra ./ to a von Neumann
subalgebra 4 is a linear map & of &/ onto £ satisfying

1. Pod=09,

2. |oX| =X, all X e .

It then follows that [6,7]

3. oI=1,

4. ¢(XY)=(®X)Y,all Ye &,

5. X =0for X =0,

6. (X)"TD(X)SD(XTX).

In the following we will only consider the case of an expectation
from B(s¢) to a von Neumann subalgebra /. We call @ tracepreserving
fTrdX =TrX forall X e T(s#). If @ is tracepreserving then the adjoint
of @ on the space of normal states is just the restriction of @ to the unit
sphere of T(s). Furthermore if X € T(5#) then @ X is the unique element
of o such that

Tro(X)Y=TrXY (2
forall Ye «.
We now state the main theorem.

Theorem 1. Let & be a trace-preserving expectation from B(X)

to a von Neumann subalgebra of. If A,Be T (A') then S(®A|PB)
<S(4]|B).

The proof will be given via a number of lemmas where A4, B, ®, and o/
will be as given in the statement of the theorem.
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Lemma 1. Let X € T(A') and let K(X) be the weakly closed convex
hull of the set {UX U™, U unitarye s/'}. Then

KX)no ={dX}
@Y=0X for all Ye K(X).

Furthermore, let E(<f") be the set of nonnegative real functions on the
set U(2f") of unitary operators in o/’ which are nonzero only on a finite
number of points and which satisfy = f(U)=1. Put f X =X f(U)UXU L.

Then there is a sequence {f,} CE(&') such that f,X— ®X weakly.

Proof. From the normality of the trace follows that @ is normal
(compare [7] Proposition 6.1.1.), hence ultra-weakly continuous.
Furthermore (2) is easily seen to imply that ®#(UXU )= @ X for all
unitary U € &/’, hence as @ is ultra-weakly continuous ¢ Y =@ X for all
Y e K(X). The first statement of the lemma follows from [8] Theorem 2
and the last from [9] p. 168 (property P’).

Lemma 2. S(A|B) is jointly convex in A and B: if 1,>0, 4,=1,
S(£72,;4,1X4,B) <X 1,;S(4;|B).

Proof. From a theorem by Lieb [4] we know that Tr(4! ?B?),
pe(0,1), is jointly concave in A, B. Differentiation at p=0 together
with the fact that the function is affine for p=0 gives the statement.

Introduce the auxilary quantity

H(A)=S(A4)+TrAlog TrA.
Lemma 3. Let P be a projection in A" and put Ap=PAP etc. Then
H(Ap) < H(A).
S(Ap|Bp)+ S(A;-p| B;_p)= S(4]B).

Proof. The first inequality is a direct consequence of Theorem 2
in [10]. Note that U=2P—1I is unitary and that A'=Ap+A;_p
=3(A+U" AU).

Hence, by Lemma 2:

S(A'|B)<1S(A|B)+3S(UTAU|U*BU)=S(A4|B).
The second statement follows from the fact that
S(A'|B)=S(Ap|Bp)+ S(A;-p|B-p) .

Lemma 4. Let {P,} be a sequence of projections such that P, < P, for
m<n, dimP, is finite for all n, and P,—1 strongly when n—co. Put
A,=P,AP,. Then the sequences H(A,) and S(A,|B,) are monotonously
increasing and

S(A,)—>S(A4), S(4,|B,)—S(A|B).
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Proof. The monotonicity follows from Lemma 3 and the conver-
gence of S(4,) from the appendix of [1]. In order to prove the last of the

statements we first observe that the convergence A,—A is uniform.
In fact

Tr P,A?—Tr A?
0<Tr[P(A® - A})]=Tr[P,A(I - P) A]<Tr[A*(I- P)] 0,
hence
Tr(A — A,)* =Tr(A* — A2)=Tr[A*(I — P)] + Tr[P,(4% — A2)]—0.

But |4 — A,[> < Tr(A — A4,)%, consequently || A, — 4| — 0. As the function
x logx is continuous on (0, c0) we obtain

1S(4,) - S(4)|—0.

Hence, for every finite-dimensional projection P

Tr[PS,(4,|B)]->Tr[PS,(4|B)].
S(A|B)=sup,Tr[PS(A|B)]
Tr[PS(A|B)] =sup, Tr[PS,(4|B)]

it follows that S(A|B) is lower semicontinuous under the convergence
(4,, B,)—(4, B):

From

S(A|B)<liminf S(4,|B,).

But from Lemma 3 we know that S(4,|B,) < S(4|B), hence limS(4,,| B,)
=S(A|B).

Proposition 1. Assume that {f,}CE(’) satisfies fyA—>®PA, {,B ~>PB
weakly. Then

lim S(f,A4) = S(® A) = S(A)
S(®A|®B) <lim inf S(f, 4| f,B) < S(A|B).

Proof. First we note that S(4) < S(®A4)[11,12] and that ® fL4A =D A,
hence
S(LA) SS(@f,A)=S@4), all k,

The same inequalities obviously hold for H(A4). There is a sequence
of projections {P,} in o/ satisfying the conditions of Lemma 4 (this
follows from the fact that @ is tracepreserving: use the spectral measure
of ® A where A € T, () has the support projection I). From the definition
of @ follows that

&(P,AP)=P,(DPA)P,.
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As f, is built up of elements of /' we see that
SiB AP, =P(fA)P,.

In the finitedimensional space ¢, = P,#" the convergence f,A,— P A4,
is uniform and obviously, when k—o0:

H(kan) —)H((DAn)
From Lemma 4 we obtain that H(A)=sup H(A4,), hence H(A) is lower
semicontinuous ie. H(®A)<liminfH(f,A). But H(f,A)<H(PA) for
all k, hence H(® A) =lim H(f,A) and S(® A4)=1lim S(f, A).

In the same way it follows that S(A4|B)=sup S(4,|B,) and S(?A|PB)
<liminf S(f, A| /i B). As S(®@A|®PB)<S(f, 4| f.B) for all k we cannot
conclude that S(®A4|®B)=1im S(f, 4| f,B). From Lemma2 and the
unitary invariance we have

SUfAlfB)SZ fi(U)S(UAUT [UBU)=S(A|B)

S(@A|®B)<S(4|B).

hence

Remark. The only difficulty remaining in proving Theorem 1 lies
in the fact that we do not know if there is a sequence {f,} C E(=/’) which
implements @ on both 4 and B.

Proof of Theorem 1. Choose a sequence of projections P, e .o/
satisfying the conditions of Lemma 4, and let f, € E(</’) be such that
frA— @A weakly. Hence

kan_) ¢An

in norm. For a given k there exists g; € E(«/’) such that (remember that
? f,B=®B)g, f, B—®B weakly when j— co, hence

gjkan—) ¢Bn
in norm. If ||( f, — ®) 4,| < &(k), choose g; , such that

jkJk— <eg(k).
Obviously “(gf”‘f" (D)Bn”fg()

1G;fe— @) Aull = 19560 — D) A S (i — D) A, ]| <k
Hence h, =g, - f; satisfies
hA,—»®A,, nB,—»®B,
in norm. As in the proof of Proposition 1 it follows that
S(®4,|9B,)=5(4,|B,)
S(@A|PB)<S(A|B).

and from Lemma 4



116 G. Lindblad

Corollary. Let {P,} be a set of mutually orthogonal projections in A
satisfying X P,=1. The map &: A—~X P, AP, is a trace-preserving ex-
pectation which describes the interaction of a finite quantum system
with a classical apparatus measuring an observable with eigenspaces P,.
Consequently

S(@A|®B)=XS(P,AP,|P,BP)<S(A|B).

This generalizes an inequality proved in [5].

We will now show the connection between Theorem 1 and the
property of strong subadditivity.

Let g, ¢ be two states on a quasilocal algebra over some configuration
space (e.g. Z") such that the local algebra of a bounded region is of the
type B(A"), A" separable. We denote the Hilbert space corresponding
to the bounded region A by /. The state ¢ restricted to B(#,) is then
represented by a density operator g, in 7, [13].

Proposition 2. For A C A’ we have
S(eal8)=S(ealé4)-

Proof. Let A=A, =H, ® A, where #| =H 4, A, =H 4. _ 4. Then
04=0;=Tr,0,, where ¢,, =90, and Tr, denotes the partial trace
over /,. Put

1/1"2=3{1®Pnf2

where {P,} is a sequence of projections in £, satisfying the conditions
of Lemma 4. Then we have the uniform convergence

An:I®PnQIZI®Pn—')Q12
B,=1®P,0,,I®P,~d;,
A,,=Tr,4,-¢0, etc

Define an expectation
®: B(AT,) = B(A,)Q{ALZ}
(I5 =identity in 7" through
PA=Tr,A®C,,
where C,, =(dim.#7})~! I}. Then

S(¢Anl@Bn)= S(Aln®c2n[Bln®C2n)=S(A1n|B1n)§S(Anan) .

From Lemma 4 it follows that

S(4,1B,)>8(Q121812)-



Expectations and Entropy Inequalities 117

Let {Q,} be a set of projections in #) satisfying the conditions of
Lemma 4. Then

S(4,[B,)=supS(Q,,4, 0| QnB1 Q)
and a reasoning similar to that of Proposition 1 gives that

S(e,16,) =liminfS(A4,,|B,,)
hence that i i
S(011d,) =8(012161,) -

Remark. The inequality proved above is nothing but a slight
generalization of the property of strong subadditivity of the quantum-
mechanical entropy [1]. This is easily seen by taking three disjoint
regions A,, A4,, A5 and putting

A=A,04,045, A=4,04,
04 =023, 04=01®03. 0Q4=012, 04=0,®0,.
Then, if the terms are finite,
S(0123101 ®023) = S(01) + S(023) — S(0123)
S(e12101 ®e2) =5S(ey) +S(e2) — S(e12) -

Hence, from Proposition 2, we get the strong subadditivity:
S(0123) +S(02) — S(012) — S(023) 0.

Conversely the joint convexity of S(A|B) follows from the strong
subadditivity. In fact the strong subadditivity implies equation (4)
of [14] which by our formula (1) implies the convexity of S(A|B).

There are obviously many positive trace-preserving mappings of
B(A') into itself which decrease the relative entropy but which are not
expectations (take e.g. any convex combination of unitary trans-
formations). Therefore it is interesting to consider more general classes
of transformations which have some suitable averaging property.

Let f(x) be a bounded real-valued function defined in an interval [
of the real line, and let 4 be a selfadjoint operator in # with spectrum
in I. Then we define f(A4) as usual through the spectral resolution of A.
It is well known that if f(x) is operator convex [ 15] such that f(0)=0and
if @ is a completely positive map such that |@|| <1, then

f(@A4)=Df(A)

(Jensen’s inequality) [16, 17]. This class of maps includes the expectations
[18]. If @ is trace-preserving then

Trf(@A)=Tr f(A)

which implies e.g. the increase of the entropy.
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Now let f(x) be a convex but not necessarily operator convex
function on (0, o0) and let f(0)=0. If A€ T, (") we introduce

F(A)=Trf(4) =% f(a)

where {a;} are the eigenvalues of A counted in decreasing order of
magnitude including degeneracies. We get a more general class of
averaging maps by finding all @ such that F(® A) < F(A). Define
k
ou(A)= g a;.
From [19] Lemma 4.1 follows that

o (A)=sup{TrPA,dimP=k}.

Hence if 4 < B then ,(A4) < o,(B).

Lemma 5. F(®A)<F(A) for all AeT (A) and all convex f(x)
iff o (@A)=Za,(A) for all k and o (PA)=0_(A).

Proof. The statement follows from [19] Lemma 3.4 and [20]
Theorem 108.

The following theorem gives a characterization of the positive maps
satisfying the conditions of Lemma 5.

Theorem 2. Let &: B(A")— B(A') be a positive map. Then
[#|<t, TreA=TrA, alAdeT,(¥).
< f(PA) = f(A) all convex f,all Ae T, (K).

Proof. = Note first that o (4)=TrA, hence o (PA)=0(A). Let
P, be the projection on the subspace of 2" spanned by the eigenvectors
corresponding to the k largest eigenvalues of 4. Put

A,=P(A—al)+al=A+al.

Obviously A <A, and o0,(4,)=0,(4). Furthermore A,=0 and Tr A,
= 0 (A) = 01(A) — kay

QA =DPA, + a, B
where A4, >0 and I 1.
Trd A, =0, (PA) 2 0 (PAY) = 0 (PA) — 4,0, (P]) Z 0, (PA,) — kay .

But Tr difik =Tr A,, hence
0 (@A) — ka, < o (A) —kay .
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From ¢4 < ® 4, follows that

o (PA) S 0 (PA) S0, {(A)

and the statement follows from Lemma 5.

<: The statement is obvious from the fact that ¢,(4) = |4, 0 ,(4)

=Tr A and Lemma 5.

Remark. This class of maps correspond precisely to the stochastic

matrices for probability distributions on a discrete set. If we put @I=1
we obtain the analogy of doubly stochastic matrices.
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