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Abstract. We suggest to use the Newton iteration method for constructing a (locally
unique) solution of the atomic and nuclear Hartree-Fock equations for an arbitrary
number of particles. Our proposal is based on a theorem by Kantorovic and rests on the
following points: 1) the two-body potential must satisfy a boundedness condition; 2) the
zero-order approximation, used to start the iteration sequence, must satisfy certain
conditions, to be proved numerically. Condition 1) holds, for instance, for all local potentials,
defined by a bounded function and for a class of nonlocal potentials; it does not hold for
local potentials, behaving as 1/r near the origin.

1. Introduction

Although the Hartree-Fock theory is known since the earliest
years of quantum mechanics [1] and has been extensively used in
atomic [2] and in nuclear physics [3], no rigorous and general treatment
of the related equations has appeared so far in the literature. This gap
has been filled only partially by some more recent papers [4-6].
Refs. [4] and [5]1 are mathematically rigorous, but deal only with
systems of two identical fermions plus another particle, the former
reference with harmonic oscillator interactions, the latter with Coulomb
ones (helium atom). In Ref. [6], the problem of computing a solution,
proving its local uniqueness and estimating the error due to the
finiteness of the iteration, has been solved for the nucleus 1 6O in a
subspace spanned by a finite harmonic oscillator basis, using the
Newton method of successive approximations in the generalized form
and with the convergence conditions of Kantorovic [7, 8]2. The aim
of the present paper is to contribute to a better mathematical under-
standing of the problem, by extending the theory of Ref. [6] to an
infinite-dimensional space and presenting it independently of any

* This work has been supported in part by Istituto Nazionale di Fisica Nucleare
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particular representation; however, we shall not be concerned here
with numerical calculations.

We write, down the Hartree-Fock equations in sect. 2 as a single
equation of the form F(X) = 0, where X is a vector of a suitable Hubert
space Jf and F is a nonlinear operator, mapping J f into itself. The
vector X contains all the unknown single-particle states and energies.
The Newton-Kantorovic method can be employed when F is twice
Frechet-differentiable [8] in a neighbourhood of a solution. In Section 3
we discuss three conditions on the two-body interaction, which are
related to the existence and properties of the first and second Frechet
derivatives F and F" of F. Two examples of classes of potentials satisfying
such conditions are given. In Section 4 we prove the existence of F and
F". In Section 5 we discuss the application of Kantorovic theorem. We
emphasize that the proof of existence and uniqueness of a solution based
on this theorem can be achieved only by means of some numerical
calculations: one has to choose an approximation Xo to the expected
solution and to check numerically that it satisfies the conditions of the
theorem; in the successful case, we can be sure that a locally unique
solution of the equations exists and it can be explicitly computed to any
degree of accuracy. For easier reference of the reader, we report an
abstract of the notation in the appendix.

We think that the proposed method is not only of an obvious
relevance for mathematical physicists, but also for atomic and nuclear
physicists interested in computational work: its main advantages are
the very fast convergence, the possibility of estimating the error due to
truncation of the basis and of the iteration; of using any representation;
of solving more complicated problems, including constraints, correlations
and so on [6, 9]. Ref. [9] contains a review of the present and related
work, including applications to nuclear physics. In Ref. [10] the problem
of consistent symmetries has been treated in the framework of the
Newton-Kantorovic method, which has provided in this case a significant
clarification of the question about convergence conditions in presence
of symmetries.

2. Hartree-Fock Equations

Considering a system of A identical fermions, we denote by A the
Hubert space of states of a single particle, by AA the direct sum A® A®...
(A times), by 31 the real numbers, by 3tA the direct sum 31® 31®...
(A times). In order to simplify the writing, we shall consider only real
Hubert spaces; the extension to complex ones is straightforward, by
taking the real and the imaginary part of the equations. The Hartree-
Fock equations will be written down as a single equation in the Hubert
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space j^=ΛA®StA\

l(T-Λ)Ψ+V(Ψfi®N{Ψ) = O, (2.1)

where T=t®t®...(A times); t is the one-body part of the Hamiltonian,
operating in space Λ; Ψ = ψ1@ψ2® ...ψAeΛA; Λ = λ1®λ2® ...λAe&A;

N(Ψ)= ®ί(ψk\ψk)-Q;

v(ψ)= 0 t ('®ψj\tψk®ψj)=®Σ
fc=ij=i fc j

= v(φ(g)ψ — ψ(g)φ); v is the two-body part of the Hamiltonian,
operating in the space A®A\ VφeΛ, Vωe^(x)^, ψ = ( ®φ\ω)eA is

A

defined by: (χ\ψ) = (χ®φ\(o),Vχeά', ΛΨ= @ λkψk. The component
fcl

of Eq. (2.1) in space AA represents the nonlinear eigenvalue equations for
the single-particle states ψk and energies λk, the component in space 01A

represents the normalization conditions for all ψk. A solution in J f
of Eq. (2.1) will be denoted by X = {y)k,λk} = Ψ@Λ.

The operator t is assumed to be self-adjoint and semibounded from
below, with lower bound τ. For instance, in the nuclear case, t is just
the kinetic energy operator, with τ = 0; in the atomic case, it is the
kinetic energy plus an attractive Coulomb potential operator, with

τ = — ̂ mc2(Ze2/hc)2. In any case, t — τ is a positive operator. Since the
single-particle energies λk are negative, the resolvent (ί — τ — λk)~ι is
bounded in a neighbourhood of λk.

In order to ensure the possibility of using the Kantorovic theorem
(Theorem 2 of Section 5), the left-hand side of Eq. (2.1) should be twice
Frechet-differentiable in a neighbourhood of X, so that all linear
operators appearing there should be bounded. This can be achieved by
transforming Eq. (2.1) by means of the operator G ( / l ) 0 / ( ^ ) , where

G(Λ) = @ (ί — τ — λk)~ \ λk < 0 Vfc, l{9£) is the identity operator in space
k=l

3£. The transformed equation is

with U(Ψ) = τΨ+V(Ψ), and will be used in the following. Strictly
speaking, on the first Ψ in Eq. (2.2) one should operate with the restriction
of the identity operator, defined in the domain 2(T) of T, but this
restriction can be uniquely extended by continuity to I(ΛA). The Eqs. (2.1)
and (2.2) are equivalent: it is obvious that any solution of (2.1) is also
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solution of (2.2); it will be shown in Section 4 that the converse is true if v
is bounded.

The left-hand side of Eq. (2.2) will be denoted by F{X\ with X=Ψ®Λ;
it defines a nonlinear operator F : J f -• Jf.

3. Conditions on the Two-body Potential

The existence of the first and second Frechet derivatives of F in a
neighbourhood of a solution of Eq. (2.2) is expected to depend on the
properties of the potential υ. We are going to examine three conditions
on v:

\ (3.1)

(3.2)

(3.3)

The first one will be shown in next section to be sufficient for the existence
of F' and F" in a certain region of Jf. These three conditions are not all
independent of each other. We now prove that condition (3.1) follows
from (3.2) or (3.3):

\v(φ, χ, ψ)\ = \(vψ®χ) φ\ S \vψ®χ\ \φ\ ύ \\v\\ \ψ®χ\ \φ\

= \\v\\ \ψ\\χ\\Φ\=>\\v\\ύ\\v\\«n.

Similarly,

\ϋ(φ9 χ9 ψ)\ = \{vφ®χ) ψ\ ̂  ||ί3|| \ψ\ \χ\ M=> ||ϊ;|| ^ ||ϋ|| < oo.

Let us now give the examples of two classes of potentials satisfying
some of conditions (3.1), (3.2), and (3.3). Since the conditions are inde-
pendent of the representation, we need only to verify them in a particular
representation. We first consider local potentials defined by a bounded
function. Assuming galileian and translational invariance, we have in the
coordinate representation

(3.4)

(for simplifying the notation, we have not indicated the spin and isospin
quantum numbers, here unessential). All potentials of the class (3.4)
satisfy condition (3.2) and hence (3.1), but not (3.3):

It is straightforward to verify that (3.3) cannot be satisfied by local
potentials.
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Similarly, let us define a class of nonlocal potentials

(xy\v\x'y') = δ(x + y-x'-y') V(x-y,x' -y'),

I V{x, xf)\ ̂  A(\x - x'\) B(\x + x'|), (3.5)

To prove (3.2) and (3.3) for potentials (3.5), we make use of a sufficient
condition for boundedness of operators in spaces L2 (see Ref. [11],
Section 172):

sup Sdy'dx'\(xy\ϋ\xfy')\
x,ye®3

WBU + \\A\\, \\B\\J <oo

(3.6)

s u p f d ^ y i ( i δ i y ) i ^ ι ι ^ ι i i i B i i ι ι ^ ι i i i B i i

We note that for the validity of condition (3.2) either one of the
following less stringent requirements is sufficient:

We conclude this section by remarking that several nuclear potentials,
including the one used in Ref. [6], satisfy condition (3.1). On the other
hand, local potentials with r " 1 singularity at r = 0 do not satisfy (3.1), so
that the present treatment does not hold for them. However, this is not a
serious difficulty, because in the case of the Coulomb potential the
singularity can be eliminated by considering an extended charge distri-
bution (physically, this is even more realistic), in the nuclear case the
potential is nonlocal near r = 0, where it should rather have the property
(3.5). Furthermore, we note that the choice of the Hubert space Jf as the
functional space where the solution of the Hartree-Fock equations is
sought, is merely a matter of convenience. The main results of our
work rest on the Kantorovic theorem, which holds for any Banach
space. This suggests the possibility of choosing another functional space,
in such a way that potentials with r " 1 singularity at the origin are
bounded operators3. In this case, the components ψk of a solution of
Eq. (2.2) would still belong to the Hubert space Λ, as the physics of the
problem requires, because the equation N(Ψ) = 0 would still hold.

We thank Prof. A. Agodi for this remark.
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4. Frechet Derivatives

We are concerned in this section with the existence of the first and
second Frechet derivatives of the nonlinear operator F9 defined in
Section 2. Supposing that G, U, and N are twice Frechet-differentiable
in the point Xo = Ψ0@Λ0, we have (by definition of derivative)

'(Ψo)Ψ, (4.1)

where U'(Ψ0)e@{/lΛ)9 G\AQ) e ®\βA9 ®(AA)\ N'(Ψ0) e @{AA9 StA)9

F"{X0) (X, Y) = IG»(ΛO) (Λ, Ξ) U(Ψ0) + G(Λ0) U"{Ψ0) (Ψ, Φ)

Ψ)(ΨΦ)

where U"(Ψ0) e St(iA

2,AA\ G"(Λ0) e » \βlA

2, @(&A)\ N"{Ψ0)e Λ(ΛΛ

2

9 9tA\
F"{X0)e@(J4?2,je).

We prove the existence of Uf, U'\ G\ G\ N\ N".

Lemma 1. // condition (3.1) holds, then both U'(Ψ0) and U"(Ψ0)
exist for all ΨOEΛA.

Proof. We have for all Ψθ9ΨeΛΛ:

lιmo\U(Ψo+Ψ)-U(Ψo)-τΨ

- @ Σ [*(v£ Ψj> Ψk) + V(Ψ% Ψj, Ψk) + v(Ψj9 ψ% ψ°k)-]\ x IΨ\~1 = 0

by definition, the term τ!F + 0 Σ [ . . . ] should therefore be identified
with the first differential

U'(Ψ0)Ψ = τΨ+ © t ίv(ψ%ψ%ψk) + v(ψ%ψpψ
o

k) + v(ψpψ%ψ°k)-].
k = ί j = l

(4.3)

The boundedness of the operator U'(Ψ0) follows:

\\U'(Ψ0)\\= sup ^ ^ ^ L

so that U'(Ψ0) is the first Frechet derivative. Furthermore we have
VΨ09Ψ,ΦeΛA:

lim \U'(Ψ0 + Ψ)Φ- U'(Ψ0) Φ - © t tfivl Φj> Ψu)
\ψ\-*o, \Φ\ ->o jc=^j=.^

+ ϋ(\ή, ψj, φk) + v(φj, ψ°, ψk) + v(ψj, ψ°}, φk) + v(φj, ψj, ψ°k) (4.4)

+ v(ψj,φj,ψ°k)-]\\Ψ\-1[Φ\-1 = 0.
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The second differential U"(Ψ0)(Ψ, Φ) is given by the term φ Σ [ . . . ] and
the norm of the second derivative U"(Ψ0) is estimated by

\\u"(ψo)\\ = s u p \ ° L 9

This completes the proof of Lemma 1.

Lemma 2. G'(Λ) and G"{A) exist for all those Λe&A, such that
λk<0 Vfc.

Proof. Following the same procedure as in Lemma 1, we find

||G'(Λ>)|| =sup \Λ° " rgmax \\g(λl)\\^(mm \Xl\)~x (4.5)
Λeέ%A I ' ^ V k /

< 00 V̂ fc < 0 ,

fc=l

l o ) | | = sup " " V^MgV'"'" ^2maxl |g(4 0 ) 3 ] | (4-6)

Lemma 3. JV'(f0) αwίί N"(>P0) exist for all ΨoedΛ.

Proof. As previously, we find

fc=1 (4.7)
\NΊΨ ) Ψ\

\\N'(Ψ0)\\ = sup ' °; '
| |

Φ,ΨeάA \Φ\\Ψ\

We are now ready to state and prove a theorem, which is essential
for our purpose.

Theorem 1. // condition (3.1) holds, then the operator F defined in
Section 2 is twice Frechet-differentiable, according to Eqs. (4.1)—(4.8), in a
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ball Ω0:={X:\X-X0\^jR}, with

Xo = {ψ°,λϊ},λZ<0 Vfe; Λ = minμJ|-ε,(V
k k

Proof. Remembering Eqs. (4.1) and (4.2), Lemma 1, Lemma 2 and
Lemma 3, we have only to prove the assertion concerning R. Putting
min μ£| = μ°|5 we can exclude the case R = μ°|, because although the

vector X=Ψo®λo

1®...λ°m_1®<d®λo

m + ι®...λ°A is contained in the
closed ball with centre Xo and radius μ° |, the operator F is not Frechet-
differentiable at X (see Lemma 2). A fortiori, we can exclude the case
R > μ° |. In the remaining case R < μ° |, it is not possible to choose a
vector X, such that XeΩ0 and λk^0 for some k (say k = kί,k2 ... ks).
Assuming the contrary to be true, it results

which can be satisfied only if ε = 0. The contradiction proves the assertion.
Now, we can complete the proof of the equivalence of Eq. (2.1) and

Eq. (2.2). For a solution X = Ψ®Λ of Eq. (2.2) there are two alternatives:
either Ψ e 2{T)9 oτψφ 2>(T). In the first case, it is evident that X is also a
solution of Eq. (2.1); the second case can be excluded, because U is
continuous (being differentiable), all λk are regular values of t — τ, and
the range of the resolvent of an operator coincides with the domain of the
operator itself (see Ref. [11], Section 189).

5. Construction of a Solution

A constructive method for proving the existence and the local
uniqueness of a solution of the Hartree-Fock equations is provided
by the Newton iteration algorithm, according to the following theorem
due to Kantorovic (see Ref. [8], Chapter 18, Section 1, Theorem 6).

Theorem 2. Let F be an operator, mapping the Banach space $£ into
the Banach space &, with the following properties:

a) F is twice Frέchet-differentiable for all X in the ball

b) F'(X0) has a bounded inverse.
Then, putting h = ηK, where η ^ \lF'(X0)y1 F(X0)\ and K^ sup

XsΩo

\\\F{Xo)YγF"(X)\\, both the Newton sequence

Xn+^Xn-lF'iXJY1 F(Xn)9 (n = 0,1,2,...) (5.1)

and the modified Newton sequence

t (« = 0,1,2...) (5.2)
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converge to a solution X_ of the equation F(X) = 0, if

h^h R^(ί-γί-2h)η/h. (5.3)

The solution X_ is unique in Ωo if

RS(ί+ l/l-2/ι) η/h, (<in the case h <\). (5.4)

For the sequence (5.1) the error of approximation is estimated by

\X-Xn\S2-n(2h)2nη/h, (n = 0,1,2,...),

for the sequence (5.2) by

For the application of this theorem to the Hartree-Fock equations
one has to prove that an approximation Xo to an expected solution
can be found, with the properties a), b), (5.3) and (5.4). As already anti-
cipated, this requires in any case some numerical calculations. After
choosing Xo (a possible criterion is suggested in Ref. [6]), Theorem 1
guarantees that an R can always be found, in such a way that condition
a) of Theorem 2 holds. A possible way of checking condition b) is to use
the methods for the inverse operator of Refs. [12,13], which can provide
also an estimate of the error due to the choice of a subspace of jΊf. Putting
B0K0^K, with

Bo^ | | [F(Xo)ΓΊl , ^ o ^ sup \\F"(X)\\ ,
XeΩ0

we can estimate η, K and h. Bo has to be computed numerically; for Ko

we can put

2 | | i J | | 2 (^ + | Ψ 0 | ) 2 ] - , 2ε- 3 | |^ | | (Λ + |<F0|)
3,

where Ωo, ε, and R are defined as in Theorem 1.
The sequences (5.1) and (5.2) derive from the solution of the equation,

representing the best linear approximation to Eq. (2.2) near Xo:

or more explicitly

{Ψ + G(Λ0) IU(ΨO) + U'{Ψ0) (Ψ - Ψo)~] + G'{Λ0) (Λ - Λo) U(Ψ0)}

®IN(Ψ0) + N'(Ψ0)(Ψ-Ψ0)-]=0.

Equation (5.5) is a Fredholm linear equation of the second kind. If
both conditions (3.2) and (3.3) are satisfied, as for potentials (3.5), its
kernel belongs to the Hilbert-Schmidt class.
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Transforming Eq. (5.5) by the operator T — τ — Λ0 we get the
equivalent equation

l(T-τ-Λ0)Ψ+U(Ψ0)+U\Ψ0)(Ψ-Ψ0) + ( 0 ) ( 0 ) ( 0 ) ]

θ LN(Ψ0) + N'{Ψ0) (Ψ-Ψ0)]=0,

which is (in coordinate representation) a system of integro-differential
equations. Still another form of linear approximation to Eq. (2.1) or (2.2)
can be used, besides (5.5) and (5.6): by treating formally the left-hand
side of Eq. (2.1) as if it were Frechet-differentiable, we get the linear
equation

[iT-Λo)Ψ+V(Ψo)+Vf(Ψo)(Ψ-Ψo)-(Λ-Λoyψo]

+ Nf(Ψ)(ΨΨ)-]0

Subtracting Eq. (5.7) from (5.6), we are left with

(Λ-Λo)lΨo + G(Λo)U(Ψo)]=09

so that the two equations are equivalent if Xo = Ψo © Ao is already a
solution of Eq. (2.2). Nevertheless, if Xo is near enough to a solution X
of Eq. (2.2), then Eqs. (5.6) and (5.7) differ only slightly in the term
depending linearly on X — Xo and the Newton sequences derived from
the two equations converge to the same X (see Ref. [8] Chapter 18,
Section 2, Theorem 1). This remark can provide a rigorous argument
for extending to an infinite-dimensional space the method of Ref. [6],
where the numerical calculations for the nucleus 1 6 O have been performed
by iterating Eq. (5.7).

We thank Prof. A. Agodi for several discussions and for the critical reading of the
manuscript.

Appendix

We report below in alphabetic order the main symbols and their
definition.

A: number of identical fermions.
gβ(β£n, <8ί): Banach space of bounded n-linear operators (uniform

norm), mapping 9C x 3C x -SC (n times) into ®J\ (n = 1,2,...).

&2(i)\ space of Hilbert-Schmidt operators in A.
F(X) = [ψ + G(Λ) U(Ψ)] ®N(Ψ); F : Jf^Jf.
F'(X), F"(X)\ Frechet derivatives of F at X; a similar notation is used

for the derivatives of G, N, and U.
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g(λ) = (ί - T - λ)~1 g : ®

G(Λ)= ®9(*kY,G:!XΛ-
k = 1

A\ real Hubert space of single-particle states.
..Λ {A times).

)\ identity operator in S£.
Y vector space of linear operators, mapping $C into itself.

Lv{βτ)\ Banach space of functions with integrable pth power [8,11];
p^oo.

N(Ψ)= 0 l(ιpk\ψk)-^;N:4A->@A.
fc=l

M\ real numbers.
StA = m®St®'"Si{A times).
t: one-body part of Hamiltonian operator in space A\ t
T = t®t®" (A times); Te^{4A).
U(Ψ) = τΨ+V(Ψ); U:4A-*iA.

V(Ψ)= 0 Σ V(ΨJ,ΨJ,Ψ&,V:AΛ-+ΛA.
k = 1 j = 1

υ: two-body part of Hamiltonian operator in space A®A\
v: antisymmetrized v: vφ(x)ψ = v(φ®ψ — ψ®φ)e Λ®4 =

v: {φ8χ\ψg) (φgψ\χg)
= ( ®φ\vψ®χ);

^,(W\ unspecified Banach spaces.
λ, ξ e St.

AΨ=@λkΨk.
fe=l

τ: finite lower bound of t.

I |: norm of vectors in Banach space 9C. In Hubert spaces: scalar
product norm.

|| ||: uniform norm of operators of @(β£n, <¥), (n = 1,2, 3).
( | ): scalar product in space Λ or Λ®Λ.

A

(X\Y}= Σ l(ψk I Φk) + 4 4 1 scalar product in Jf.

|| || : norm in space
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