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Abstract. We consider the time evolution of local observables and physical states in
an infinite system of non-interacting Fermi particles. The orbit of an observable in the
C*-algebra of the canonical anticommutation relations is proved to be asymptotic to a set
of observables consisting of sums of products of elements of grade two and lower with
support in a family of separated cells in IR® (a lacunary paving of R®) under time evolution.
A space-factorization (“clustering”) property for primary, even, locally Fock states is
established. A class of such states whose space-correlations decay as (logd)™® *% with a
positive and d the (space-) separation is, then, proved to be time-asymptotic to their
associated quasi-free states.

§ 1. Introduction

Statistical mechanics results from a “coarse grained” description of a
system, i.e., from the process of limiting attention to a restricted set of
observables. It has been the hope underlying many recent studies in
Quantum Statistical Mechanics that, for most purposes, it is adequate
to take for this set the local observables in an infinitely extended medium.
If this is so then we should be able to show that time evolution of states
over the algebra of local observables in an infinite system is such that a
considerable simplification results as the time ¢ tends to infinity (in-
sensitivity to initial conditions): the orbits of large classes of states
should coalesce (become asymptotic to each other) as t—oo. While it
appears forbiddingly difficult to obtain any rigorous mathematical
results about asymptotic orbits of states for systems of infinitely many
interacting particles, it is possible to study this problem for the fiee
Fermi gas (an infinite system of non-interacting particles). From the
physical point of view, the free system is, of course, a poor example to
demonstrate the asymptotic simplification because interparticle collisions
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(which are absent in this case) are expected to be a principal agent in
bringing about the asymptotic coalescence of states. Nevertheless we
find that, even for the free gas, there is a very significant asymptotic
simplification.

Our goal is Theorem 5.5 in which we show that a physical state ¢
whose long-range (space-)correlations decrease sufficiently rapidly to
zero for large distances, is asymptotic under time evolution to its as-
sociated quasi-free state ¢ (the quasi-free state with the same two-point
function). The main tool in the proof of this theorem is Theorem 2.3 which
describes the orbit of an observables as being asymptotic to the ob-
servables from a special set. Each of the observables in this set is a
(norm-limit of a) sum of products of observables of grade two or lower
with support in a “cell” of a certain (“lacunary”) “paving” of R>. In
computing the expectation value of such an observable in a state g
whose long range correlations decrease rapidly, we may effectively
replace ¢ by its “factorization” ¢* relative to the paving. For the ob-
servables in question, the expectation values in @™ are precisely equal to
those in ¢ (the factorization of the associated quasi-free state) and
these, in turn, are effectively equal to those in §.

In loose outline, the preceding remarks describe the structure of the
argument proving Theorem 5.5. With the exception of § 4, the following
sections provide the precise mathematical proof of this theorem. In §4
we prove that each even, primary, locally Fock state has long-range
correlations which decay with increasing space-separation. This result
lends force to the study of the class of states having prescribed rates of
decay in space-correlations (carried out in §5). In §3 we develop the
apparatus of factorization of even states essential to the application of
Theorem 2.3 to the study of the time-asymptotic behavior of states. One
form of this factorization is developed in [5;§ 5]. In addition, we must
develop a “commutative” factorization and relate it to the “anti-com-
mutative” factorization of [5;§5]. (We are deeply grateful to Robert
Powers for valuable discussions of [5] and other topics involved in the
final phase of this work.)

Parts of this research have been discussed in [1,2]. At the point
where we had established the asymptotic form of the orbits of ob-
servables, Lanford and Robinson [4] were able to prove our conjecture
of ‘asymptotic equivalence with quasi-free states’ for the class of trans-
lationally-invariant states with square-integrable truncated n-point
functions.

For the most part, the notation and conventions we use will be
explained as needed (section by section). When the CAR algebra, the
C*-algebra of the canonical anticommutation relations, appears, it
will be denoted by 2. The annihilators and creators with wave function f
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(in L,(R%) are denoted by a(f) and a*(f), respectively; and a'(f) is
used to designate either this annihilator or creator (when it is worth-
while, notationally, to leave the specification ambiguous). Following
usual notation, we write U’ for the commutant of a family A of operators
acting on a Hilbert space (2 is the set of bounded operators on that
space commuting with all operators in ). The weak-operator closure
of A is denoted by A~. When we speak of the CAR algebra based on /7,
we refer to the C*-algebra generated by the annihilators a(f) with f
in J#. We use the notation (M) to denote the C*-subalgebra of A
generated by a(f) with f in the subspace M of #. If # is L,(IR*) and O
is a region in IR?, we write 2(C) in place of A (M), where M is the subspace
of L,(IR*) consisting of functions vanishing (almost everywhere) out-
side of O.

§ 2. The Asymptotic Form of Orbits

In this section the following notational conventions are used. We
denote by s the Hilbert space, L,(IR?), of complex-valued, square-
integrable functions on 3-dimensional Euclidean space R®. Its elements
will be denoted by f, g, etc., the scalar product by (f, g), the norm by
I f1l2(=(f, f)?). We deal with the CAR algebra U over # — that is,
the C*-algebra generated by a system of elements a(f), conjugate-
linear in f (in ) and satisfying the canonical anticommutation relations
(CAR):

La(f), a(g)]+ = [a*(f),a*(@))s =0, [a*(f).a(@))+ = (/. 9)

where f, g are in A, a*(f) is the adjoint of a(f) and [A B], = AB+ BA.
Recall that [la(f)| = [|a*(f)]| = /|, where [|4] is the bound of the
operator A 1n A. With x(—(xl,xz,x3)) and x'(=(x}, x5, x3)) in R?,
[x[ =7+ x3 + x3)* and (x, x) = x; X] + X, X5 + X3 X5.

With f in #, we denote by f, the element (exp(—iH,?)) f of #
where H, = — 44, and by & (a(f)) the element a( f;,,) of 2. In this notation,
fi 1s the solution of the free Schrodinger equation with initial condition,
fioy=f; and t—>a, extends to the one-parameter automorphism group
of time translations of 9 specified by its action on the generators a(f)
of 2.

We use the notation By to refer to the closed ball with center 0
and radius R in R3. The term “essentially” is used in the technical
measure-theoretic sense; so that two essentially disjoints subsets of R?
are subsets whose intersection has (Lebesgue) measure 0; and an es-
sentially bounded set is one which is essentially disjoint from the com-
plement of some By. The essential diameter of a subset & of IR® is the
infimum of the diameter of those closed balls which essentially contain & .
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The essential outer distance of & from 0 is inf{R: & is essentially con-
tained in By} (= R(¥)). We denote by &’ the complement in R? of the
subset .

2.1. Definition. A lacunary paving 2 of IR? is a denumerable collection
{,} of essentially bounded, mutually essentially disjoint subsets of R?
satisfying:

a) a(R)— 0 as R— oo, where a(R) is the quotient of the measure of
By’ by that of Bg and % = | ) %,;

b) r(R)R™' >0 as R— oo, where r(R) =sup{r,: R(%)<R} and r,
is the essential diameter of %,.

Concerning these pavings, a) imposes the condition that “asymptoti-
cally, they fill almost all of space”; and b) imposes the condition that,
while the diameters of the %, may grow large, the diameters of distant %,
are small by comparison with their (essential outer) distances from the
origin. We note that the collection %, of %, in # lying (essentially)
outside a given essentially bounded subset of R® constitutes, again, a
lacunary paving; for ro(R) £ (R) and oo (R) < «(R) + Vo (37 R*)~!, where
oo and r, are the functions of a) and b) for £, and Vj, is the measure of
the bounded subset of IR* “excised” from the paving 2. We note, too,
that a translate 2,(={%,— x,}) of £ is a lacunary paving. In this
case, B n\(% — xo) + X0 € Bry jjxo "' SO that:

ao(R) S a(R+ || xo[) (R+ || x0[)*R">*>0 as R—-oo.
In addition, R(%,) < R+ ||x,| if R(%,— x,) < R; so that:
ro(R) S T(R + o)
ro(R)R™P S r(R+ [ xo]) (R + || xo[)™" (R+ || x0[) R -0,

as R—- 0.

and

The interiors of the cubes formed by the lattice of points outside
some By with integer coordinates is an example of a lacunary paving.

2.2. Lemma. If ?(={4,}) is a lacunary paving of R>, then for
each f in L,(R® and each n there is a function h, (of t) such that
| fiy—9:] 2~ 0 as t—>oc0, where g,(x) = h,(t)exp[5it™* |x||*] for x in %,
and g, vanishes on U'.

2.3. Theorem. If U, , is the 4-dimensional subalgebra of N generated
by 1, a(g,,) and a*(g,,), where g, ,(x)=h,(t)exp[it * |x|*] for x in
U, and g, ,, vanishes on U,, and A7 is the C*-subalgebra of W generated
by {U, .}, then, for each A in W, there is a one-parameter family (B,), with
B, in A7, such that |o,(4)— B,| >0 as t >0 (that is, o,(A) is asymptotic
in time to A?).
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Before beginning the proofs, we remark that the heuristic basis for
-the lemma resides in two properties of the solutions of the free Schro-
dinger equation at large times. The first is that the wave function f,(x)
spreads over a very large region of space, the diameter of which increases
proportionally to t. Thus, for a fixed lacunary paving, as a result of a),
the L,-norm of the part of the wave function f,, which has support in
the “unpaved” part of space will tend to 0 as t —oo0. The second is, that
independently of the initial shape of the wave function, the shape of
f» within a small region of space around a point x,, is, in essence, that
of a plane wave with wave vector t~* x,, at large times t. A slightly better
approximation, one which turns out to be valid to a sufficient degree
of accuracy within each %, when the size of the %, is limited by b) is
given by h, (1) g, ,(x).

Assuming, for the moment, that the lemma has been established,
we proceed to the

Proof of Theorem 2.3. Note that

lowe(@(N) —alg)| = [a(fi) —al@)] = |a(fiy— 9] = | fr — 9l
so that |a,(a(f)—a(g)|| >0 as t—0, assuming Lemma 22. As ) g, ,

converges to g, in #, Y a(g, ) converges to a(g,) in the norm topology

on bounded operators; whence a(g,) lies in A7 (in fact, a(g,) is in the
norm closure of the linear span of the %, ). Taking a(g,) as B,, our
theorem is established for the generators a(f) of . Since ||o,(a(f)) — B,
= [lo,(a(f)* — Bf|| = ||oe(a*(f)) — Bf|, and B € A7, the same is true
for a*(f). If p is a (non-commutative) polynomial in several variables
(regarded as a mapping from A x --- x A to A), then p on bounded sets
is uniformly norm-continuous, and o, ° p = p > @, (where @, is the extension
of o, to A x --- x A obtained by applying o, to each coordinate). Since
AZ is a *-algebra, p maps A x --- x AZ into AZ. It follows that the
assertion of the theorem holds for the operators in the norm-dense,
*-subalgebra A, of A consisting of polynomials in the generators
a(f), a*(f).

For arbitrary A4 in 9, choose 4, in U, so that |4 —A,[|<m™".
Since A, e€U,, there is a one-parameter family (B,,) such that
%(Ay) — B || >0 as t—o0, with B,, in A. Choose t;, so that
a,(A;)— B, ;|| £1if t; <t and t,,, inductively, so that t,,_; + 1 <1, and,
if t,, < ¢ then |ot;(A,) — B, | Sm™". Let B, be 0 for 0<¢<t,, and B, be
B, for t,<t=<t, . Then ||jo(A) — B,| >0 as t—>c0; for, if t,, <t < 41,

llo(4) — By = ||t (4) = By || < [0:(A4) — s (A)]| + [[0e(Ay) — By
= |4~ A, + [o(4,) — B, | S2m7 .
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Proof of Lemma 2.2. It will suffice to establish the assertion of the
lemma for each function in a total family; for, by linearity of f— f,),
the same then holds for each function in the dense linear subspace J#,
consisting of finite linear combinations of functions in the total family.
For an arbitrary f in #, choose f,, in #; such that | f—f, [, <m™*
and (g, ,) so that || f,, ;) — Geml[>—0 as t—o0. Arguing, now, precisely
as above, we find (g,) such that || f,, — g.|,—0.

As our total family, we use the normalized Gaussians with various
centers and dispersions. If f(x)=7n"*s"#exp[—35~ % |x — x,[/*], then
Jox)=n"Fs¥(s? +it) Fexp[—5(s> +it)" || x —xo||*]. Let §,,(x) be
Ju(x), for x in %,, and vanish on %,. Let g,(x) be f;(x), for x in %, and
vanish on %’. Given a positive §(< 1), choose ¢ exceeding 12such that
4n [ u® expuexp — i— urdu < % Then | u? exp—u?du < % Let Z,,
with associated U, and a,, be the paving £ translated by —x,. Choose
R, such that oy(R)<3c 3¢ if R=R,. Write k(t) for s(s*+1t)%.
Then k(t)—0 as t — 00, so that there is a positive ¢, such that c k(t)"! = R,
if t>1t,. Writing R for c k(t)"!, note that, if t >1¢,,

| fio=3:l13 = n" k() ﬂ,; exp — (k(t) [ x — xo[|)* dx
=n% k(t)3%j, exp — (k(2) || x||)* dx

__<__7r‘%k(t)3[ | exp—(k(t)”x”)zdxﬂ—y[ exp—(k(t)HxH)de}

Bro%s

gn—%k(tf[ ] dX+4n§y exp — ("(t)”zdy}

BrnUb

|I/\

n %k (t)3{ nR3ay(R) + 4nk(t)? j u? exp—u*du
k@®)R

1 feel
= 411‘%[? Aoo(R) + [ u? exp—u? du]

82 82
< — F — = 2_

Thus || fsy— .|| ,—~0 as t > co; and it remains to show that |g,— g,[|,—0
as t— o0, where g, is of the form described in the statement of the lemma.
Toward this end, choose a point x, in each %,. Note that, for x in %,,
writing v,(t) for n~¥s¥ (s> +it) Fexp[—3(s® +it)" " || x, — xo[|*], Fi.n(x)
is

vn(t) exp[(52 + it)_l (x_ Xns xO)] exp[— %(Sl + it)_l (”x”2 - “X,,”Z)] .
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Let g, ,(x) be 0 on %, ; and for x in %,, let g, ,(x) be
vu(t)exp[Fit™ (| x| > = | x,|®)] (of the form h,(z) exp[3it™" |x|*]).

Removing from each %, a set of measure 0, we may assume that the
essential and actual diameters r, of each %, are the same, that the essential
and actual outer distances R, of %, from O coincide, that x, is chosen
in the altered %, that distinct %, are disjoint, and that each %, is bounded.
We use the same symbols to designate the sets and paving as altered
as well as the restrictions of g, ,, g, g:,, and g, to the altered paving.
Since these functions have been modified on a set of measure 0, the L,-
estimates obtained for them apply equally to the original functions.

With the notation as before, let R, (> 16 x,]|) be such that r(R) R~
<e[4cBe+s|xo|)17" if 2R=R,. Smce k(t)—»0 and tk(t)—s as
t—oo, there is a t;, such that 2ck(t)"*(=2R)=R,, 3tk()=s and
if t=t,. Suppose %,CBg, xe%, and t=t;. Letting
q(u) be uexpu, and using the inequality |1 —expu|<q(|u|), we have:

|1 - gt,n(x) gt,n(x)_ll

=1 —exp[it™ ' s* (s> + i) (|| x]* = [|x,[|P) = (* +i0) ™" (x — X, xo)]]
< qGt sk [x]? =[x 1 +57 k(@) fxo] [Ix — )

< q(st™r, R0+ 57 k(1) | xo 7)

Sq(rR)V Rk R(st™ R+57" [xo])

Se[d4cBe+s7|xo)]  e@Be+ s | xo]) expie

Z |Gt = genl3 =7E* X [30all3
UnCBg

162019, = 26| foll3 = &

Since e<1 and 1<c, e[4c(3c+s™ 1HXOH)] <is. If %,¢Bg,
then ngR Rl, so that r,R,'<r(R,)R,' <{5. Thus 12R <R,

IIA

—T,,; an <4 —rp<| x|, for all x and x' in %,. As
R1>16||x0||,R >8Hx0”;and
e — %ol Z 3wl = Ixoll Z 1%l — 5 R Z [l = 7 |

= 3%l 2 5 G x[) =2 ] -
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With x in %, |, (X) — g, m(x)|? is
= o) o (X = xl® = U = Il
s +it 2(s*+it) 2it
= [0, (O 11+ exp[(x — X, Xo) k(t)*] exp[ — 5(|x]|* — || %] ?) k(1)1
S k(1) exp[— || X, — Xo > k(£)*]
|1+ exp [(x — X, Xo) k(t)*] exp [3(RE — (R,, — 1,)?) k()]
<4 P k(1) exp[— 5| x| > k()*T exp[2 ]| X — X, - | %o k(1)*]
-exp[27,, R, k(t)*]
< k(0 exp[—%|x|> k(@)*T exp 2 x]| + 2 11x])) 1 xo]l k(8)*]
-exp [6R3 k(1)*]
< k(t)’ exp[— 3| x|? k(®)*] exp[|| x| k(&)] exp [i([}x] k(2))*].
Thus

[0 (D) {exp exp

Y Nam—9emli= X k@ [ exp[—%|x|*k@)*Texp[]x] k(6)]dx

Um$ Br Um$ Br Uy

<k | exp[—4|x]? k(2] expl x| k()] dx

.
B% R

= 4nk(0® | 1 exp— (k@) expLyk(] dy

o0
=4n | u’exp—ju*expudu
+Rk()
© 82
=4nju2expuexp—%u2du§7.

1
2¢€

Collecting estimates, we have:

2

2 2
”gt'—gt”§= Z “gt,n—gt,nng_i_ Z ”gt,m_gt,m”%§%+£2_<8 s

Un S Br Um$ Br

if t>¢,. Thus | fi, — g,]|o—0 as t— oo, completing the proof.

§ 3. Factorizations of States

With A the CAR algebra based on #(=L,(R%), orthogonal
decompositions of # give rise to (mutually) “anticommuting” sub-
algebras of A which generate 2. Powers shows [5; Theorem 5.4] that
a family of even states, one defined on each of these subalgebras, gives
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rise to an even state of A which is their “product”. This process may be
applied to “decouple” even states “along” an orthogonal decomposition
of #. The state is restricted to the corresponding subalgebras and the
product of these restrictions is formed. If the decomposition of #
arises from a partition of R3, then this “factorization” of the state
amounts to eliminating its correlations between distinct regions of the
partition.

We say that a state ¢ of U is “locally Fock” if the restriction of ¢
to A(M) is normal whenever M arises from a bounded region of R,
where U appears in its Fock representation and the weak-operator
closure A(M)~ of A(M) is taken relative to this representation. For
such a subspace M, A(M)~ is a type I, factor. For a locally Fock state g,
another process is available for forming products along a decomposition
of A arising from bounded regions of IR®. Applying the GNS con-
struction to g, we may suppose that g is a vector state w, | 2. We will note
(Lemma 3.2) that 2(M)~ is a type I factor, again, in this representation
(M associated with a bounded region of R*). Using the simplest properties
of tensor products, we can form the product of the restrictions of w,
to the type I factor A(M)~ and its commutant 2A(M). The restriction
0% of this product to U is the second factorization. Denoting by gy
the product according to Powers, we will see (Lemma 3.4) that o%
and g, coincide. For later application, this identification is needed, as
well as the determination of the commutant of A(M) in A~ preliminary
to it.

If 2 is a collection of regions mutually disjoint in R? (2 is to become
a lacunary paving, at a later stage), and g is an even state of 2, we denote
by o, the (Powers) factorization of ¢ along the decomposition of L, (IR?)
obtained from the regions in & and the complement of their union.
The next five lemmas will establish the existence of the “commutant”
product & for even locally Fock states g.

3.1. Lemma. If {A} is a family of mutually commuting type I factors
acting on a Hilbert space # and g, is a normal state of N, there is a
unique state ¢ of the C*-algebra U generated by {N,} (von Neumann
algebra, if {N,} is a finite family) such that (A4 ... A,) = 0,,(4;) ... 4, (4,),
when A; is in A, and ay, ..., a, are distinct.

Proof. Let f be the finite set {a,, ..., a,} and A, be the C*-subalgebra
of A generated by A,,...,. 4, . Represent A, ,...,. N/, on Hilbert
spaces J,, ..., #,, respectively, so that each is a type I factor with
separating vector. (This can be effected by taking repeated copies of
Na,» if necessary.) In this representation, ¢, = w, |4, for some unit
vector x; in ;. Form #, ® --- @ #,. Then 4, ® --- ® ./, is isomorphic
to the von Neumann algebra generated by A, ..., .4, ;and o,, g - gx,

12
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restricts to the (unique) normal state ¢, of A, such that ¢ (4, ... 4,)
= 04,(A4;)...0,,(4,). (Uniqueness results from the fact that such products
are a total family for this C*-algebra.) If f; C f,, this uniqueness implies
that g, is an extension of g, . Thus the o, define a bounded linear
functional on the norm-dense subalgebra' v 2, of 2. Its unique extension
to U is a state ¢ extending each ¢,. Thus ¢(4; ---4,) = 0,,(4})... 0, (A,
when 4; is in A .

_3.2. Lemma. If  is the CAR algebra based on L,(IR%), A acting on
A is the Fock representation of W, ¢ is a locally Fock state of N, and ©
is the representation of W engendered by @, then there is a (unique) state §
of the norm closure N of the union of the weak-operator closures W(M)~
(relative to #) of those subalgebras of A corresponding to bounded
regions of 1R3, extending ¢ and normal on each such W(M)~. The representa-
tion T of A engendered by § restricts, on U, to (a representation unitarily
equivalent to) m; and n(A(M))~ is a type I factor, when M corresponds
to a bounded region of R3.

Proof. Let #, be the representation space of % and x, be a unit
vector in #, cyclic under #(2) such that §(4)= (#(A4) x,|x,» for each
A in A. Then, with 4 in A, 9(A4) = §(4) = {7(A4) X, | x,>. Thus 7| A com-
posed with restriction to [#()x,] is unitarily equivalent to n. We
complete the proof by showing that [#(Q) x,] = 5.

Since g is locally Fock, 7| 2(M)~ is normal [ 3; proof of Proposition 8]
for each M associated with a bounded region of IR®. Thus #((M)) is
strong-operator dense in 7((M)~). With unions extended over all
such M, it follows that

[7(W xo] = [ v A(WAM)) xo] = [ v 7(AM)") xo] = [A(A) xo] = # -
It follows, too, that n(A(M))~ = 7(A(M)~) is a type I factor.

3.3. Lemma. If U is the CAR algebra based on #, M is a closed
subspace of A, { f;} is an orthonormal basis for M, {g;} is an orthonormal
basis for # OM, W acts on H, in such a way that AW(M)~ is a type 1
factor and some vector state w, restricts to an even state of W(M), then
there is a unitary operator U in (M)~ such that U* =1, Ua(f) U = —a(f)
for fin M, Ua(g) U=al(g) for g in #OM, and W(M)' A U~ is the weak-
operator closure of finite linear combinations of elements of U~ of the
form a'(g;)...a'(g;,,) and Ud'(gy,)...d (Gy,,, . ,)-

Proof. Let E be the projection in (M) with range [ (M) x]. Since
A (M)~ is a factor, A— AE is an isomorphism of 2(M)~ onto A(M)” E.
The unitary operator f— — f on M gives rise to an automorphism o, of
A(M). Since w,|WU(M) is even, w o oy = @, |WA(M). Thus Ax— 0y, (A) x
extends to a unitary operator on [ 2A(M) x] which implements the mapping

! Weuse v and A as well as U and N for unions and intersections.
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AE — oy (A) E of A(M) E onto itself. Hence this mapping and «,, extend
to automorphisms of A(M)™ E and A(M)~, respectively. Letting “o,”
denote, again, the extension to A(M)~ of a,,, there is a unitary operator
U in A(M)~ which implements oy, (since A(M)~ is a factor of type I).
Since a%(4)= A, U? is a scalar; and we may assume that U?=1.

Since U is in A(M)~, U is the strong-operator limit of a net {T,} in
(the unit ball of) A(M). Thus U is the strong-operator limit of the net
{3(T,+ UT,U)} of even elements of A(M). As each even element of
A(M) commutes with W(A#OM), U commutes with WU(F# SM).
Hence U implements the automorphism of 2 induced by the unitary
operator f— — f, g—¢g on #, with f in M and g in # SO M. If A" is the
weak-operator closure of the algebra of finite linear combinations of
elements of the form a'(g;,)...d'(g;,) and Ud'(g;,)...a'(g},,,. ) then each
a'(f), fin M, commutes with 4"; and A" CA(M) A A". Moreover A"
and A(M) generate A~ as a von Neumann algebra. If F is a minimal
projection in (the type I factor) (M)~ and 4 is in A(M), then FAF =aF
for some scalar a. Thus, with B in A4, FABF=FAFB=aFB. Since
finite linear combinations of products AB are strong-operator dense
in A~, FA™F is generated as a von Neumann algebra by FAF (= AF)
and FAM)" F(={aF}). Thus FA"F=AF. If T is in AM) A A",
TF = BF, for some B in A". Since A’ — A'F is an isomorphism of 2A(M)
onto A(M) F; T=B. Hence /" =UAM) A A"

3.4. Lemma. If U is the CAR algebra based on #, U acts on H,,
M, SM, < --- M, are subspaces of # such that W(M;)~ is a type 1
factor and @ is an even vector state w,|W~ of WA, then the product o™
relative to the orthogonal decomposition {Ny, ..., N,, # © M,} of #, where
N;=M;,OM,_, (M,=0), coincides with the restriction 0® to A of the
product of the normal states w.|W(M,), o|N1,...,0|N,, where N
=WAM,)" and N;=WM;_,) AWM)",j=2,...,n.

Proof. Of course @ and ¢® agree on A(M,). Suppose they agree
on A(M;). From Lemma 3.3, .4, is generated linearly by products

a'(gy)...a' (g2, and U;a'(gy)...a'(gap+1) With g; in Njyy I fi, o f,
are in M,

(@ (f)...a'(f)a'(gy)...d'(92,))
=" (@ (f)-..a'(f) eld (g1) - @' (92)
e®(@(fy).-.d' (f) d'(g1) -4 (G2m)

(@ (f)...a' (f) @ (91) .- a'(Gam+1))
=0 (@ (f)...d(f))e(@ (@) a'Gam+1))
=0.

and
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Now U; is a strong-operator limit of even elements, so that
U;a'(g1)...a'(g2m+1) 18 @ strong-operator limit of odd elements. Thus

wx(Uja/(gl)--'al(92m+l))
=0=0%@(fy)...d (f,) U)ao(U;a'(gy)...a' (G2m+1))
=0®%(@(f)...d (f) @(gy)...a (G2m+1)).

Thus ¢® and ¢ agree on A(M,). The argument just given applies, with
A ©M, in place of N;,,, to show, now, that ¢® and ¢* coincide on .

3.5. Lemma. If {%,} (=2) is a family of mutually disjoint bounded
regions in R with union %, M, is the subspace of L,(IR®) (= #) corre-
sponding to Uy v -+ v U,, M corresponds to U, @ is an even locally Fock
state of the CAR algebra A based on H#, W acting on H, is the repre-
sentation engendered by ¢ and ¢ = w. |, §2 is the product of w,|A(M,),
O [(WM) AAM;,)7), j=0,...,n—1, and A, is the C*-subalgebra
of W generated by A(M,) and W(H# 9M) then (~ ) is w*-convergent
on A, the norm closure of V A, to a state §3, and 03 (= 0% | N) coincides

with gy, the Powers factorzzatzon of o relative to the orthogonal de-
composition (# OM, Ny, N,, ...} of #, where N;=M;OM,;_,

Proof. With g, the Powers factorization of ¢ relative to Nl, vy Ny,
H OM,, we have of =gy, from Lemma 3.4, where % —-Q,, |A. Now
0y and g,, agree on . Thus 02|, is an extension of Q,, |21,, when
n<m. From Lemma 3.1, % is normal; and, as it is the unique normal
extension of Q,, from A to A, §2| A, is an extenswn of g2 |20, when
n <m Thus ( ®191) is w*-convergent to a state §3 on A Smce 02|,
=02 |, = o, |9I 05|, and \/ A, is norm dense in A; 08 =33 |A

=05
3.6. Proposition. If ¢ is a quasi-free state of the CAR algebra U

based on A and {M,} is an orthogonal decomposition of A, then ¢*,
the factorization of ¢ relative to {M,}, is a quasi-free state.

Proof. The value of the truncated n-point function of ¢* is a sum
of the values of the truncated n-point function of ¢ restricted to the sub-
spaces M,, from the definition of ¢* and [5; Lemma 5.16]. Thus the
truncated n-point functions of ¢ vanish for n>2; and ¢™ is quasi-free.

§ 4. A Space-factoring Property of Primary Locally Normal States

A primary, locally normal state ¢ of the CAR algebra 2 enjoys
a “clustering property”. A slight generalization [3; Proposition 13] to
type I funnels of a result [6; Theorem 2.5] of Powers states that: if ¢
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is a bounded region of R?, ¢ >0, and A4 is in the unit ball of 2(0,), the
CAR subalgebra of A corresponding to @, then there is a bounded
region ¢ of R? containing (0, such that |o(4B) — ¢(A4) ¢(B)| < ¢ for each B
in the unit ball of 9 (¢'), where ¢’ is the complement of ¢ in IR®. A stronger
result, in the direction of space-factorization, would state: |[o|2, — 0o l
<e¢, where U, is W(O,L O') and g, is the product of the restrictions of ¢
to A(O,) and to A(O’). (We need no longer distinguish between the
Powers product ¢ and our “commutative” product ¢¥). This result
is proved in the proposition which follows. (It contains Derek Robinson’s
extension of the clustering property [7; Theorem 7] in which 4 is not
preassigned; but not Erling Stermer’s result [8; Theorem] for the case
of ITPFI factors.)

4.1. Proposition. If A is a C*-algebra acting on the Hilbert space A,
x is a cyclic unit vector for W, and {4} is a funnel of type 1 factors on H#
with union norm-dense in U; then W™ is a factor if and only if
lw, (U, —wX| A, | =0, for each ay, where U, is the von Neumann algebra
generated by M,, and M,n W~ and w; is the factorization of w, |A”
relative to M, .

We prove this proposition with the aid of the following lemmas.

42. Lemma. If ./ is a type 1 factor acting on a Hilbert space A
with commutant M' (of type 1), R is a von Neumann subalgebra of M,
and (R,) is a decreasing net of von Neumann algebras in M’ with inter-
section A, then

NR, R} =R, Ro}" -

Proof. Viewing B(X") as B(A#)RB(H') with 4 as B(H#)QI and
M as IQB(H'); we may view B(H)R® AR, as the set of those mxm
matrices with entries in £, which yield bounded operators when acting
on the m-fold direct sum of s’ with itself. Thus

ARRE N (ABR) (= F) S B(A)®T = N (BA)OA) .-

Now, ZQ® R, commutes with #'®I; and B(#)R® R, commutes with
I®A,. Thus ¢ commutes with both, and, hence, ,# commutes with
R RR,. It follows that (B RR,) =RRDR, [9; Theorem 12.3];
so that

S = A RRR) =R, -

4.3. Lemma. If {.4,} is a directed family of von Neumann algebras
acting on H, M, S M, if a' < a, and w is a normal functional on {Y ﬂa}”
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such that | ({1\ ,/Za) =0, then lim |w| A, =0. In particular, if A A,

= {AI} and w,, w, are normal states of {\a/ %a}”, lim ||(w; — w,)|4,|| =0.

Proof. Since the unit ball of each .#, is weak-operator compact and w
is weak-operator continuous on it, there is an operator 4, in it such that
w(A,) = |w|4,|. Now {4,} has a subnet {4,} weak-operator con-
vergent to some A. Since {.#,} is directed inversely by inclusion,
Ae /\ M,. Thus 0= co(A)—hmw( )—hm”wl% |. As {ﬂ }

coﬁnal in {,} and |w|4,| < Ha)l% |ifa Za, hm |2, =
Proof of Proposition 4.1. If € is the center of QI_, then

C= N(MAU);

for clearly, % is contained in this intersection, while the reverse inclusion
follows, at once, from the fact that A~ is generated by {.#,}. From
Lemma 4.2, /\ A, —{ My, €} If A™ is a factor, € is the algebra of

scalars, and /\ QI = M,,.Since v, |A~ and w; agree on .#,,, Lemma 4.3

applies; and Ha) |9, — ) |9,] 0.
Assume, now, that Ha) 19, — ) |9,]| 0. If Ce% and Ao € Moy
Ce/a\(e/%’/\QI ); so that w,(4,C) = w,(4y) w(C). As V M, is weak-

operator dense in A, w (AC)=w. (4)w (C), for all 4 in A~ and C
in €. As x is cyclic for 7, it is separating for €. Thus € = {AI}.

4.4. Lemma. If A acting on A is a representation of the CAR algebra,
X is a cyclic unit vector for A, w,|W is a primary, even, locally Fock state
of A, {M,} is a net of subspaces of L,(R®) directed by inclusion, VM,

is dense in L,(IR%), each M, corresponds to a bounded region of 1R3 M,
is the complement of M, in L,(R?), QI =AM, +M,) ,and Q[O = A QI,,,

then 9Ty = A(M,,)". o

Proof. From the hypothesis that x is cyclic for A and w, | is even, the
main automorphism of A [determined by the mapping a'(f)—a'(— f)]
is implemented by a unitary operator on # and extends to an auto-
morphism o of A~. Since w, | is primary, as well, A~ is a factor. Thus
A (A(M,) A A”) consists of scalars. (We make use of the fact that

\a/ A(M,) is strong-operator dense in A~ for this.) Let U, be the unitary

operator in A(M,,)” described in Lemma 3.3. Note, for this, that 2(M,,)~
is a type I factor — from Lemma 3.2 and the fact that w,|2 is a locally
Fock state. Referring to elements of 2~ fixed or transformed to their
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negatives by « as “even” or “odd” elements, respectively, U, is even and
commutes with (M, ). From Lemma 3.3, (20, (M) + U, A_(M)))™ (= 2A,)
commutes with 2(M,,)” when a, <a, where 2, (M) and A_(M) refer
to the subsets of even and odd elements of A (M), respectively. In addition
QTI,, is a von Neumann algebra which, together with (M, )", generates
A, (as a von Neumann algebra). Writing “?1,” for “{;\ A,”, Lemma 4.2
applies; and A 9, = {AM,,) v Ay}, The proof is complete when we

show that %, consists of scalars.

If T is an even element of A,, TeA, for each a>a, and
T=3(T+ «(T)). Now « is weak-operator continuous on 2~ ; and the
mapping A—3(4 +a(A4)) maps A, (M) + Uy A_(M,) onto A, (M)). 1t,
therefore, maps A, onto A, (M])~. Thus Te A, (M)~ (SAM,) A A7)
for each a = a,. It follows that T lies in the center of 2~ and is a scalar.

If T is odd, similar use of the mapping A — % (4—a(A4)) yields that
Te U, A_(M,)~ for each a=a,. Thus U,Te N_(M,)~. We complete
the proof by showing that A A_(M,)” =(0). If 4 is a self-adjoint

a>agp

operator in this intersection, 4 is odd. The set of elements in A_ (M)~
with which 4 anticommutes is weak-operator closed in W_(M;)".
On the other hand, 4 anticommutes with _ (M), where M is a subspace
of M, corresponding to a bounded region of IR®. As v A_(M) is weak-
operator dense in A_(M))~, A anticommutes with A_(M,)~ and, in
particular, with itself. Thus 4 = 0.

4.5. Proposition. If U is the CAR algebra over # (= L,(R%), {M,}
is a net of subspaces of H#, directed by inclusion, corresponding to bounded
regions with union R3, g is an even, locally Fock state of A, N, is the C*-
subalgebra of A generated by W(M,) and W(H OM,), and g, is the
factorization of ¢ relative to W(M,,); then ||o|U, — ¢x|W,| =2 O, for each
ag, if and only if g is primary.

Proof. Passing to the representation of 2 obtained by applying the
GNS construction to g, we may assume that 2 acts on J#,, ¢ is an even,
vector state w, | of A, x is a cyclic unit vector for A, and A(M,)” is a
type I factor. Applying Lemma 3.4, o5 =0%, and ¢ is the restriction
of a normal state g,, of A~ to A. Now ¢, |WU(M,)” = w,|WA(M,)";
and A A, =AM,,)", if ¢ is primary (from Lemma 4.4). Lemma 4.3

a>a .
applies, in this case, and

”QIQIa - Q:ol QIa“ = ”CO,JQI; _é:olm; “ 70 .

If the preceding limit is valid for each a,, Proposition 4.1 applies,
since {A(M,)"} is a funnel of typel factors for A~ and A, is the von
Neumann algebra generated by (M,,)” and A(M,)’ A A". Thus ¢ is
primary.
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§ 5. States With No Long-Range Correlations

Proposition 4.5 assures us that [(¢—¢”)|A(0, v O)| tends to 0,
for a fixed bounded region ¢, of IR?, as the distance d(0,, ¢) between O,
and @ tends to oo, where g is an even, primary, locally Fock state of the
CAR algebra U and g¢* is its factorization relative to 2(0¥,). This norm
will depend in general not only on the separation between ¢, and @
but also on the shape and location of ¢, . It appears, however, reasonable,
from the physical point of view, to limit attention to the class of states
for which the dependence on 0, may be eliminated. We introduce a
function 9,,(d), called the modulus of decoupling for the state , defined by

d,(do) = sup {[(e — )|, v O,)|: 0,0, bounded regions of R3,
(mla ) 2 dO}
where ¢* is the factorization relative to 2(0,). Note that 6, is bounded
by 2.
5.1. Definition. If 6,(d)—0 as d—co, we say that ¢ has no long-range
correlations.
This suggests the study of states of 2 for which J, has a prescribed
rate of decay (at o0). The discussion which follows leads to Theorem 5.5

which is concerned with states ¢ for which 6,(d)=0([logd] @ ")
with a > 0.

5.2. Lemma. If ¢ is an even state of the CAR algebra U, ¢ has no
long-range correlatzons, {J/Z } is a set of mutually-disjoint, bounded regions
of R A, is W v U;), o} is the factorization of ¢ relative to
{U,, .. %} and d;,, is the distance from ;. to U v --- v U;, then

”(Q - Q;+1)'2Ij+1 || = “(Q - Q;)lQI]“ + 5g(dj+1) .
Proof. Tt will suffice to establish
I(Q_Q;«q) (A= “(Q_QJX)'Q[J” +6Q(dj+1) (%)

for self-adjoint elements 4 of the form ) A;;...A; A;,;, in the unit
k=1

ball of A;,;, where A,,€W(%,), since ¢—0;,; is hermitian and
such elements form a norm-dense subset of the self-adjoint elements
in the unit ball of A, ;. If 7 is a state of Aj, from [5; Lemma 5.3],

T|U;®0| () is a state of Wy . As —I=< Y Agy... AyAp =1,
k=1
it follows that

1< Z (Alk"-Ajk)Q(Aj+1k)=T(z Q(Aj+1k)A1k-«-Ajk> <1;

k=1
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sothat ) o(Aj. ) Ay ... Ay is self-adjoint and
k=1

Z 0(Ajii) Ay Ajf[ S T
Thus k=t
Z Q(Alk---Ajk)Q(Aj+1k)— Z Q(Alk)'~'Q(Ajk)Q(Aj+1k)
k=1 k=1 (¥%)
< [le— o)1 .
On the other hand,
o(4) — z Q(Alk'--Ajk)Q(Aj+1k) éag(dj+1)‘ (3x)
k=1

Combining (#*) and (x#x), we have (x), completing the proof.

We describe, now, a paving 2((r,), (d,) of R* depending on the
choice of two sequences (r,) and (d,) of monotonically increasing positive
numbers. Lemma 5.3 below describes conditions on (r,), (d,) under which
2((r,).(d,) is a lacunary paving. Let s, be 3(r, —r,_,). We assume that
d,<s,. The construction proceeds as follows. Let C, be the cube with
edge length r,, center at the origin and edges parallel to the axes of a
Cartesian coordinate system in IR®. Let u, be the greatest integer not
exceeding r,/s,. Place u2 cubes of edge length s, on one face of C, (with
edges parallel to the Cartesian frame) and remove the cubes near the
four edges of that face. Proceed, a face at a time, placing u? cubes and
removing those along edges not on faces already considered. In this
way, we place at least 6u? —12u,(=¢,) such cubes in C,\C,_,. Now
remove cubes until exactly ¢, remain in C,\C,_,. Since (r,/s,)—1 < u,
g rn/Sn 4

6(r/s,)? —24(r,/s,) + 6 < ¢, S 6(r,/s,)* . (1)

Shrink each of these cubes to one of edge length s, — d, keeping the center
fixed and the edges parallel to the coordinate axes. The smaller cubes,
in total, constitute the paving 2((r,),(d,). Let %,,,...,%,, be the
cubes in C,\C,_;.

We estimate the volume in C,\C,_; not covered by %,,, ..., %,
It comes from two sources: the volume not covered by the larger cubes,

:u(cn\cn—l) - cnsrst é V,::’ - (rn - zsn)3
= 52(6(r/5,)* = 24(r,/s,) + 6) < 12577, + 257,
where p is Lebesgue measure (volume) in R3, and the gaps introduced

by shrinking each of the cubes. Each face of a cube is moved in %d,
(parallel to itself) in this process, so that the volume loss introduced
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in this way for each cube is less than 6s2(1d,); and the total volume
uncovered in this way is less than 3¢,s2d, < 18r2d,. In total then, with
U= N U,;,
n,Jj
2., 2 3
W@ AC) k; (12521 + 181¢ dy + 253)
uc) T A

5.3. Lemma. If (r,_,/r,) 1, (d,/s,) = O, and (s,) is monotone increasing,
then 2((r,),(d,)) is a lacunary paving of R

2

Proof. Let r, be 0. From (2), u(%’ A C,)/u(C,) < Zn Ji / Zn: h,, where
g = 12521, +18v%d, +2s3 and h,=s,r7_, <ri —r3_,. Since (g;) and
(h,) are monotone increasing and (g,/h,) — 0; (Z I / Y h ) 0.

If B, is the ball in R® with center the origin and radlus 1r,, then

(a,+b,)/(1 +e,) = u( A C)/u(C) 51, where a,=u A B,)/u(B,),
b, = u( ~(C,\B,)/u(B,), and e, = u(C, \B,)/u(B,). Since a,<1 and
b,<e,<1;|1+e,—(a,+b,)|=1—a,+e,—b,»0; and, thus, a,- 1.

If B, is a ball in IR® with center the origin and B,_, C B,C B,, then

#(%/\Br) > ,"t(%/\Bn—l) _ #(%ABn—l) . #(Bn—l)

wB,) ~ u(B,) B,y u(B,)
_ p@AB, ) a1 1
T uB,y R

Since the diameter of %,, ;1s not greater than ]/5 s,, the outer distance
of %,; is not less than 3, _,,and 2s,/r,, _; -0, we conclude that 2((r,), (d,))
isa lacunary paving.

From the discussion following Definition 2.1, the paving
2,.((r,),(d,) obtained from £((r,),(d,) by excising that portion in
C,,-1 1s, again, a lacunary paving.

5.4 Lemma. If ¢ is an even state of the CAR algebra and g, is its
factorization relative to 2, ((r,), (d,)), then

le— o)1 U@ )| = Y. ¢;0,(d;y). ©)

Jj=no
Proof. Let W,; be Wy Vv -+~ Uy v --- v U,;) and g,; be the
factorization of ¢ relative to {%,,;, ..., %,;}. In the process of shrinking

the initial cubes in C,\C, _, the distance between these cubes becomes d, ;
while the distance to cubes in C,_; \C,_, becomes 3(d,_, +d,). Since
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(d,) is monotone increasing, each cube in C,\C,_, is a distance at least
d, -, from all other cubes of the paving 2((r,), (d,)). Thus

“(Q - Q:uz)lmmz” = 5Q(dno—1) :
Repeated application of Lemma 5.2 yields
”(Q - Q:o3)'91n03)| —_<‘ 25@(dn0—1)? ey
”(Q - Q:ocnn)lmnocno é cnoég(dno—-l)a ceey

“(Q_Q:cn)lmnc" é Z Cj(SQ(df“l)'

J=no

Since V A, is norm-dense in A(%,,), (3) follows.

n2no

For convenient reference, we collect some formulae and limits before
beginning the proof of our main theorem.

d logx—1

__ (p*llogxy — x/logx 4
(e = S e @

dx
It follows from this that

e*°ex s increasing for x=3.

Thus
x/logx 1isincreasing when x=>3,
and x—1
Osx_x_1="1°gx Lo
= logx  log(x—1)  (logx)(log(x—1)) = log(x—1)
1
<—— 0 .
= gl 1) -0 as x—o
Hence

ex/logx

- DlogG—1) -1 as x—o0. 4)

_d_ g*ogx _ (logx—1— 2x™"'logx) o¥/ogx
dx \ (logx)? ) (log x)* .
It follows that x/logx
e
Toadgt is increasing when x> 8. (6)

ex/logx ) X — (2 IOg (log X)) IOg X

X
— 21
logx = °8 < (log x)* logx @

v

X
> 30.
3logx when x =30
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Thus

ex/logx

W -0 as X—o0. (8)

5.5. Theorem. If ¢ is an even state of the CAR algebra U, t—o, is
the one-parameter group of time automorphisms of W generated by the
free Hamiltonian, § is the quasi-free state of W with the same two-point
function as @, 6, is the modulus of decoupling of o, and if §,(d)
=0 ([logd]™"*9) with a positive, then |(¢ — ) (o (A))| >0 as t—oco, for
each A in 2.

Proof. By hypothesis there are positive constants d,, and k such that
8,(d) <k(logd)""*® when dy<d. Given a positive ¢ let d,_; be

e"*e"/(logn)®>. Choose ny(>30) such that d,, _,>d, [see (8)],

1 2 (n+1)/log(n+1)
l(ogin)l € Jown < [ﬁlogn, when n=n, [see (5)], and
0 (210gn)3+a
48k Z —ite

Let r, be r,_; +(logn—1)d,_, when n=ny; and let r,,_, be 0. From
(6) and (8), (d,) is monotone increasing and tends to co as n— co. Thus
the same is true for (r,) and (r, —r,_,). From (5),

dn _ 2 logn 2 e(n+1)/log(n+1) 1 0
s,  \log(n+1) enloen logn —1 e
From (4) and (6),
? logx —1
e"/l‘)g" __ gho/logno 5 e*logx
w (logx)*
n i n+1
< Z loi__l_ej/logj=rn_<_ } logx—l o¥llogx
= 5, (logj)? = . (logx?

é e(n+1)/log(n+1) .

Thus

e(n+1)/log(n+1)

= e Do) _ poflogno w

From Lemma 5.3, 2((r,), (d,)) is a lacunary paving. Since

en/logn -1 +a) n —(1 +a)
5Q(dn—1)§k(10g(m)> ék(zlogn)
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from (7); it follows that

Y ¢0,dy ) S6k Y. (l)z (A@)l

n=ng n=nop Sn n
24k i ry 2/ 2logn\'*®
w0 \(logn—1)d, _, n
0 (logn)2 e(n+1)/log(n+1) 2 210gn 1+a
= 24kn;,0<logn~1 ' e"logn n

© 3+a
<agk Y 28T

n=no n

<eg.

From Lemma 5.4, |[(¢—0*)|W(%)| <&, where o* is the factorization
of g relative to 2((r,), (d,)).

In order to show that |(¢ — ¢) (2, (4))|—0 as t oo, for each 4 in ¥,
it will suffice to prove this for each A in some (norm-) total family (since o,
is an isometry of 2 onto A). We may assume that 4 =a'(f;)...a'(f,),
where 4 and each a'(f;) have norm 1. From the definition of a quasi-

free state, there is a polynomial p, in (;) variables such that, for each

quasi-free state t of A and each set {h,, ..., h,} of n functions in L,(R?),
(@' (hy)...d'(h,)) = pu(t(a (h)) @ (h))) (j < k). By (uniform) continuity of

p, on bounded sets in IR'>, given a positive integer m, there is a positive &
(< %) such that |p,(a;)—p,(a@j)l < % provided |a;|+ |aj/ <4 and

la;,—ajl <e for all j,k(j<k). Choose Z((r,),(d,). as above, corres-
ponding to this ¢ (and to a for the modulus of decoupling of ). Let ¢~
and ¢* be the factorizations of ¢ and ¢ relative to 2((r,), (d,)).

Find g; corresponding to f}, as in Lemma 2.2, such that |g; — fju |2
—0. Then |B,— A,/ —0 as t—oco, where B,=d'(g,)...a'(g,) and
A, =0,(A). There is a positive t, such that |[(¢—¢)(4,— B)| < %, if
t=t,. Now B, is a norm-limit of a sum of products of elements of grade
two or less — each vanishing outside some %,;. Hence ¢ (B,) = ¢™ (B,).
From Proposition 3.6, §* is quasi-free, so that

0" (B) = p, (6™ (@'(g;0) @' (gir)) -
Since
lle—e*)(a'(g;) @' (gi))l <&
and

lo* (@' (g,0) @ (gl + le (@ (9;0) @' (g = 4;
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we have

lle—0)(B)I = lle— ") (B)I+ (@™ — ) (B
< e+ 1p, (0 (@' (950 @' (9x0)) — Pale(@ (9;0) @' (gx))l
=&+ Ip,(0* (@' (g;) a'(gx) — Pale(@ (9;0) @ (i)l

2
< —.
m

Thus |(¢ — 0) (4)] < —, if t = ¢t, and |(9 — ¢) (4,)| >0 as t > c0.
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