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Abstract. We consider the C*-algebras which contain the Weyl operators when the
symplectic form which defines the C.C.R. is possibly degenerate. We prove that the C.C.R.
are all obtained as a quotient of a universal C*-algebra by some of its ideals, and we
characterize all these ideals.

I. Introduction

In a recent paper [1] Slawny derived the following very interesting
result.

There exists a C*-algebra $1 which is such that to every representation
(not necessarily continuous) of the C.C.R. there corresponds a represen-
tation of 91; moreover, 9ί is simple and minimal.

Non degeneracy of the symplectic form which defines the C.C.R.
(see below) seems essential to his derivation; in this paper, we shall not
make this assumption and through a quite different approach we shall
be able to give a description of the C*-algebras which contain the Weyl
operators.

We define a universal C*-algebra which coincides with the one
defined by Manuceau [2] and Slawny [1] in the case where the symplectic
form of the C.C.R. is non degenerate; the definition is specially simple
to handle and in particular we prove that any positive linear form on
finite combinations of Weyl operators extends to a state of this algebra.

Moreover any C*-algebra containing the Weyl operators is the
quotient of the universal one by an ideal which is in some sense character-
ized by its intersection with the center of the algebra.

A section is devoted to the study of central states, and our results
are close of Slawny in the case of non degeneracy.

Finally we make the following remark: Degeneracy of the symplectic
form which defines the C.C.R. has been encountered already in the study
of quasi-free bose gas below the critical temperature [3] and is possibly
interesting to consider in the study of field theory with massless particles.
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Another possible application is the C.C.R. representations occurring in
solid state physics where even the vector space structure of the one
particle state space is replaced by an abelian group structure [4].

II. Mathematical Preleminaries

In this paragraph we collect most of the material we shall need; we
generalize a construction which can be found, e.g. in [2].

First let us define a symplectic group (H, σ) where H is an abelian
group and σ is an application from H x H into R such that :

σ(x,j>)=-σ(j;,x), V x , y e # , (2.1)

σ(x,y + z) = σ(x, y) + σ(x, z) , Vx, y, z e H . (2.2)

Notice that it implies that:

σ(x,0) = 0, V x e Ή (2.3)
and

σ(x, -y) = -σ(x,y) = σ(-x,y)9 Mx.yeH . (2.4)

We shall not assume that σ is non degenerate and we denote by H0

the subgroup of H

H0 = {xeH\\/yεH, exp(2ισ(x, y)) = 1} . (2.5)

Let A(H, σ) be the complex vector space generated by the functions δx,
(x e H) from H to C defined by

" **'

A(H,σ) is an algebra with unit <50 with respect to the product which
satisfies

δx δy = e-iσ(x »δx + y, Vx,yeH. (2.7)

Moreover it is a *-algebra with respect to the involution such that

(<y * = ($_„ V x e H . (2.8)

Note that the δxs are unitaries.
The δxs previously defined are linearly independent and they form

a basis of A (H, σ) any element α of A (H, σ) can be written as

and we shall always assume if not stated otherwise that in the previous
expression the x/s are all different.
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The application H - l ^ from Δ(H,σ) to R +

Σ «Λ. = Σ l«ί (2 10)

is a *-norm, and the completion Δ(H, σ)1 is a *-Banach algebra with
unit as one can easily verify 1 .

For an arbitrary character χ of the abelian group H we shall define τχ

which is a ^-automorphism of A(H, σ} by

τχ is isometric hence it extends to A ( H , σ ) i ; amongst the previous
characters we can consider those of the form

χy(x) = exp(2z<ι(y,x)), V x e t f . (2.13)

Let K be the set of χy(y e H) and K the closure of this set in the dual
group H of H with the discrete topology. Notice that K can be identified
to the dual group of H/H0. Moreover if χy e K, then the corresponding
^-automorphism is inner:

VyeH, V a ε A ( H , σ ) 1 . (2.14)

Later on we shall need the whole set of states of A(H, σ)1 but for the
moment we specialize ourself to a special class, the central states which
satisfy

ω(α 6) = ω(ft α). (2.15)

They can also be defined by the fact that they are invariant by the *-
automorphism τr χ E K. One of these states is specially interesting; it is
defined by

ωQ(δx) = Q, if xeH and x φ O . (2.16)

Actually we have defined the previous state over A (//, σ) but the
following proposition allows to identify the state of A (H, σ) with those
of A(H,σY.

Proposition (2.17). Any positive linear form on A(H,σ) extends to a
positive linear form on A(H, σ)1.

Proof. Indeed, from the Cauchy-Schwartz inequality, one has

Notice that the most general element α of Δ(H, σ)1 is of the form

oo oo

a= Σ αA-, witn Σ |α,| < oc . (2.11)
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for any linear positive form f on A (H, σ) and every x e H hence for
N

«= Σ «A,
i= 1

|/(α)|^/(<50)(| l α f l U / t f o H α l l i (2.18)

and / extends by continuity. Q.E.D.
As a consequence one can equivalently define the central state ω0

by the fact that it is invariant by any *-automorphism τr

The norm || || 1 is not a C*-algebra norm2; hence is not isometrically
isomorphic to an algebra of bounded operators. We have to find a
C*-algebra norm and the aim of the next section is to solve this problem.

III. Minimal Regular Norm

We shall follow a standard procedure to define a C*-algebra norm on
Δ(H, σ)1, (see e.g. [5], p. 260) but we need the following lemma, which
tells us that Δ(H, σ)1 is reduced.

Lemma (3.1). Let a E Δ(H, σ}\ a φ 0, then

ω0(α*α)>0

where ω0 is the central state defined previously.

The proof is obvious according (2.11) and (2.16).
The minimal regular norm on Δ(H, σ)1 is then defined as follows:

Γ)1 (3.2)

where ̂  stands for the set of states of A(H, σ)1: from Lemma (3.1) || ||
is a norm. Moreover it is a C*-algebra norm (cf. [5], p. 261) and one has

1 1 * 1 1 ^ I M I i . (33)

We shall denote by Δ(H, σ) the completion of Δ(H, σ)1 or equivalently
of Δ(H, σ) with respect to this norm. By Prop. (2.17), any linear positive
form on Δ(H, σ) extends to a positive linear form on Δ(H, σ).

The next proposition characterizes the representations of A (H, σ)
and will be needed to describe the different C*-algebra norm on Δ(H, σ).

Proposition (3.4). Let U be a Weyl system, viz U is a mapping of H
into the group of unitaries of an Hilbert space J^ such that:

U(x) U(y) = exp(-iσ(x,y)) U(x + y) (3.5)

2 Choose e.g. a = δ0 + δy — 0_y yeH and y Φ 0.
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then

i = l

extends to a representation of A(H, σ)
N

Indeed ifa= £ α f <5Xι e J (H, σ)
ΐ= 1

||π(α)|| = Sup ]/(ψ\π(a*a)ψ)
ipetf (3.7)

:g Sup |/ρ(α*α)= ||α|| .

We are now in a position to prove that the norm || || is maximal, more
precisely

Corollary (3.8). Let || ||0 be a C*-algebra norm on A(H,σ) then for
any element a e A (H, σ)

Indeed let A(H,σ)° be the closure of A(H,σ) with respect to || ||0;
it is a C*-algebra which has an isometric representation π and x e H
-+π(δx) is a Weyl system.

Corollary (3.9). Let \\ -1|0 be a C*-algebra norm on A(H, σ) then there
exists an ideal J> in A(H, σ) such that

Proof. See Dixmier 1.9.13. The next result will be of interest later.

Proposition (3.10). Any *-automorphism of Δ(H,σ] extends to a
^-automorphism of A(H, σ).

A(H,σ) we defined is actually the C*-algebra of the Weyl group
with the discrete topology; hence there is no connection between the
topology of H and the topology of A(H, σ); in this respect let us mention
the following result:

Proposition (3.11). Let H' a proper subgroup of H; then

more precisely, we have

U ^ - α l l ^ l , \ / a e A ( H \ σ )

if x e H, x φ H'.
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For all α e Δ(Hr, σ), one has

where ω0 is the canonical central state of Λ(H, σ) (2.16); because
ω0(α*α)^0 and ω0(α*(5x) = ω0(5xα) = 0 (because xφH'). One then has
|| α — δx\\2 ^ 1 and the proposition follows from the continuity of the map"

IV. Structure of the *-Ideals of Δ(H, σ)

According to Corollary (3.9), it is important to characterize the
*-ideals of A(H, σ) such that Δ(H, σ)r\J>= {0} in order to find all the
C*-algebra norms on Δ(H, σ). For the moment we omit the conditions
Δ(H, σ}r\^= {0} and characterize all *-ideals of Δ(H, σ). In order to
achieve this goal we shall introduce a mean over the algebra. This allows
us to use similar techniques to those used in [6], Chapter III, § 5.2.

Definition (4.1). Let Jt be the linear application of Δ(H,σ] onto
Δ(H0)

3 defined by:
' N \
V Ί S I V I S .) /i, dγ = > λjύr .
ί-j I *ι I L~ί } -xj

One has the following theorem:

Theorem (4.2). i) M is a linear continuous application with respect
to both norm \\-\\ and \\-\\i. Let us again denote by Ji the continuous
extension of M to Δ(H, σ) or Δ(H, σ)1.

ϋ)
iii)
iv) Jί is faithfull and positive.
v)

Moreover A (HQ) is the center ^ of Δ (H, σ).
vi) Vα e A(HQ), V f c e A(H,σ) one has

vii) for every central state ω of A(H, σ)

viii) Let ω be a state over Δ(H0), there exists an unique central state ω
of Δ(H, σ) which extends ω:

ω = ω°«
3 Δ(H0) is exactly Δ(H0,Q\ see (2.5). It is an abelian *-algebra contained in Δ(H,σ).
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Proof. Continuity with respect to the norm || || t is obvious. Moreover
we note that from Proposition (3.10)

||τ»||H|α||, V χ e H , a e Δ ( H , σ ) . (4.3)

This and the continuity of χ eK-+τχ(a\ a e A(H, σ) allow to define the
following Bochner-convergent integral in Δ(H,σ)

m(α) = J dχ τχ(a), Vα 6 A (H, σ) (4.4)
K

where dχ is the normalized Haar measure on the compact group K.
Moreover m coincides with M and

| |m(α) | |g | |α | | , a e A ( H , σ ) (4.5)

this proves i) and we have

j((a) - J dχ τχ(a), a e Δ(H,σ). (4.6)
K

ii) and iii) and positivity of Jt are now obvious. The faithfullness of Jί
can be proved as follows: Let a φ 0, α 6 A (H, σ), there exists a state φ
of A (H, σ) such that:

φ(α*α) = ε>0. (4.7)
Moreover since

χ^φ(τx(a*a)) (4.8)

is continuous, there exists an open neighborhood i^ in K of the identity
such that

φ(τχ(α*α))^y, Vχ 6 T (4.9)

hence

(4.10)

To prove v), we note that A(H0)ζ^. Moreover J((Δ(H9σ)) =
hence by i)

Jί(A(H,σ)}QA(H0). (4.11)
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if z-ear
τ,(z) = z, V χ e K (4.12)

by the continuity of χ-+τχ(z)\ this is still true for χ e X . Consequently
by (4.6)

Jί(z) = z for ZE^ (4.13)
so that

% = .M (&) c Jί(Δ (H, σ)}. (4.14)

This completes the proof of v).
vi) and vii) are obvious and viii) follows immediately from vii). Now

we are in position to prove the central result of this section, namely (see
also [6] for similar techniques):

Theorem (4.15). Let ^ be a closed *-ideal of A(H0}; there exists a
closed *-ideal /n in Δ(H, σ) such that

ii) For every closed *-ideal / of Δ(H, σ) such that

one has

Moreover there exists a closed *-ideal /f

n such that
iii) For every closed *-ideal / such that

one has

Let /n be the set of all ae A (H, σ} such that

Jf(aδx)eκ, V x e H . (4.16)

Since a-*Jl(ab^ is linear and continuous, and by invariance of Jί
with respect to the ^-automorphisms τχ, χe.K, /n is a closed *-ideal
of MH~σ].

i) is obvious. In order to prove ii), let / be such that

clearly since / is a closed *-ideal τκ(/} £ / for χ e X hence

Jί(a)= [dχτχ(a)εf for α e /
K

and since aδxe/ for every x e fί:
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On the other hand

J((aδx)eA(H0) (4.17)

hence ae /n.
Let now /'n be the closed *-ideal generated by ^ the following

*-ideal is dense in /'n :

(4.18)

Let α e4> ^(α<5x) (x e H) is in ̂  [(4.2), vi)]. Consequently by continuity
of a-^J^(aδx]

/nί/n (4.19)

Moreover

iii) follows from the fact that /'n is the intersection of the set of ideals
whose intersection with Δ(H0) is .̂

Corollary (4.21). Let £f (resp. ^0) be the set of maximal *-ideals of
A(H,σ) (resp. A(H0)) and {0}. The correspondence

is a one to one map of ̂  onto £f0.
More precisely we have

i) // / is maximal in A(H, σ) then /'r^A(H0) is maximal in A(H0}.
ii) If ^ is maximal in A(H0) then there exists a unique maximal *-ideal

such that

iii) For every closed *-ideal / of A(H,σ\ / = {0} iff

Let us show i): assume / is a maximal *-ideal of A(H, σ) then / is
closed; let n be a *-ideal of A(H0) such that n^/r^A(H0); consider /n

(Theorem 4.16), it contains / and it is strictly greater, hence #n = A (H, σ)
so that <n = A(H0).

Let us show ii): Let ^ be a maximal *-ideal of A(H0). Let / be a
* -ideal of A(H<σ) such that /ϊ/w, then

hence

since A(H0) contains the identity / = Δ(H,σ). Consequently /n is
maximal.
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Finally, let / be another *-ideal maximal in A(H, σ) such that

then

/ =/n by maximality of/.
To prove iii), it is sufficient to prove that /{Q} = {^}', indeed if

jc e /{0} then Jt* jc e /{0} and Jί(x* x) = 0, then Λ:* jc = 0 and jc = 0 [Theo-
rem (4.2), iv)].

In the following corollary we get the result which states precisely in
what sense the C*-algebra is the smallest amongst all C*-algebra con-
taining the Weyl operators.

Corollary (4.22). // ||| ||| is a C*-algebra norm which coincides with
the usual norm on A (H0), then they coincide everywhere.

Proof. By (3.8)

hence ||| ||| extends to Δ(H, σ) as a regular pseudo-norm and

Let / = {a eΔ(H, σ) \ |||α||| = 0}; it is a closed *-ideal. Assume that
α 6 / n A (H0) and α Φ 0, then

0 = |||α||| = | | α | | Φ θ .

We get a contradiction. Hence the corollary.

Corollary (4.23). // σ is regular (H0 = {0}), then there exists a unique
C*-algebra norm on A(H,σ): it is the minimal regular norm.

Corollary (4.24). Δ(H, σ) is simple iff HQ = {0}.

This follows from [(4.21), iii)] and the Gelfand-Mazur Theorem [5],
p. 175.

Corollary (4.25). Let Δ(H, σ)2 be the closure of Δ(H, σ) with respect
to the norm (see [2]J

| |α||2 = l/ω0(α*α)

where ω0 is the canonical central state (2.17), then:

}1 ς A(H7σ) ζ

The first inclusion has been already given in § 3 the second one can
be proved as follows: (a\b) = ω0(ab*} is a scalar product on A(H,σ)
and Δ(H, σ) owing to the faithfulness of ω0. Moreover, ||α|| ^ ||α||2 shows
that Δ(H, σ) is dense with respect to the norm || ||2.
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V. ^-abelianness of K

We previously mentionned that the set of K invariant states of
, σ) is just the set of central states. We take advantage of this fact

to prove the following result:

Lemma (5.1). K is a group of ^-automorphisms of A(H,σ) which is
Jl-abelian. See [7], p. 430.

This follows immediately from the fact that if μ is the mean over K
for any state ρ of A (H, σ) one has:

μ(ρ(τχ(a))) = ρ(ΛT(α)), α e A(H, σ) (5.2)

and Theorem (4.2), v).
This allows us to make use of the now classical results about

asymptotically abelian systems, see e.g. [8]. In particular we have the
following results.

Corollary (5.3). Let <& be the set of central states and ωeΉ; let
Jήfωί Πω, Ωω, Uω be the representation space, the representation, the
cyclic vector induced by ω and the unitary representation of K imple-
menting the τχ"s. Let Eω be the projection onto the set of vectors in J^ω

invariant by all the t/ω(χ)'s, ^ω the center of Πω(A(H,σ)}"; then the
following are equivalent:

i) ω is extremal in Ή.
ii) Πω(Λ(H, σ)}"vUω(K) is irreducible.

iii) ££ω is the scalars (ω is a factor state).
iv) Eω is one-dimensional.
v) ω(α b) = ω(α) ω(6), V α g J(H0), b e A(H,σ).

vi) The restriction of ω to A(H0) is a pure state.
vii) The set { x \ x E A(H, σ), ω(x* x) — 0} is a maximal ideal.
Moreover if ωί? i— 1,2 satisfy one of the previous equivalent con-

ditions, then the following are equivalent:
a) ωl is quasi-equivalent to ω2.
b) ω! is unitarily equivalent to ω2.
c) ω! =ω2.
d) ω,
e) ail [ A (HQ) is equivalent to ω2 [ A(H0).

Proofs of i) to v) are immediate if one notes that

where Jω is the canonical involution given by the Tomita theory [9], so
that jς is contained in Uω(K)'

vi) is equivalent to v) by (4.2).
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vii) is quasi-equivalent to vi) by Theorem (4.15). For the last part,
see e.g. [8]. _

The decomposition into extremal K invariant states or equivalently
in extremal trace states is explicitly given by the following

Proposition (5.4). There exists a canonical one to one map between
the set of central states and the Radon measures over the spectrum ^ of
the abelian C*-algebra A(H0) such that

ω(α) - J ρ(α) dmω(ρ] Vα 6 Δ ( H 9 σ ) .

Moreover, let us define the following central state ω° of A(H, σ)

Ί A Λ ) = Σ *.i (5.5)j I Xι I Z—l I v '

1 / i,xleH0

[see Proposition (4.2), viii)]; its restriction to A(HQ) is pure according to
Corollary (5.3), v). Now let ρ be an arbitrary extremal central state; then
one has

ρ = ω°cτ χ (5.6)

where χ is the character of H0 defined by

ρ(δx) = χ(x). (5.7)

Hence we may rewrite Proposition (5.4):

Proposition (5.8).4 Let ω be an arbitrary central state; then there
exists a probability measure on H0 such that

ω(α) = ω(ΛT(α))= J ω° o τχ(J((a)) dmω(χ).
Ho

This decomposition is into disjoint factor states.
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