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Abstract. We examine spatially homogeneous cosmological models in which the
matter content of space-time is a perfect fluid, and in which the fluid flow vector is not
normal to the surfaces of homogeneity. In such universes, the matter may move with
non-zero expansion, rotation and shear; we examine the relation between these kinematic
quantities and the Bianchi classification of the symmetry group. Detailed characterizations
of some of the simplest such universe models are given.

1. Introduction: Covariant Formalism

In a previous series of papers ([1-3]), exact solutions of Einstein's
field equations -

Rah-\Rgab + Λgah=Tah (1.1)

were studied under the assumptions that
(1) the matter takes the ''perfect fluid" form:

Tab = μuaub + p(gab + uaub), uau
a=-ί, μ>0, p^O (1.2)

where ua is the fluid 4-velocity, μ the energy density and p the pressure;
(2) space-time is locally invariant under a group of isometries G3

simply transitive on spacelike surfaces S(ί), i.e. space-time is spatially
homogeneous;

(3) the 4-velocity ua is everywhere orthogonal to the homogeneous
surfaces S(t).

In this paper, we study a wider class of spatially homogeneous
cosmological models: we maintain conditions (1) and (2), but drop (3).
This allows a wider variety of behaviour, for when (3) is dropped, the
fluid may have non-zero vorticity and acceleration. Further, such a
universe may appear to be inhomogeneous to a fundamental observer
(e.g. number counts of radio sources or galaxies will look inhomogeneous)
even though the space-time and its contents are spatially homogeneous
in a strict mathematical sense. Our discussion supplements previous
discussions of such universes (see e.g. [4-6]).

The immediate geometrical objects defined in a space-time in which
(1) and (2) hold are the surfaces of homogeneity S(t) and the fluid flow
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vector ua. The surfaces of homogeneity determine a unique future directed
normal vector field na, nana= — 1, which is geodesic and rotation-free1:

na

ibn
b = 09 n[anb;c] = 0. (1.3)

Hence n [ β ; b ] = 0, which shows there locally exists a function f such that

na= -t~ β , nana= — l=>w e f e = 1. (1.4)

The surfaces S(t) are then the surfaces {t = constant} the time parameter t
can be chosen as any C 2 function t(t) such that dt/dtΦ 0. All geometrical
and physical quantities are invariant on the surfaces S(ί); for example,
μ = μ{t\ p = p(t). The metric tensor in these surfaces is hab = gab + nanb

(this is the 3-dimensional symmetric projection tensor which projects na

to zero: habn
b = 0). For any function f(t), f,a = (df/dt)tfa, so by (1.4)

/ =/(*)=>/,« = -na(df/dή*>f,an
a = df/dt, f>ah\ = 0. (1.5)

The fluid flow vector ua is uniquely defined as the future directed timelike
eigenvector of the Ricci tensor. The projection tensor hab = gab + uaub

projects into the instantaneous rest spaces orthogonal to ua(habu
b = 0);

the covariant derivative .au
a along the fluid flow lines is denoted by a dot,

e.g. the fluid acceleration vector ύa is ύa = ua;bu
b (see e.g. [7,8]).

The relation between ua and na is determined by
(a) the hyperbolic angle of tilt β, where

coshβ =-uana9 β(t)^O, (1.6)

and by the direction of tilt, specified either by
(b) the direction ca of the projection of ua in the surfaces S(t):

o r b y δβτf = O,S'Zβ=l, (1.7)

(c) the direction ca of rf perpendicular to u"2:

Then one has *>*= - s inh/k"=>c a l / = 0, cac°= 1. (1.8)

+ sinhβcα, na = coshβua~sinhβca. (1.9)

The condition (3) that ua be perpendicular to S(t) is the condition
ua = naoβ = 0; these were the models studied in [1-3]. We now wish to
concentrate our attention on tilted homogeneous cosmological models
(or "tilted models"), i.e. those in which (1), (2) hold and

uaή=naoβ>0. (1.10)
1 It is rotation-free because it is normal to the surfaces S. It is geodesic because it is

orthogonal to a family of 3 Killing vector fields ξVa (v = 1, 2, 3) which are linearly independent
at each point; for ξan

a = 0=>ξva.bn
a + ξvan

a.b = 0. Multiplying by n\ ξv{a.b) = 0=>ξVan
a.bn

b = 0
for v = 1,2, 3. Our notation is, as far as possible, identical to that of [1-3].

2 The — sign is included for later convenience (cf. Fig. 1).
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Fig. 1. In a tilted homogeneous cosmology, the normals rf to the surfaces of homogeneity
S(t) make a hyperbolic angle β with the fluid flow vector wα; the unit vectors ca, ca are
coplanar with ua, na. The 2-surface in S(t) perpendicular to cα, ca is spanned by the tensor pab

When this condition is satisfied, ca and <f are uniquely defined by (1.7),
(1.8), and (1.9) expresses the way in which ua is tilted with respect to the
surfaces S (see Fig. 1). For some purposes it is useful to think of the
factor y ΞΞcosh/? instead of β; then sinh/? = (y2 — 1)% and γ is the usual
relativistic contraction factor for the relative motion (sometimes called
the "peculiar velocity") of the fluid with respect to the homogeneous
surfaces (ua = γ(na + vca), where the 3-velocity v = vc is related to γ by

γ = (l-υ2)-*).
Combining (1.5) with (1.9), we see that

f = f(t)=>f'=f9atf = coshβdf/dt, lah\ = sinhβdf/dtcb. (1.11)

This shows how tilted models will in general appear ίnhomogeneous: an
observer moving with 4-velocity ua will assign to the (homogeneous)
density μ(t) a spatial gradient of magnitude sinhβ dμ/dt, in the direction ca.
To complete the algebraic relations, note that (1.9) implies

ca= - (1.12)

The first covariant derivative of rf is simply [because of (1.3)] the
second fundamental form θab of the surfaces S(t):

= 0 . (1.13)

Its trace is θ = θa

a, and its trace-free part is σab = θab-j θhab. By (1.9) the
first covariant derivative of ua is, on using (1.5) and (1.12),

Ua-,b= -dβ/dt canb + coshβ θab + sinhβ ca.b. (1.14)

From this, one can obtain expressions for the fluid kinematic quantities
([7, 8]) on using (1.9), (1.12) and (1.13). The acceleration is

ύa = ca d(sinhβ)/dt + sinhβ cosh/? θabc
b + sinhβ(ca)', (1.15)
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the expansion Θ = ua

;a is

θ = d(coshβ)/dt + coshjS θ + sinhβ ca;bh
ab, (1.16)

and the vorticity vector ωa = \ ηabcduhuc;d is

ωa = sinhβ%ηabcdubcc;d. (1.17)

The expressions for the expansion tensor θab and shear tensor σab,

θab = KCK "(c d) = U(a;b) + U(aUb), Oab = θab - ^θhab , (1.18)

are somewhat more complex. Eqs. (1.15), (1.17) immediately show how
the fluid in a tilted model can have non-zero acceleration and vorticity
from (1.17), the projection of ωa in the ca direction is

caω
a = sinhβcoshβ^ηabcdcanbcc;d= -cothβnaω

a. (1.19)

From the second expression, one sees that the vector ωa lies in the
surfaces of homogeneity if and only if it is perpendicular to the tilt
directions cfl, ca. One may alternatively give the vorticity by specifying
the vorticity tensor c d . ίΛ Λ m

U>ab = VabcdM U = «[α;6] + U[aUb] . (1.20)

Relations (1.18), (1.20) show that σα

α = 0, σab = σ(ab), ωab = ωm, σabu
b = 0

= ωabu
b\ from (1.9) one has then

σab*b= -σabc
btznhβ, ωabn

b= -ωabc
btanhβ. (1.21)

It will be convenient later to consider average lengths Z(ί), ΐ(t) defined
(up to a multiplicative factor) by ΓΓ1 = %θ(t), dϊ/dtΓ1 = ?θ(t). They
represent respectively the volume behaviour of the fluid congruence and
the normal congruence (see [7, 8]).

The components uaT
ab.b = 0 and hc

aT
ab

;b = 0 of the conservation
equations Tab

;b = 0 for the perfect fluid (1.2) take the form

) , = O. (1.22)

Defining functions w(ί), At) from μ(t), p(t) by

Eqs. (1.22) become [using (1.11)]

coshβd(\ogw)/dt + θ = 0, sinhjgd(\ogr)/dtca + ύa = 0 (1.24)

and one can combine Eqs. (1.22) to give the relation

ύa = tanh β dp/dμ θca. (1.25)
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This shows that in an expanding tilted universe, either ύa φ 0 or dp/dμ = 0.
Clearly ύa = 0 if p = 0; for realistic equations of state with pή=0, an
expanding tilted universe will have non-zero acceleration. Further, (1.25)
shows that ύa is parallel to ca. It now follows from (1.20) and (1.14) that

K Kd ωcd = K Kά u[c;d] = sinh/? ha

c hb

d c[c;d] (1.26)

and from (1.18), (1.25) and (1.14) that

hb

d cic;d)- θ s inh 2 β[\-η f\ ~cah (1.27)

by (1.21), these components are sufficient to determine ωab and σab (note
that kkσcά i s n o t necessarily trace-free; in fact, hcdσcd = ncnάσcd

= tanh2βσab cacb).
Combining (1.24) with (1.15), (1.16), the conservation equations

take the form

\ ( ϊ 3 h β ) + t h β h a b = 0, (1.28)

4τlog(r ύnhβ)ca + (cj + coshβ θabc
b = 0. (1.29)

at
To clarify the meaning of these equations, we introduce the projection
tensor 7 r „ « (Λ ^ m

Pab = Kb- cacb = hab- cacb (1.30)

which projects at each point into the 2-space perpendicular to ua and na

(this is uniquely defined when β > 0). Multiplying (1.29) by ca one obtains

^ abc
b = 0 (1.31)

while multiplying by pa

b shows that

pa

b(cby +cosh βpa

bθbcc
c = 0

or equivalently, combining (1.29) and (1.31),

(cj= -coshβ θabc
b + cac

bθbcc
c. (1.32)

Thus two of the conservation equations determine the rate of rotation of
ca along the fluid flow lines in a way which is independent of the equation
of state of the fluid. The other two, namely (1.28) and (1.31), determine
the evolution of the fluid quantities and the angle β, once an equation of
state p = p{μ) is specified3. The form of (1.31) shows that β is either zero
or non-zero for all ί, i.e. a tilted universe model stays tilted.

3 One can re-express (1.28) in the form (wl3)' = 0, which shows that w/3 stays constant
along the fluid flow lines. Note that by (1.23), one can normalize r, w so that rw = μ + p.
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Finally we note that in a tilted universe model with perfect fluid
stress tensor (1.2), the stress tensor takes the form

{ ) + τίab (1.33a)

when decomposed with respect to the vector rf (cf. [7, 8]), where

sinhβcoshβcα,

, πab = (μ + p)sinh2β(cacb-±hab). '

By (1.2), (μ + p) > 0, so (1.33) shows

qa*O, πabφθ,

i.e. in this frame, the stress tensor of a tilted cosmological model is that
of an imperfect fluid with particular equations of state. Using (1.33), one
can write down the components naT

ab

;b = 0 and ha

dT
db.b = 0 of the

conservation equations: they are

( 1

+ (μ + p)(cosh2βθ + smh2βθabc
acb + smhβcoshβcb.b) =

governing the rate of change of the total energy density μ, and

((μ + p)ύnhβcoshβca\bn
b + (μ + p)(smhβcoshβ(θa

b + θha

b)cb
11 34 D)

governing the rate of change of the momentum qa of the matter. These
can be rewritten in the form (1.28) (relating dμ/dt and dβ/dt), (1.31)
(relating dp/dt and dβ/dt), and

cd.b nb + θd

b cb - cd θab cacb + t a n h β hd

c cc.b cb = 0 (1.35)

[which is equivalent to (1.32)]. One sees from these relations that if the
pressure is constant (in particular, if it vanishes) the rate of change of β
is determined by θabc

acb alone; and that one could instead of specifying
an equation of state p(μ), specify β as a function of t (e.g. specify that
β = constant > 0), Eqs. (1.31) and (1.28) then determining an implicit
equation of state which will lead to the specified β(t).

2. Tetrad Description

To examine the classification of the spaces according to the group
of isometries acting, it is convenient to introduce various tetrads,
i.e. various bases of vectors {Ea}, a = 0,1,2, 3. We denote the derivatives
of any function / in the basis vector directions by daf, so if Ea

ι are the



Tilted Homogeneous Cosmological Models 215

components of the vectors {Ea} in a local coordinate frame, daf
= Ejdf/dxi.Ύhe inverse matrix will be denoted by Ea

h so Ea

iEa

j = δi

j.
Any tensor with coordinate components Tι'"\ z has tetrad components
Ta"V..d defined by Ta"'bCmmmd = Ea

t... Eb

i r~\mmlEc

k... Ed

ι. Thus the
metric tensor components gab,g

ab are defined by

gab = Ea-Eb = Ea

ιEbJgiJ, g°b = E°iE»jg
ii=>g°bgbc = d'-c, (2.1a)

which imply the inverse relations

9ίj = E\ Ebj gab, gV = Ej Ej gab. (2.1 b)

The differential properties of the basis may be characterized by the
rotation coefficients Γabc or Γa

bc, where

Γabc = EJEciijEJ, Γ"bc = g"<>Γdbc. (2.2)

Thus Γabc is simply the Eα-component of the covariant derivative in the
indirection of the Ec-vector. Alternatively one may consider the basis
vector commutators. For any vector fields X, Γ, the commutator [X, F]
is the vector field with components

[x, rp = r.j xj - x\j γj = Y\J xj - x\j γj. (2.3)

It may also be characterized as the Lie derivative Lx Y of these vector
fields ([9,10]): LXY= [X, F], Applying (2.3) to the basis vectors {Efl},
we define commutation functions γa

bc, γabc by

[E«, Eb~] = fab Ec, fab = γc

[ab], ycab = gcdy
d

ab. (2.4)

It follows from (2.2) that

y\c = Γa

bc - Γchoγabc = Γabc - Γacb (2.5)

then the relations gij;k = 0 show that

dbgac

 = rabc + rcba<>rabc

= WbQca + Scgab-dagbc) + \ (γabc + ycab-ybca).

Taking the tetrad components of the curvature tensor, which we
define by the Ricci identity

Vb

;cd-Vb

;dc=-Rb

ecdV°, (2.7)

and contracting, one obtains the field equations (1.1) in the tetrad form

ddΓcb- dcΓdb- ΓcsΓdb + ΓcbΓsd =Tdb-± Tgbd + Λgbd. (2.8)

The identities Ra

[bcd] = 0 are equivalent to the Jacobi identities

[Eb, IEC, EJ] + [Ed, [Eb, £ J ] + [Ec, [Ed, EJ]
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To express the spatial homogeneity of the universe models, we restrict
the bases we consider to those which are invariant under the group of
isometries. One way of obtaining such a basis is to choose the basis
arbitrarily at one point in each surface S(t\ and then to move it over the
surfaces S(t) by the action of the group. It then follows (cf. [1]) that the
γa

bc are functions only of t and Killing's equations then show that the gab

are functions only of t. Hence for such bases,

gab=gab(t), fab = fab(t)=>dcgab=dcgab(t), rabc = rabc(t). (2.10)

Clearly the bases are determined up to a Lorentz transformation whose
coefficients are functions of t only; Eq. (2.10) expresses the homogeneity
of space-time on the surfaces S(t).

To classify the groups of isometries, we consider a sub-basis of vectors
{Eμ} which spans the surface S(t) at each point, and is invariant under
the group. Their commutators will be linear combinations of themselves
(this follows immediately from their geometric interpretation as Lie
derivatives), i.e. \Eκ,Eμ~\ =ψκμEv where ψμv = ψμv(ή. Following the
procedure of Schϋcking, Kundt and Behr as in [1], we decompose the
yκ

μv into a symmetric relative tensor nμγ and a relative vector aκ:

where nμv = nμv(t) = niμv\ aκ = aκ(t). The characteristic equation for nμv

is - λ2 + λ2 n + λ N + det naβ = 0, where n = na

a,N=\ {naβ naβ - n2). The
Jacobi identities (2.9) for the vectors {Eμ} are

naβaβ = 0. (2.12)

One can classify the solutions of this equation as in Table 1, giving the
Bianchi-Schucking-Behr classification of group types (cf. [1]). As the
group action is analytic, the group type remains constant (i.e. is in-
dependent of t).

Table 1. Classification of groups into classes A and B, and group types I to IX. The para-
meter h is defined by h = —a2/N, where a2 = aκaκ; Bianchi type III is type VΊh with h = — 1

Group class Group type

Class Aoaκ = (

Class B o α κ φ 0 dQtnaβ =

IX:

VI0:
II:

VI,:

IV:

detrcα/3>0

N>0

N = 0,n>0

N>0

N = 0,n>0

VΠI:det>zα/3<0

VIIo:Λf<0

I: N = n = 0

Yllh:N<0

V: N = n = 0
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One way of completing a triad {Eμ} to obtain a complete basis of
vectors is to add the normal vector n, making a ''normal basis" {Ea}
= {n,Eμ}. When β~0, there is no other compelling choice, but when
β>0 the choice is not so obvious; this basis is closely related to the
symmetry properties of the space-time, but not to the properties of the
fluid. Two alternatives are to use a "tilted basis" {Ea} = {r~ίu,Eμ}>
where the timelike vector is parallel to u and so is not orthogonal to the
spacelike vectors, or to use a "fluid basis" {Ea} = {r"1!!, Eμ}, where the
vectors {Eμ} are orthogonal to u and so do not span the surfaces S(t).
The inclusion of the factor r(t) [defined by (1.23)] is in order to simplify
the tetrad form of the conservation equations. A particular choice of the
time coordinate t can conveniently be associated with these two bases,
by defining ί(ί) to satisfy the relations

t,aEo

a = tjr-1 ua) = lodt/dt = r(coshβ)~ι. (2.13)

We shall restrict the bases we consider to ones in which the triads
{Eμ}, {Eμ} are orthonormal triads {eμ}, {eμ}. For such a normalized
normal basis {Ea} = {n, eμ], the components of hab are haβ = e(χ-eβ = δaβ,
and the metric components are

0βft = d i a g ( - l , + l , + l , + l ) . (2.14)

One finds from (2.2)-(2.6) that

ln,eμ] = (εμ

v

σCF-θβ

v)ev, (2.15)

where Ωσ = εσμveμ

ί evi;jn
j is the rate of rotation of the {eμ} along the

normal congruence; the spatial commutators are given by (2.11). Using
this basis one can write out the field Eqs. (2.8) and Jacobi identities (2.9)
in tetrad form (in effect, one generalizes [1] to the case of an imperfect
fluid (1.33)). One obtains the propagation equations

γ P (2.16a)

don
aβ + 2nf* εP)yπ Ωπ-2ny<"σβ)y + $rfβθ = 0 9 (2.16b)

σaβσaβ + ±μ(l + 2sinh2β) + %p(l + ismh2β) = Λ, (2.16c)

+ 2σκ

(β εδ)τκ Ωτ + 2ετσ(β nδ)

τ aσ - 2nδμn
μ

β

+ nnβδ+±δβδ{2n«*nκτ-n2) (2.16d)

+ (μ + p)sinh2β(cβcδ-±δβδ),

(note that doaΛ = daJdt, etc.), and the constraint equations

(2.17a)
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Comparing (2.16 c, d) for β > 0 and β = 0, one sees that the normals in a
tilted model tend to contract faster than in the corresponding model
without tilt, and that tilt tends to cause distortion of the normal con-
gruence. Eq. (2.17 a) determines the magnitude (μ + p) sinh β cosh β
of qa by the relation

(μ + p) sinhβ coshβ = 3cασ a κa κ - c«εaκτn
τμσκμ, (2.17c)

and determines the tilt direction cα allowed for given σaβ, aa and ήxβ.
This relation shows that tilted models are only possible when the normals
na are distorting.

The tetrad form of the conservation Eqs. (1.34), (1.35) follow on
noting that

ca

;a = ca;bh
ab= -2aεc\ hβ

d(cd

;bn
b) = doc

β + εβvδcyΩδ, (2.18a)

hδ

e(ce.bc
b) = εδ

ετc
εnτ

βc
β + aδ-cδaβc

β. (2.18b)

Further the tetrad components of the fluid expansion follow from (1.16)
and (2.18 a), and those of the vorticity and shear tensors from (1.26),
(1.27) and

K~hμ

hc[a.M= -\ψxμcκ = εyμσώ\ &σ = ~Hnσκ + sσκ»aμ)cκ , (2.18c)

K V %;b) = n(vτ h)oτ cσ + *<Λ) - δvμc
σaσ (2.18d)

[by (1.21), these tensors are determined by their components per-
pendicular to wfl]. It follows that the components of the vorticity vector
in the normal frame are

cancβ9

ω α = + \ tanh β(n«β cβ + εaβy cβay + sinh 2 β c* cβ n
β" cy).

Using these equations, one can check that as well as /?, aa9 naβ and
the eigenvalues of naβ, the quantities

c naβ r naβr paβyn r

are LR. ("invariant relation" quantities [5]J: if they vanish or are non-zero
at one time, the same is true at all times. This enables one to check
(cf. [5]) that the group type and parameter value h are preserved; further
it shows that if ca is a null eigenvector of naβ at any time, the same is true
at all times; and if it is parallel to αα, this is true at all times4. It follows
from (2.18 c) that ωa is either zero or non-zero at all times (this is in fact
simply a consequence of the existence of an effective equation of state
p = p(μ), see [7,8]), and from the relation ηabcdcanbcc;d = can

aβcβ and
(1.19) that if ωa is perpendicular to ca at one time, this is true at all times.

Note that ?βyaβcy = 0=>n«βcβ = 0, by (2.12).
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In fact the form of the propagation equation for qan
(xβqβ shows (cf. [5])

that (using (1.28))

(w cosh β)~3qa naβ qβ = c o n s t a n t ^ ca ω
a

w 3 (219)
= (constant) x ( t a n h β ) " 1 cosh β- Γ , ' ;

which is a conservation law for the component of ωa parallel to the tilt
direction.

One can also verify that, as must be the case, the constraint equations
(2.17) are conserved as a consequence of the conservation equations (in
fact the quantities on the left hand sides of (2.17) are I.R. quantities).
Finally the way in which the vorticity components ω v μ are governed by
the field Eqs. (2.17 a) can be shown by combining this equation with
(2.18 c) and (1.26), obtaining

(μ + p) cosh/J ωaβ = ± (εaβσn°« + δκ

aap - δκ

βaa) (sκρτn" - 3aρδl) σ%, (2.20)

which determines ωaβ algebraically from the distortion σvμ of the normal
congruence.

To write out these equations in detail, one will usually specify {eμ}
further. One way of doing this is to fit the triad {eμ} to the tensor naβ

and the vector aa as in [1]: one chooses the {eμ} as an orthonormal triad
such that

!, n2, n3), aa = (a, 0 ,0) . (2.21)

In a tilted universe, an alternative choice is given by defining the vectors
px, p2 as orthogonal unit vectors lying in the surfaces S(t), and orthogonal
to c. They therefore span the 2-surfaces orthogonal to n and c at each
point, and may equivalently be defined by the relations

Pab = PlaPlb + P2aP2b (2.22)

where the projection tensor pab is defined by (1.30). In a tilted universe,
these vectors are unique up to a rotation

Pi =Pi cos0 + |>2 sinθ, p2' = Pi cosθ-p1 sinθ (2.23a)

having partially used this freedom to ensure that p1,p2 are invariant
under the group of isometries, the remaining freedom of choice is (2.23 a)
with

θ = θ(t). (2.23 b)

Using these vectors, a possible orthonormal basis {eμ} is given by the
choice

{eμ} = {pi>P2>c}> (2.24)

unique precisely up to the rotation (2.23).
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For a normalized fluid basis {Ea} = {r~1u, ev}, the components of hab

are haβ = ea eβ = δaβ and the metric tensor components are gab

= d i a g ( - r " 2 , + 1 , + 1 , +1). One finds

ίr-1u,ev-] = y^Oveμ = r-Hεμ

vσΩ
σ-θ\-ε\σω

σ)eμ, (2.25)

where Ωσ = εσμveμ

ί evί;j uj is the rate of rotation of the {ev} along the fluid
congruence. The essential step in obtaining this result is to note that
for any vector e orthogonal to w, u [r~1u,e]= —r~2ea{ra + rύa); and
this vanishes by (1.22), (1.23). Further

[ « „ , < ] = - 2 r β μ v σ ω σ ( i ι r - 1 ) + 7 % v ^ . (2.26)

To specify the basis further, an obvious choice is to use (2.22), defining

{ev} = {Pi,P2,c}> (2.27)

with the freedom of choice (2.23). The commutation coefficients (2.25),
(2.26) for this basis can easily be related to those for the basis (2.24) by
using the relations (1.12) between c and c. Useful identities for this basis
are obtained by applying the relations

da(dbf)-db(dj) = fabdcf (2.28)

which [by (2.3), (2.4)] hold for any function /, to the time coordinate t
defined by (2.13); for a = 0, b = v one finds

(2.29)

[which is really a way of writing (1.29)], and for a = μ, b = v

2sμvσω
σ = y3

μvianhβ (2.30)

[which is essentially a way of writing (1.26)]. These relations are the
integrability conditions ensuring that the choice of tetrad and the choice
of coordinate t are compatible. To simplify the rotation coefficients
further, one can use the freedom of choice (2.23) of {pv} to set

72oi = 0 (2.31)

which leaves freedom (2.23 a) with θ a constant. The field Eqs. (2.8) and
Jacobi identities (2.9) with this tetrad choice, i.e. with (2.25)-(2.31)
holding, are written out explicitly in Appendix A. It is sometimes con-
venient to use the renormalized tilt parameter

λ = rtanhβ (2.32)

in later work [cf. Eq. (2.29)], and this abbreviation is used in the Appendix.
In Appendix B we give the quantities naβ and aε in terms of the fluid γa

bc.
The conservation Eqs. (1.22) now imply

λ'/λ = rλ9θ/λ=-θ3. (2.33)
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Defining Z(3) by /(3)'//(3) = 03 this equation has the integrated form5

λ = (constant) x J ( 3 ) "
1 . (2.34)

Using (2.33), one can show that four of the Jacobi identities ((αjjc) in the
notation of [12]) are equivalent to four other Jacobi identities ((α°c)
in [12]). This fact has been used in writing out the equations in
Appendix A.

3. Particular Group Types

One can now take the "normal" field equations and identities (2.16),
(2.17), and (1.34), and use them to examine properties of universe models
invariant under any particular group. A convenient choice of basis for
explicitly writing out these equations is a normalized normal basis such
that (2.21) holds; then the form of the equations is precisely that of
Eqs. (2.11), (2.12), and (3.2)-(3.5) in Appendix I of [1], except that the
right hand side of each (Ov) equation is replaced by a term +qv, the right
hand side of each (μv) equation has a term — π μ v added to it, and the
quantities θ, θv, σμv, Ωv, μ and p each have a ~ sign added to them.

Class A universes are those in which aε = 0oa = 0. Then by (2.18 a),
ca;bh

ab = 0, so one can immediately write down an integral of (1.28)
(cf. [6]) and then rewrite (2.19):

w ΐ3 cosh β = constant, (qa n
aβ qβ) ΐ9 = constant. (3.1)

Using a normalized normal basis, the vorticity components ωvμ are

ωvμ= -jsmhβεvμσn
σκcκ (3.2)

when aε = 0; it follows that vanishing of vorticity corresponds to
vanishing of the I.R. quantity nσκcκ.

Theorem 3.1. There are no tilted models of type I; tilted models of
type II have zero vorticity. Tilted models of types VIII or IX have non-
zero vorticity.

For a type I model universe, n*β = aε = 09 so (2.17 a) shows β = 0
(cf. [11]), i.e. there are no tilted solutions. In a type II universe, using a
basis (2.21) with n2 = n3 = 0, the (01) equation shows βc1 = 0; then (3.2)
shows ω v μ = 0, which implies ωab = 0 (this generalizes to a perfect fluid
Oszvath's result [6] for dust). In a universe of type VIII or IX, det naβ Φ 0,
so for any cα, ^ c α + 0, and hence / ? φ θ = > ω v μ φ θ by (3.2).

5 Eqs. (2.25) and (2.34) are really integrated forms of the conservation equations.
Here we have essentially used the method of integrating these equations due to Taub [34],
and used by him and MacCallum in investigating spatially homogeneous cosmological
models [35].
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Class B universes are those in which α ^ Φ O o α φ O ; using the basis
(2.21), n1 = 0 because of the identity (2.12). The vorticity vanishes if and
only if the quantity of defined by (2.18c) vanishes; in this frame,

2ώ = —n1c1 = 0, 2ώ = — n2c2 + ac3, 2ώ = — ac2 — n3c3. (3.3)

Hence ωa = 0 if c2 = c3 = 0, and also in particular cases when at least
one of c2, c3 is non-zero and the determinant n2n3 + a2 vanishes; this
means that the group is Bianchi type III (it is type VIΛ with h— — 1).
The case c2 = c3 = 0 is the case when the I.R. variable εaβycβay vanishes.
Then the (02), (03) equations show that either σ 1 2 = σ 1 3 = 0, or the
determinant n2n3 + 9a2 vanishes; this means the group is type VIΛ with
h = —1/9 (this case is a straightforward generalization of class Bbii of [1]).

Theorem 3.2. // ca is parallel to aa in a tilted class B universe, then
of — 0, and either these vectors are both eigenvectors of the normal shear
σab, or the group is type VIh with h= — 1/9. // ca is not parallel to άa, then
ωa + 0 except in particular Bianchi III solutions.

(In fact examination of the conservation equations shows that in
class B universes, the effect of the α-vector is to tend to swing the tilt
direction c towards the — α -direction.)

When ωa #= 0, one can obtain more detailed information by consider-
ing the I.R. quantity can

aβcβ, as caω
a and naω

a vanish if and only if this
quantity does. Using the basis (2.21), it takes the form

This clearly vanishes in a type V universe; however it must be non-zero
in models of type VII0, VΠh and IX when ω f l φ 0 (in these cases, the
non-vanishing nv are all positive).

Theorem 3.3. In rotating universe of type VII0, VIIh and IX, the
vorticity direction cannot be perpendicular to the tilt direction (i.e.
ωaca 4= 0) but in a tilted universe of type V, these vectors necessarily are
perpendicular (i.e. ωac

a = 0). When ω α c α Φθ, (2.19) gives a conservation
law for this quantity.

Thus apart from type V, one can have rotating universes with ωa

perpendicular to ca only in special cases of types VI0, VIII, IV and VIΛ.
The simplest such universes are those in which the I.R. variable naβcβ

vanishes. This cannot happen in rotating type Ylh universes (for vanishing
naβcβ would mean that ca was parallel to αα).



Tilted Homogeneous Cosmological Models 223

Theorem 3.4. The rotating tilted models in which naβ cβ vanish are all
type V rotating universes, and particular type IV rotating universes. In
these spaces, _ « Λ n ahcά „ /Λ „

ωa=jtanhβηabcdnbaccd, (3.4)

so ωa is perpendicular to each of na, ab and cd.

One can also consider the possibility of rotating universes having ωa

parallel to (f (i.e. lying in the plane of ca and na). In this case, (2.18e)
shows that an~ . aβV~ ~α/~ av~ \ . n ~« ^ ,* C\

naβcβ + εaβycβaγ = ca(cβn
βycγ) Φ 0=>aβc

β = 0, (3.5)
where can

aβcβ cannot vanish because if ωa is non-zero and parallel to cα,
then ofca cannot vanish; the implication follows on multiplying the first
equation by aa. It follows from (3.5) that in class A universes, ωa is parallel
to ca if and only if ca is an eigenvector of naβ. Choosing a basis (2.21) with
ca = (1,0,0), then ω α φ 0 = > n 1 Φ 0 , and the conservation equations and
Jacobi identities show Ω3 = σί2 = 0, Ω2= — σί3 = 0. These conditions
are then consistent with the other field equations; use of (1.27) and (2.18)
shows that ωa is an eigenvector of the shear σab and (1.32) shows that
it is Fermi propagated along the fluid flow lines.

In class B universe, (3.5) implies that ca must be perpendicular to aa.
To proceed further, it is convenient to use the normalised fluid basis of
§ 2 and the equations in Appendix A, instead of the normal basis used
so far in this section. In the new basis, c1 = c2 = 0, c3 Φ 0, so ω1 = ω2 = 0,
ω 3 Φ 0; the Jacobi identities show σ1 3 = σ 2 3 = 0. The condition caa

a = 0
shows a3 = 0; then at least one of y 2

1 2 or γ1

ί2 is non-zero (or aΆ would
be zero). By the (23) and (13) equations, this is only possible if γ1

ί3 = y 2

2 3

and y123 + 7 2 i 3 = 0, and by the (01), (02) equations, it is only possible
if θίί = Θ22> σ\2 = 0 The conditions we now have are sufficient to show
that the spacetime is locally rotationally symmetric, or L.R.S. (see [12,13]
and § 4 below) but there are no such rotating solutions (see § 4). Hence
there are no rotating class B solutions with ωa || ca.

Theorem 3.5. The rotating tilted models with ωa parallel to ca are the
rotating class A solutions with ca an eigenvector of naβ. In these universes
ωa and ca are Fermi propagated eigenvectors of the shear σab, while ca

is an eigenvector of the normal shear σab; further ωac
aφ0.

The two simplest group types allowing tilted universe models are
types II and V. In each of these cases one can obtain simple geometrically
characterized tetrads and write down associated simple coordinate
systems. The type V case can in fact be easily extended to cover all type IV
models in which naβcβ = 0 (cf. Theorem 3.4).

In the case of a type II universe, one can use a basis (2.21) with nx Φ 0,
n2 = n3 = a = 0; a rotation in the (e2, e3) plane can be used to set c2 = 0,
and then (assuming β > 0) the tetrad is unique. The Jacobi identities and
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the (01), (02) and (13) equations show that c1 = 0, σ13 = Ω2 = 0,Ω3 = -σl2,
Ωί = —σ23- Coordinates can be chosen so that the tetrad-coordinate
relations ea = ejδ/δxί take the form6

eo = d/dt,eί = X(t) 1d/dx1, e2=Y(t) 1(d/dx2 + /(£, x

e3 = Ziή-^d/dx3 + g(t) d/dx2 + Λ(ί, x3) d/dx1) (3.6)

where h= j f dg/dt άt\ the metric components g^ can now be easily found
by first obtaining the inverse matrix ea

ί and then using (2.1b), (2.14).
The Jacobi identities and (12), (23) field equations show

M AT v(vy\ — l %• y ίv2 7\~^ ?r Y (V2 Y\~^
rIΛ — l v i j \ . \ l JLJ I , ί. 2, — 1 2 \ ~ / ^ ) ? 2 3 — 2 3 V J^) '

where N1,Σ12,Σ23 are constants, which shows that the functions /, g are
determined by

f=-Nίx
3-2Σ12$Y(X3Zy1dt, g=-2Σ23$Z(XY3)dt. (3.7)

The conservation Eqs. (1.28), (1.31) can be integrated in the form

wXYZcoshβ=W0, rZ sinhβ = R0, Wo >0 and Ro constants. (3.8)

The remaining field equations consist of the time development equations

11 1L Σ- Σ. ?L i (N ]2

 χ l

~x~ + ΊxΓ~T + ~Y~T + 2( l }
 Y2Z2

Y" Y' Z Y X- ,^τχ2 X

" U N ) 2Y Z Y X 2 V i ; Y2Z

X

" X1

T
Y

z
z

z

vz2

X'
X

•x2

Y'

Y
z z χ T r 1 / A T X 2 x

X Z Y zy ίJ Y2Z
2-72

and the two first integrals

(μ + p) X YZ2 sinh/?coshβ = Σ^^ORQ WO = Σ12N±, (3.10a)

x' Y' y z z x' _L(Nλ2
 χ l

~Y ΊΓ + Ύ~ "z~ + ^ Γ ~Y~*{ ^ Y2Z2

(Σ )2 (Σ )2 ( 3 ' 1 O b )

+ 4 2 + μ cosh2 /? + p sinh2 β + Λ .
Y X

6 The time coordinate t in (3.6), (3.11), (4.8) and (6.4) is in fact the special coordinate t
defined by (1.4).
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The fluid velocity is given by u = coshβ e0 + sinhβ e3. The constants WQ,
Ro, Σί2, Nί9 and Σ23 all represent intrinsic properties of the solution;
in a tilted universe, β>0=>RQΣί2 N1φ0. Given an equation of state
p = p(μ\ (3.8) determines p, μ and β in terms of X, Y, Z, and then (3.10) and
one of (3.9) will determine X, Y,Z and so f,g and ft. The simplest class
of solutions is that in which Σ23 = 0; this is the case in which ca is an
eigenvector of the shear tensor σab.

In a type V universe or a type IV universe with nafiCp = 0, one can
always find a basis (2.21) with n1 = n3 = 0, c^ = (cosθ, 0, sinθ). The Jacobi
identities and (02), (13) equations show Ω3 = σ1 2 = 0, Ω2= — σ 1 3 ; and
that either Ωί= — σ 2 3, or the basis can be chosen so that this relation
is fulfilled. Coordinates can be chosen so that the tetrad-coordinate
relations ea = ea

ι d/dx1 take the form

eo = d/dt, e1 = X

d/dx\ (3.11)

+ k(t) d/dx2)

which determines the metric tensor components. The Jacobi identities
and (13), (23) field equations show that

a = Aoχ-ί, n2 = N2Y(XZ)'19

where Ao, N2 are constants and

d0Σί3 = YZ2(μ + p) sinh2β sinθ cosθ, d0Σ23 = -Λ0N2 7 3(J!fZ)" 1

and the functions /, g, k are given by

g= -2ΪXV(AOX1)\Σ13X(Y2Z2)-' at. (3.13)

The conservation equations can be written in the form

d(\ogwXYZ coshβ)/dt = 2 tanhβ cosθ AOX~X

d\og(r sinhβ)/dt

d((μ + p) sinhβ cosh^S sinθ X YZ2)/dt

- YZ2(μ + p) sinh2β 3A0 sinθ cosθ = 0.
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The remaining field equations consist of the time development equations

X"
X X Y X Z X2 2 X2Z2 Y2Z

X' y X' Z Ao

2

 1 N2

2 Y2 Σ1

X Y X Z X2 2 X2Z2 Y2

2 Y2 Σ13

2

Y" Z T Y X- A2 N2

2 Y2 Σ23

2

Y Z Y Y X X2 2 X2Z2 X2Y4

(3.15)

z" z x- z r A2

 t N2

2 Y2
 Σ13

2

Z Z X Z Y X2 2 X2Z2 Y2ZA

inh 2 β sin2θ + A ,

and the three first integrals

X Y ZI X2YZ

2 γ 2
X V V 7' Ύ' V A 2 AT 2 V

./ x ^ ΔJ Λ. J\. J\. Z-J

, ^ 2 3 2

The fluid 4-velocity is given by u — coshβ e0 + sinhβ(cos θ eγ + sinθ e3).
In general this set of equations for p, μ, β, θ; Σί3, Σ22> \ X, Y9 Z is rather
complex; given an equation of state p(μ), one can take the conservation
equations as determining p, μ, β, 0; Eqs. (3.12) determine the Σtj; and the
first integrals (3.16) determine X, 7, Z. The vorticity vanishes if and only
if 2713 = Oosinθ = 0oq3 = 0. The type IV solutions have N2 + 0 which
implies Σ 2 3 Φ 0; the tetrad is unique. The type V solutions have N2 = 0;
the tetrad is unique if the vorticity is non-zero; Σ23 is constant, and the
simplest such rotating solutions are those in which Σ23 = 0. These are
the type V rotating solutions in which ωa is an eigenvector of the shear σab.
In the non-rotating type V solutions, one can set Σ^3 = 0 by a rotation
of the {e29e3) vectors; the tetrad is then unique if θ2 φ 03, and the equations
are hardly more complicated than in the type II solutions discussed above.
Finally the simplest solution of all is the special non-rotating type V case
in which Θ2 = θ3, £ 2 3 = 0; in this case one can set Y = Z, and one has
an L.R.S. solution (see § 4) which can be completely integrated for simple
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equations of state. One has only to solve 2 conservation equations for
p, μ, jδ, together with two first integral equations for X, Y.

It is apparent, on comparing with [1], that the equations in the tilted
(and particularly, the rotating) universes are rather more complex than
in the non-tilted case. Exact properties of tilted models of type IX have
been given in [5, 6, 11, 14]; properties of class A solutions with ca an
eigenvector of rfβ in [14; 6]; of non-rotating type V solutions in [5];
and of VII0 and VΠh solutions in [15]. Exact tilted solutions have been
given in [12], by Farnsworth in [16] (a non-rotating L.R.S. solution),
and by Demianski and Grischuk in [17] (a rotating and expanding
solution); these will be discussed in the next section. Dynamic properties
of tilted universes except type IX have been examined by Collins and
Hawking [15]; type V by Hawking [18], Matzner [19] and others
([24, 25]); and of type IX by a number of authors ([18, 20-23]).

4. Tilted Models with Higher Symmetry

There are various kinds of further symmetry conditions one can
impose on tilted homogeneous cosmological models; we shall examine
two of these in this section.

First we consider models which are L.R.S. (locally rotatίonally
symmetric: see [12, 13]). Then there is a group of rotations at each point
such that all covariantly defined quantities are invariant under it. As
M, n, c, c are uniquely defined in any tilted model, in an L.R.S. tilted model
the rotation must take place in the 2-plane orthogonal to «,«, c, c spanned
by PabΊ s o aU covariantly defined quantities are invariant under the
rotation (2.23 a). Choose a normalized normal basis with triad (2.24);
then it follows ([1 12, 13]) that

#i = θ29 σμv = 0(μ * v), Ωa = (0,0, β), cε = (0,0,1), (4.1)

and either
nμ v = diag (n, n, m), aε = (0,0, a), (4.2 a)

or

3

 = n32 = a> aε = (a,0,0). (4.2b)

In the second case one can, after adding suitable terms in qv and π μ v ,
use the equations of Appendix II of [1], with r = 0. By the (03) equation,
σ 1 3 = 0=>q3 = 0; however by (4.1) the qv vector must lie in the 3-direction,
so there can be no such tilted models. In the first case, when (4.2 a) holds,
one can use the equations of Appendix I of [1] as before, after suitable
renumbering. We therefore renumber, and conditions (4.1), (4.2 a) become

v), β e = (β,0,0), ce = (1,0,0),

), αv = (α,0,0).
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In the class A solutions, α = 0; but then the (Ov) equations immediately
imply gv = 0, so there are no such tilted L.R.S. models. In the class B
solutions, fl + 0, ra = 0; now (3.3) shows that ώ ε = 0, so there are no
rotating L.R.S. tilted homogeneous universe models.

An examination of the field equations shows that neither Ω nor n
play any part in the remaining non-trivial field equations, which are two
time derivative equations and two first integrals. This indicates that
these quantities are non-essential; and in fact Ω can be set to zero by a
rotation in the (e2, e3) plane which varies with time, and n can be set to
zero by such a rotation which varies spatially (this is just the transforma-
tion between a type V and type VΠΛ basis in an L.R.S. space, which was
examined in [1]).

Theorem 4.1. The tilted L.R.S. models are invariant under a group of
type V, and a group of type VIIh for each value ofh>0. The fluid vorticity
vanishes in these universes.

Using a basis (4.3) in which Ω = m = n = 0, the field equations now
only involve μ, /?, β; α, y and a. As the universe is type V, one can choose
coordinates as in § 3; then the metric is that given by (3.11), with f = g
= k = 0, Y(t) = Z(ή. As there is no rotation, one has sin 0 = 0, Σ 1 3 = 0
= 2723 the conservation equations are given by the first two of (3.14)
(with cosθ = 1), and the remaining field equations can be taken to be the
two first integrals (3.16) with N2 = 0. The solution in the case of vanishing
pressure has been obtained by Farnsworth ([16]; see also [12]). When
p =t= 0 one can for particular equations of state reduce the equations to
one second order equation and a set of quadratures, but solution of the
equations seems difficult. It seems clear that one has more likelihood of
obtaining solutions by changing to a fluid tetrad and associated co-
ordinates [one obtains such a tetrad simply by applying the rotation (1.9),
(1.12)] and writing out the field equations in these coordinates; in fact
this is the method by which Farnsworth obtained the dust solutions.
These solutions are special cases of those classified by Stewart and
Ellis [13], and are the only expanding, tilted spatially homogeneous
cosmologies admitting symmetry groups of dimension greater than 3.

The second family of universe models with higher symmetry are
those in which the 3-surfaces of homogeneity S(t) are surfaces of constant
curvature, i.e. in which the Ricci tensor K*flb of these surfaces is isotropic:

R\b = $R*hab, R* = R*a

a (4.4)

It follows (see [1]) on using a normalized orthonormal basis for which
(2.1) holds, that either

nί = n2 = n3 = m, (4.5 a)
or

nί=0, n2 = n3 = n + 0. (4.5b)
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In the first case, one must have αφO (or the (Ov) equations imply that
qv = 0) and so by (2.12), m = 0. Thus when (4.5 a) is satisfied, the only
tilted solutions are type V universe models. In fact whenever the group
is type V, R*ab is necessarily isotropic and # * < 0.

In the second case when (4.5 b) holds, the Jacobi identities imply
σί2 = Ω3, σί3 = — Ω2, σ 2 3 = 0, θ2 = θ3. The (23) field equations show that

π 2 3 = 2 σ 1 2 σ 1 3 . (4.6)

The tetrad can be rotated in the (e29e3) plane while still preserving
conditions (2.21) and (4.5b); we choose such a rotation to set σ 1 3 = 0
=>Ω2 = 0. Now (4.6) shows that at least one of q2i q3 must vanish. If
q3 = 0, then the (03) equation shows that σ1 2 = 0 (as n φ 0), and so q2 = 0
by the (02) equation; but then the space-time is an L.R.S. space ad-
mitting a group of type V, and so can be regarded as a special case of
(4.5a). We therefore assume q3 φ 0; then q2 = 0, and π 1 2 φ 0 by the (03)
equation. The (02) equation shows that 0 = 0, the (01) equation that
q1 = 0, and the (13) equation that Ω1=0. The basis we have found is
such that in addition to (4.5 b),

a = 0, cv = (0,0,1), 0 ! = a , Θ2 = θ3=γ,

Ω O Ω Ω

The space admits a group of type VΠ0, and as R* = 0, it has flat spatial
sections. The vector ca is an eigenvector of naβ with a non-zero eigenvalue,
so ω φ 0 and the space fulfils the conditions of Theorem 3.5. This is the
space found by Demianski and Grischuk [17] our derivation has shown
that, as they asserted, this is the only rotating homogeneous universe
with flat spatial surfaces of homogeneity, because any such universe must
satisfy (4.4) with R* = 0.

Theorem 4.2. The tilted universe models in which the surfaces of
homogeneity are surfaces of constant curvature, are (a) those in which
jR* < 0, admitting a group of type V, and additionally admitting groups
of type VIIh if they are L.R.S., and (b) the rotating Demianski-Grischuk
universes in which R* = 0, admitting a group of type VII0 and fulfilling
the conditions of Theorem 3.5.

Coordinates and the field equations for all type V universes (in which
R*ab is necessarily isotropic) have been given in the previous section.
In the case of the type VΠ0 universe in which (4.7) holds, one can choose
coordinates so that the tetrad-coordinate relations ea = ej d/dxl take
the form

e0 = d/dt, e2 = Z(ί)- ' δ/dx2, e3 = Ziή'1 dβx3,

e, = X(t)-' (δ/δx1 + (Nox
3 + 2g(t))d/δx2 - Nox

2 d/dx3),
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where n = N0X~1, No = constant; this determines the metric. The fluid
flow vector is u = cosh/? e0 + sinhβ e3. The conservation equations take
the form (3.8) with Y = Z; the (22) and (33) field equations imply 2(σ12)

2

= (μ + p) sinh2/?; then the (03), (12) equations show

\ σί2 = - ( F ^ o ^ o " 1 ) ^ 3 (4.9)

The second of these equations shows that

g(t)=W0R0N0-
1

the first implies that one cannot specify an equation of state for the
fluid, because β is determined by X and Z alone; the conservation
equations determine the evolution of w and r and thereby determine an
implicit equation of state relating p and μ.

The remaining field equations are the second order equations

X" ~ X' Z . W0

2R0

2 i , x Λ

ΊΓ + 2ΊίΎ + 2Ίt^ = Aμ-p) + Λ>
(4.10 a)

Z" ίZΛ2 T X . W0

2R0

2

 lf+ + 2 ± £ ϊ ( μZ \Z J Z X N0

2Z'

with the first integral

γ γ γ i yυ 2 n 2
2 ξ^ (4.10b)

Further details of the solutions of these equations are given by Demianski
and Grischuk ([17]); it seems, unfortunately, that the equation of state
which one finds for the fluid in these models is unrealistic, for it tends
to the "stiff matter" state p = μ near the singularity, and the pressure goes
negative and approaches zero from below at large times.

A further class of higher symmetry solutions are the tilted models
which are homogeneous space-times, i.e. which are stationary. Then one
can find a tetrad basis as before, but in which additionally all the rotation
coefficients are constants. All physical quantities (e.g. μ, p, β) must also
be constants; solution of the field equations reduces to an algebraic
problem, as all one has to do is solve the equations for the constants
ya

bc. We shall not investigate these solutions further here; all the dust
solutions are known ([26, 27]), and the perfect fluid solutions could be
obtained by the same methods. As the density is constant in these
models, they do not expand and so cannot be used as reasonable models
of the observed universe.
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5. Kinematical Restrictions

We have already considered the restrictions implied by the vanishing
of the fluid acceleration [see (1.25) and following] and of the fluid
vorticity (see Theorems 3.1 and 3.2). We shall not consider solutions in
which the fluid does not expand, as these models cannot produce an
isotropic redshift; in fact most, if not all, such models would be included
in the homogeneous space-times mentioned in the last section.

Our aim in this section is therefore to see if one can find interesting
universe models by putting restrictions on the fluid shear. In particular,
one may ask if there are any interesting models with vanishing shear.
GδdeΓs paper [11] suggests such solutions are very restricted; for he
showed that shear free type IX dust models cannot both expand and
rotate, i.e. for type IX dust universes,

σab = 0^θωab = 0. (5.1)

This result has been extended by Schϋcking [28] to all spatially homo-
geneous dust models, and by Banerji [29] to spatially homogeneous
perfect fluid solutions with p = (γ — l)μ, y = constant φ 10/9. Here we
extend the result to all homogeneous cosmological models in which the
matter content is a perfect fluid. In fact we prove a stronger result:

Theorem 5.1. There are no tilted models with vanishing fluid shear.

Now the only non-tilted perfect fluid spatially homogeneous solutions
(i.e. solutions obeying statements (1), (2) and (3) of § 1) which are shear-
free are the Friedmann or Robertson-Walker universes (this follows
because ωab = ύa = 0 in these models; when in addition σαb = 0, one has
a Robertson-Walker universe [8]). So Theorem 5.1 implies

Theorem 5.2. The only shear-free spatially homogeneous perfect
fluid universe models are the Robertson-Walker universe models.

Note that this result is not contradicted by the existence of the
Godel [21] universe; for while this is a homogeneous, rotating and
shear-free universe, it is not spatially homogeneous in the sense of
statement (2) of § 1 for there exist no spatial surfaces of homogeneity
S(t) in this universe7. By contrast, the Einstein static universe and Oszvath
type I model [30] are homogeneous universes which are spatially
homogeneous also; the former has vanishing shear, and is a special case
of the Robertson-Walker universes, while the latter has non-vanishing
rotation and shear.

7 Given any local spacelike surface S, any two points p, q of S can be mapped into
each other by some isometry Φpq but there will be pairs of points p, q in S for which
Φpq(S) φ S, i.e. S itself is not invariant under the isometry, and so S cannot be a surface of
homogeneity.
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We shall outline the proof of Theorem 5.1; the interested reader is
referred elsewhere [32] for details. The proof is in two stages: first a
proof that (5.1) holds for tilted models, and then a proof that neither of
the alternatives σab = ωab = 0 or σab = θ = 0 leads to a tilted model.
To carry out the proof, we use the normalized fluid basis of § 2 and
associated time coordinate (2.13); the field equations needed are given
in Appendix A.

The essential point in proving (5.1) is that if σab = 0, one can integrate
(2.29) and the Jacobi identities up to a quadrature, in terms of the length I
defined in § 1:

(5.2)

where λ0, ωo

a, Al9 A2, Bi9 B2, Cl9 C2 are constants. We use (2.23a) to
set (OQ1 = 0 on t = t0, so ωo

x = 0 and ω 1 = 0 for all t. The (23) equation
implies

so either ω 0

2 ω 0

3 = 0, or r = r0Γ
1 where r0 is a constant. The proof is

now straightforward if tedious. One simply substitutes into the field
equations from (5.2) in the three cases (i) r = rol~

1, ω 0

2 ω 0

3 φ 0 ,
(ii) ω 0

3 = 0, ω 0

2 φ 0, (iii) ω 0

2 = 0, ω 0

3 φ 0. In all cases the assumption
ωabθφ0 leads to a contradiction.

To prove there are no tilted models with σab = ωab = 0, assume β > 0.
Then the (03) equation shows that θ = constant. It follows from (1.22-24)
and the equations obtained from them by differentiating and using
θ = constant, that r is linear in t. This is incompatible with the remaining
field equations unless 0 = 0; but the only spatially homogeneous perfect
fluid solutions with σab = ωab = θ = 0 can easily be shown to be the
Einstein static universe, which is not tilted.

When σab = θ = 0, the (01) and (03) equations show that y 2

2 3 = 0,
once one has set ω 1 = 0 by an initial rotation of the basis. The remaining
equations imply that y2

ί2 = y2

ί3 = 0, and that either (i) y1

23 = y1

12 = 0,
or (ii) y123 = 7 1

ί 3 = 0, or (iii) yί

ί2 = y1

 ί3 = 0. However in each case the
constraint equation (C) shows that μ + p<0, contradicting assump-
tion (1.2).

Further restrictions on the shear that might lead to interesting
universe models are, for example, that the vorticity vector or the acceler-
ation vector should be a shear eigenvector. In general such conditions
are difficult to solve, and we shall restrict our attention to a simpler
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problem, which was again initially raised by Godel. He stated [11] that,
in the case of type IX dust universes,

if of φ 0, at no instant of time can the expansion tensor θab ( c ,
be rotationally symmetric about the vorticity vector ωa.

This statement is concerned with one instant of time only, and so
does not concern the propagation equations. We wish to know if (G)
applies to other group types, or when the pressure is non-zero; the
question to be resolved then, is whether the constraint equations
[(A)-(D) in Appendix A] can be solved at any instant so as to violate (G),
or not.

Without loss of generality, we can put ω2 = 0 on the hypersurface
{t = constant} we are considering. Then the condition that θab be
rotationally symmetric about ωa reduces to

σ12 = 0 = σ23, ω 1 σ 1 3 = ω 3 ( 0 1 - 0 2 ) ,

(ωί)2θ3 = (ω3)2θ1 + 6> 2 ((ω 1 ) 4 -(ω 3 ) 4 )ω- 2 .

If one puts no condition on A, this question has to be decided on the
basis of equations (A), (B) and (C) alone; and if further p + 0, one can
in general consider only (A) and (C) as (B) has in it a term — 2r ^ω 1

which is in general non-zero.

Theorem 5.3. // ωa + 0 is parallel to <f in a tilted model, then GόdeΓs
result (G) is true.

In this case, ω1 = 0=^>θ1 = θ2. By Theorem 3.5, the solution is a
class A solution; from Appendix B, this implies that in the fluid basis,

y1i3+y223 = λ(θ1 + θ2)/r. (5.4)

Substituting (5.3) and (5.4) into the constraints, one easily finds that

This result is the widest form of (G) we have been able to obtain.
In fact in general it seems possible to violate (G). Thus consider class A
rotating dust solutions with ω 3 = 0 (by Theorem 3.3, this is only possible
in types VIII and VI0) and satisfying (5.3), which implies Θ2 = θ3. Then
one obtains three conditions from the vanishing of aε (see Appendix B);
constraint (A) shows γ1

23 + 2y2

13 = 0; constraint (B) shows y2

23

= iλ-1(θ2-θ1) + ̂ λθ2, which implies y\3 = ̂ λθ2 + λθί+^λ-1(θ1 -0 2 ).
Now examination of (C) shows that we can satisfy it for y1

23 ^ 0 . Thus
(G) does not hold for type VIII or VI0 dust universes, and a fortiori for
such solutions with p > 0. Similarly in type V dust solutions satisfying
(5.3), we also have naβ = 0 which gives a set of conditions on the ya

bc

(cf. Appendix B); and one finds y 1

2 3 = y2

13 = y2

12 = ω2 = ω3 = 0,
Θ2 = θ3, y\3-y2

23 = λ(θ1-θ2), y\2=-2ωίλ-\ σμv = 0(μΦv). The
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constraints (A)-(C) can now be satisfied by suitable choice of the
remaining y's. Thus (G) does not hold in type V models; and this implies
that (G) does not hold in types IV, VΊΛ or VII,, either, as these types are
more general than type V in the sense that type V can be obtained from
them by specializing particular parameter values (cf. the "specialization
diagram" in [3]). Hence if one can find initial data to satisfy (5.3) and
keep μ + p>0 in type V, one can certainly do it in these group types
where one has more freedom of choice of initial data. Finally we have
obtained a set of initial data in a type IX universe with p Φ 0 in which
(5.3) is satisfied and μ + p > 0 ; this is given by y 1

2 3 = - y 2 i 3 = 1= -ω3,
y\3 = O,ωί = iθ1 = l γ \ 2 = 2λ-1rω\γ\2 = O,y2

23 = r-1λ(θ1 + θ2\
and r 1λ chosen sufficiently small. While we have not investigated
type VII0 in detail, we have no reason to believe that (G) holds in this
case either when p > 0.

While one can find initial data in which the expansion is at some
instant rotationally symmetric about the vorticity, this restriction by
itself does not determine a simple class of rotating solutions for us. It
may be that insisting that this condition, or some similar condition, hold
at all times would lead to some simple universe models.

6. Some Simple Class A Solutions

We should like to have explicitly written out consistent, simple field
equations and coordinates for rotating and expanding universes in which
the equation of state can be specified arbitrarily. This has been achieved
above for class B universes (the type V and type IV universes with
rfβcβ = 0 in § 3), but not for class A universes (the type II models in § 3
do not rotate, while the Demianski-Grischuk solutions in § 4 could only
admit an unrealistic equation of state). We here aim to find a simple set
of class A universes satisfying these requirements.

Consider the universes satisfying the requirements of Theorem 3.5.
Using a normalized orthonormal basis (2.21), we can choose cα = (0,0, 1).
The conservation Eq. (1.35) then shows that Ωί = — σ23, Ω2 = σί3. The
(03) equation shows that σ12(nx - n2)Φ0; as one of nl9n2 + 0, we shall
assume n 2 Φ 0 . If σ13 Φθ, the Jacobi identities and (Ov) equations show
that nί = n3 = 0; but this is a non-rotating type II solution. We therefore
consider solutions with

σ 1 2 π 2 φ 0 , cβ = (0,0,1), σ23 = 0 = Ωl9 σ13 = 0=Ω2, (6.1)

(the latter requirement following from the Jacobi identities). There
remains one algebraic Jacobi identity:

(«! +n2)σί2 + (nί -n2)Ω3 = 0. (6.2)
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In order that the solutions rotate, it is necessary that w 3 φ0. (The
solutions with n3 = 0 are type VI0 and VΠ0 generalizations of the non-
rotating type II solutions in §3.) The solutions with nίn3 + 0 will be
rotating type VIII or IX universes; for simplicity, we consider the
simpler type VI0 and VΠ0 universes with n1 = 0. Then (6.1), (6.2) show:

n3 φ 0, n1 = 0=>σ12 = Ω3 . (6.3)

Clearly these are the simplest universes of the type considered in Theo-
rem 3.5. They are in fact simple generalizations of the Demianski-
Grischuk solutions, which are the special case in which n2 = n3 (which
implies θ2 = θ3).

With restrictions (6.1), (6.3) one can find coordinates for which

e0 = d/dt, e2 = Y(t)~x d/dx2, e3 = Z{t)~1 d/dx3 ,

eί = X{t)~ι (d/dx1 + (N2 x
3 + 2g(ή) d/dx2 - N3 x

2 d/dx3),

where n2 = (XZ)~1 YN2, n3 = (XY)~ίZN3; N2, N3 are constants. The
fluid flow vector is u = coshβ e0 + sinhβ e3. The conservation equations
are (3.8); the (12) and (03) field equations show that

σ12=-W0R0(N2Y
2ZΓ1=>g=W0R0N2-

i$X(Y3Z)-ίdt. (6.5)

The remaining field equations are the second order equations

XT_ X°_Y^ X^_ Z^ _ JN2Y _ N3Z\2 2W0

2R0

2

τ + γ τ + y γ ~ 2 ( " ΐ YY) + 2 4 2

ILIL 4 IL
Y Z Y X

4 4 (X \ _
Y Z Y X 2\ XZ ) 2\XY ) N2

2Y*Z2

2

(6.6a)

Z Z X' Z r JN3Z\2 JN2Y^2

with the first integral

x' r Y z z x

4 \ XZ XY)

2R2
W0

2R
2YAZ2 '

4 \ XZ XY) N2

2YAZ

One can now specify p(μ) arbitrarily in these rotating solutions (ω Φ 0
when iV3 φ 0); they represent a simple generalization of the Demianski-
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Grischuk solutions, which are obtained from them by letting Y = Z and
N2 = N3 (the extra constraint on the fluid behaviour in that case arises
as the consistency condition for Y"/Y and Z"/Z being equal). By the
derivation, it is clear that we have obtained all type VI0 and VII0 rotating
solutions satisfying the condition of Theorem 3.5. Properties of these
models have previously been discussed by Ozsvath [14].

7. Conclusion

We have considered the geometrical restrictions implied by the
condition that a perfect-fluid universe should be spatially homogeneous
(in the sense that (1) and (2) of § 1 have been imposed), and concentrated
our attention on "tilted" models, i.e. those in which the fluid 4-velocity
is not the normal direction to the surface of homogeneity. Our general
discussion of these models in § 1 relates the fluid properties to properties
of the intrinsically defined direction of tilt in the homogeneous surfaces.
An examination of possible tetrads in these spaces (§ 2) enabled us to
obtain various relations between geometrically defined quantities and
the group types (§ 3) and characterisations of certain higher symmetry
models (§ 4). Some properties of the fluid kinematical quantities were
also obtained (§ 5), and some simple Class A rotating models obtained
in §6.

Our discussion led us to relatively simple metric forms and field
equations for the cases of tilted type II universes, which are necessarily
non-rotating; for tilted type V and some type IV universes, which may
or may not rotate; and for the Demianski-Grischuk rotating universes
with flat spatial sections, and some simple type VI0 and VΠ0 generalisa-
tions. These are probably the simplest tilted models (the Farnsworth
type V L.R.S. model being particularly simple); however one might find
other simple models by careful consideration of kinematical restrictions.
In particular, some Bianchi III models may be relatively simple.

One might feel that some interesting spatially homogeneous universe
models had been omitted because the definition (2) of spatial homo-
geneity was too stringent: the groups of isometries have been restricted
to 3-dimensional groups (which are necessarily simply transitive on the
surfaces of homogeneity). One could replace condition (2) by the weaker
condition.

(2') space-time is locally invariant under a group of isometries whose
surfaces of transitivity are spacelike surfaces S(t),

and consider cosmological models satisfying (1), (2'). Then all of § 1
would still be applicable; in particular one could, as before, separate the
models into "tilted" and "non-tilted" universes.
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When (2') holds the group transforms each surface S(t) into itself,
and so acts as a group of isometries in each surface; so the only allowed
values are r = 3,4, 6 (cf. [12, 13]). In general the group Gr (note that
this might not itself be the full group of isometries of the space-time)
will possess a subgroup G3 which satisfies condition (2). This is trivially
true when r = 3; it is always true when r = 6 ([1]); when r = 4 it is always
true except in the case of the Kantowski-Sachs type I universes ([33]).
Thus these are the only universes satisfying (2') and not (2). However
in them, the Ricci eigenvector is normal to the surfaces S(t) (see Eq. (11a)
in [33]). Hence there are no tilted universes satisfying (1), (2') but not
satisfying (1), (2). Thus if we extend the definition of a tilted model (§ 1)
to one in which (1), (2') hold and β > 0 , all the results of §3-5 remain
true (but parts of § 2 do not apply to the exceptional universes, cf. [12,13]),
and we do not obtain any further tilted models by broadening (2) to (2').

The restrictions we have found are based on both kinematics and
dynamics dynamics has entered because we have in each case considered
whether the field equations were consistent or not. However we have not
given a discussion here of the dynamical evolution of the various tilted
models; such discussions can be found for various models, in the papers
given as references. There is one aspect of this dynamical evolution which
is of particular interest, namely the evolution near any singularity
which may occur. We shall return to this question in a later paper;
it will turn out that use of the fluid basis of § 2 is particularly helpful
in considering some aspects of this question.

We should like to thank M. A. H. MacCallum and R. K. Sachs for advice and
discussions, and M. A. H. MacCallum for checking some of the equations used. One of us
(A.R.K.) would like to thank the U.K. Science Research Council for a grant.

Appendix A

Field Equations

(00) rd0θ + θ\ + θ\ + θl + 2σ{2 + 2σf3 + 2σf3 - 2(ω)2

(01) λdo(σ13 + ω2) = γλ

μlσλμ-γμ

t

κ(ωκl+σκl) + ±ωμλγ
i

λμ +

(02)

r

2λrn
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(03) ~λdo(θ1 + θ2) = γλ

μ3σλμ-γ"μκ(ωκ

(11) rdoθ1-λdoγ\2
r

4 2/ 2\2 9 2/ 3\2
^r 1 , 2 / 1\1 / λ\2n / 2 \2 ^' Vcυ / Δ ί \U* )

- 2[σ 2

2 + σ2

3 - (ω 2) 2 - (ω 3) 2] - {y\2f j 2 j 2

2y2

13rω3

 χ t 2 ,
I +2L(723) -(71

(22) r δ 0 θ 2 - A c l 0 y 2

3 + θ θ 2 + - ^

0 3 3 o is 23 \ r />0 \ r j μ v v 3

+ 2[(co2 + σ 1 3 ) 2 + (ω1 - σ 2 3 ) 2 ] - (y{3)
2 - (y 2

3 ) 2 + ^ j f } '

(12) 0 = r3 0σ 1 2-y5o(yi

~ -xln ryli\ ~ 1 / ' y ί 2 Λ ^ 4 r ω 1 ω 3

2ω3 ^2 - - ^ - J + 2ωι \-ψ- - ω2j - 2σ13 σ2

4 r 2 ω 1 ω 3

σ13 σ23

λr
~ }'23713-713723+"2JΓ(Ϊ' + V

(23) 0 = r δ 0 ( σ 2 3 - ω 1 )

4r co co
- 2 σ 1 3 ω 3

(31) O ^ c y

[To show that (ab) = (ba) one must use the Jacobi Identities below].
[Note also that σμμ = θμ-%θ,in (0μ)].
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Jacobi Identities

0 \ λ

J }do(rω3)=-ω3(θ1+θ2),

0 2

0 3

2 3/ y δ o ^ i 2 θ i ω + j[yl3 + γy232σi2ω - 2 σ 1 3 ω 3

i ^
i 2 —

"I ~ 7l2 "I U2 3 " " 7 l 3 ) >

0 3 ) ^ )

2 \ λ - ~ rω1 , rω2

2 j δ θ + +

2

0 2

2

0 3

The equations , I are identically satisfied because of I,
[ \a b c) \a b c!

using /I o = J
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The four first integrals of the field equations are

r [ 2λτ
(A): -r\yϊiσλμ-yμμΛωκi+σκi) + Ίωμλyλμ+ ^ - ^

λ { r
4 v co co

+ (σ13 + ω2) (2Θ1 + θ2) + 2σ23ω
3 + -2 2ω1 ω3

A

(B): ^hλU( ) + l

31)-\-2σ12σ13 + 2σ12ω
2 — 2σί3ω

3 -i —
A

4 r 2 Co2 co 3

-2ω2ω3 +y\2(y2

23-y\3)-y\2(y\3

λ_ r_

7 + T

λθ

(D): 2(θ1

2λ2r
- Aω1 σ23 + 4ω 2 σ 1 3 - 4ω 3 σ1 2 + j ^ -

2/1
- y {^3(yί3

1 ) 2 + 2(ω2)2 + (ω3)2] - (yj2)
2 - ( 7

2

2 ) 2 - (y\3)
2 - (y2

3)
2

42 χ 2 r ω 3

 χ

"̂  (σ2 3 7l2 ~ σ12>yil)~\ ] 172 3 ~~
V A

= 2Λ+2μ.
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Appendix B

2 / 1 2 - χ

rω2 2rω3

when κ: = coshj8.
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