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Abstract. A generalized definition of entropy for any state on a C* algebra is given
and studied. We prove that the entropy characterizes uniquely the normal states.

I. Introduction

For the algebras of the canonical commutation and anticommuta-
tion relations the theorem of Dell’Antonio, Doplicher and Ruelle [1]
is well-known; it states that normal factor states on the CCR and CAR
algebras are characterized by the existence of a number operator on the
representation space induced by the state. Physically it means that the
states describing a finite number of particles are exactly the normal factor
states.

In this work we characterize the normal states (Definition 1) on any
C*-algebra by an other physical quantity, namely the entropy; for the
exact formulation see Theorem | below. In physical terms, it means
that the states of finite entropy are exactly the normal states.

In order to work out the subject we generalize first the motion of
entropy of a state on a C*-algebra (Definition 2). For normal factor
states it coincides with the ordinary definition and we prove also that
it satisfies properties and inequalities analogous to those satisfied by
the usual entropy. Finally we discuss more in detail the entropy definition
and give an alternative expression for it (see Definition 3).

II. Normal States and Total Entropy

Definition 1. Let w be a state on a C*-algebra <f, w is called normal
if wis a convex linear combination of pure states on <.

Remark that, if w is a normal state, then H,, the GNS representation
induced by w, is the direct sum of irreducible representations of .«7;
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it is clear that normal states are not necessarily factor states. Generally
in the physics literature a normal state corresponds in our terminology
to a normal factor state.

Definition 2. The entropy S(w) of a state w on </ is given by

a) If o is a normal state, i.e. =) Jw, ¥ i,=1, 7,20, and w,
pure, then n "

S(w)=1inf) —1,logZ,
n

the infimum is taken over all possible decompositions of @ into pure states.
b) If w is not normal, then S(w) = 0.
/., 2, respectively the GNS-
representation, representation space and cyclic vector induced by w;
let e #, then o, is the state on .«Z, defined by w, (x)=(y|I1,(x) ),
xe ..

Proposition 1. The entropy S(w) of the state w satisfies:

For any state @ on .«Z, denote by IT,, #,

1) If wisanormal factor state, i.e. there exists an irreducible representa-
tion 11 on a Hilbert space # and a density matrix ¢ such that

wx)=Tr, o I(x),
then
S(w)y=—Tr, ologo.
i) If o, and w, are states on .o/, and A such that 0 < 2. < 1 then
28(wy) + (14 2) S(w,) L S(Aw, + (1= 2) w,)
< AS(w)+(1=2)S(w,)—Alogi—(1—A)log(l—4)
i) S(w)=01if and only if w is a pure state.
Proof. See Appendix A and B.

Theorem 1. Let w be any state on .o/, then  is a normal state if and
only if the set
P = f]/) € /f()] HIP“ = 11 S(ww)< :73}

is dense in the unit sphere of #,,.
Proof. Suppose first that o is normal, then I1,= (P II, where 17,
n
are irreducible representations, #, = (P #,. For any finite sequence

(Wii=1...., withyp,e A, Il =1, where all n; are different for different i,
then p

o, =) Lo,
> iy i=1

p
for all sets (4);— (..., 420, Y Z;=1.
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As the states w,, are pure, it follows from Definition 2 that:

S(cop )g— i/‘.ilog},i<oo.
l;lllwﬁ i=1

To prove the converse, suppose w is not normal, then I1, is not a direct
sum of irreducible representations, hence there exists in the commutant
IT,(<7) at least one projection E which majorizes no minimal projections.
Let i be a unit vector of E&, and E, < E where E, is the orthogonal
projection on II,(</)yp. Then the induced representation II,|E, is
the GNS representation for the vector state w,. As E, majorizes no
minimal projections, I, | E,, is not a direct sum of irreducible representa-
tions, hence S(w,)= .

Let we A, |y| =1, then p=o?y, +]/1 —ay, where y, € EX,,
lpil =1, and p,€ #,OEH,. [ps|=1. As Ecll(4):0,=00,,
+(l —a)w,,.

From Proposition 1:

aS(w,,)+ 1 —2) S(w,,) =S(o,)

and for all vectors y such that o + 0, S(w,) = oo. This proves that the set
P is not dense in the unit sphere of #,. Q.E.D.

Y1

I11. Discussion of the Entropy Definition

In this section we study in more detail the generalized notion of
entropy given in Definition 2 in order to justify the notion of normal
states as the states of finite entropy.

We start with the following notation: let 3 be an abelian von Neumann
algebra on a Hilbert space #, Q a unit vector of #, then denote

so(3) = suphy(&)
1234
where hg(8)= — > (Q|E,Q)log(Q|E,Q) and & =(E,),.; is a sequence
nel

of two by two orthogonal projections E, of 3 such that ) E, = 1. Denote

nel

by € the set of such sequences.

Lemma 1. If there exists a element & of € such that all E, are minimal
in 3 then
sa(J) = hq(8).

Proof. Let G be any projection of 3. Then

GzG(Z E,,): Y GE,.

nel nel

22%
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Asall E, are minimal, GE, =0 or GE, = E, for all n. Hence any projection
of 3 is a sum of projections E,. Take any

F =(F,),e¥; let I,={nellE,F,=E,},
I,nL,=@ for p*q and |JI,=I.
p

then

Using the monotonicity of the logarithm we get
ho(€)= =3 5 (Q|E,Q)log(Q|E,Q)

p nelp,

> - Y Y (@QIE,Qlog@|F,Q)

p nel,

= — Y (QIF,Q)10g(Q|F,Q) = hy(F).

Lemma 2. Suppose that 3 is an abelian von Neumann algebra on a
Hilbert space # which contains no minimal projections. Let Q be a
separating vector for 3, then:

a) for any ¢ >0 and any projection E of 3, there exists a projection F
in 3, such that |FQ| <e¢and FLE.

b) for any projection E € 3 the set
re={IFQ|, F projection of 3, F <E}
is dense in the interval [0, || EQ]}.

Proof. a) Take any ¢ >0 and E projection in 3. Suppose there exists a
sequence (H,),~ , ... of projections in J such that

EzH zHz  2H2
|H, Q|| =z¢ forall n.
Then ingnEH is a projection in 3 such that [|[HQ| 2 &([2], (App. 2)).

Hence the set of projections {Ge 3|G ZE, |GQ| = ¢} satisfies the con-
ditions of the lemma of Zorn. Let G,, be the minimal element of this set.
It cannot be minimal in 3, hence there exists a non trivial projection
Fe 3, F<G,suchthat |FQ| <e.

b) Let E be any projection in 3; 0, | EQ| € y. It is sufficient to prove
that for any pair o, f:a, f€yp, o <p, there exists a y €y such that
a<y<p.

Let E,, E; € 3 be such that

E,SE, E;SE, |[EQ|=a, [EQ|=5.

J being abelian, E4(1 — E,) is a projection majorized by E; Eg(1 — E,) +0
because otherwise E; < E, and f <o
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By a) there exists a projection F € 3 such that

F<E,l—E,)
IFQI? < f? o

and since Q is separating for 3:
a? <o’ + |[FQI> S (E, + F) Q> < p*.

The projection E, + F < E and the lemma follows. Q.E.D.

Lemma 3. Let 3 be an abelian von Neumann algebra on # ; Q a unit
vector of A separating for 3. Suppose that all elements & € € contain at
least one projection E, which is not minimal, then

a) 3 contains a projection E such that the
7e=1{IIFQ|, F projection in 3, F < E}

is dense in [0, |EQ]].

b) There existsanoe R,0 <o < 1, and for any integer n > 1 a sequence
(F))p=1. ... of n pairwise orthogonal projections in 3, such that

o
2n

¢) $o(3)= 0.

Proof. a) Let (Ej)s; be the set of all minimal projections of 3, then
E=1— ) Egisanon trivial projection of 3 which majorizes no minimal

pel

projections of 3. Let # be the range of E, and 3 the reduced von Neu-
mann algebra of 3 on #;; 3 is abelian and contains no minimal pro-
jections; the vector EQ = Q is separating for 3. Applying Lemma 2,
the set

<|1FPQ[12<%, p=1,2,...n.

{| FQg| | F projection of 35, F <1}

is dense in the interval [0, || Qg ].
By canonical imbedding of 3; into 3 one obtains the desired result.

b) Take E as in a), « = |[EQ||* and choose any integer n. From a) a
projection G, < E exists such that
o

Pk
- <16, Q <~

since
WE-G)Q|>>a— —Z->0.
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Furthermore E — G; majorizes no minimal projections of 3. Applying
Lemma 2, the set

{I|FQ|l, F projectionin 3, FSE—G,}

is dense in the interval [0, [(E— G,) Q||]. Hence there exists a projec-
tion G, £ E — G, in 3 such that

0< = <G, < 2.
2n n
Analogously we construct projections G, such that
p—1
G,SE— ) G,
k=1
o o
0< — <|G,Q[*< —.
<5y <161 <
)4 2
p o
E— G,|Q - == —
== £ o >+~ 5)2
for p <n—L.The projection G, _ , satisfies the right inequality and we may

construct G,. This proves b).

¢) Take any integer n=3, ne N. By b) there exists a sequence
F =(F,),=1....., of pairwise orthogonal projections satisfying

One obtains:

o o
- <||IF,Ql?< =
211"“" H_n

for some fixed «: 0 <o < 1.

For n=3: .

o
HFpQ”2§ 3 < s

Using the monotonicity of the function x— —xlogx in the interval
(0, 1/e]:

o o
— > PR
(IF,Q)10g(Q|F, )z ~ 5 -log 5
for p=1,...,n Hence
ho(F) 2 — 2 log -
- 2 2n
and

Sup ho(F)=5o(3)=0. Q.E.D.

Fe¥€

Lemma 4. Let 3 be an abelian von Neumann algebra on a Hilbert space
H, Q a unit vector of A separating for 3. If there exists a sequence
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& =(E,),€6(3) such that all projections E, are minimal in 3, then
SQ(S) = hQ((’)@)? If not, SQ(\%) =

Proof. Immediate from Lemma | and 3.

Definition 3. The entropy S'(w) of a state w on .o is given by
S'(w)= igfsg(”(;})

where the infimum is taken over all maximal abelian von Neumann algebras
3 of the commutant I1(<Z).

Each sequence & =(E,), of minimal projections in I1,(.</)" such that
Y E, =1 generates a maximal abelian von Neumann algebra 3 of I1,,(.«7)

n

and a decomposition of w in pure states : let Q, = then

||E Q|
=S (QIE,Q) v .

h

If there exists such a sequence then the state o is normal and from the
definitions S'(w) = S(w) If there exists no such a sequence then by
Lemma 4: S'(w) = oc. Hence in general

S'(w) = S(w). (%)

Lemma 5. Let o be a normal factor state on </, then there exists a
countable sequence & =(E,), of minimal projections E, € Il (<Z) such that

S(w)y=hg_ ().
In particular, S(w)=S'(w).
Proof. By Proposition 1: S(w)= —Tr, ologe (with the obvious
notations). Let o= Y 4,E, be the spectral decomposition of g, (i,),
isan orthonormalbasnis of #,;then I, (—DHO =@®#,,Q2, = Z[/,,wn

is the GNS-triplet induced by w. Let E, be the projection on the n‘h term
Ay of the directsum 7, = (P #,, then & = (E,), is a sequence of minimal

projections in I1,(.«7) such that h,(8) = — Tr,, 0 logo hence S(w) = hy(&).
Q.E.D.
Proposition 2. For any state o on a C*-algebra <7 : S(w)=S'(w).

Proof. 1If S(w)= o0, the equality follows from (x). It is sufficient to
consider the case that w is normal. In this case, there exists a unique
decomposition @ = Z/Z w, of w in disjoint factor states [3] 5.4.9, p. 109.

Remark thatI1, = P)11,,Q, = Z]//L , where F,Q = I//I, I, =11, F,,
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F, is a central projection of II,(.«/). For any sequence & =(E,),.; of
minimal projections E, € I1,(«/), there exists a partition (1,), of the index
set I such that

E =F,. Then
>, E,=F,

nel,
ho(6)=—=Y Y (QE,Q)log(@Q|E,Q)
p nely
==X L p(Q[E,Q)log/, (2, E,Q)
p nelp
--Y ZI I QIE,Q)ogh, — Y Y 1,(Q,|E,Q,)0g(Q,|E,Q,)
p nelp p nely,

Il

— Y Aydogi,+ Y i, hg (6,)
r p

where &, = (E, F),;,. It is clear that any choice of & corresponds to a
choice of sequences é’ and vice-versa. Hence

S'(w)= Z 2,(8(w,) —logl,).
By Lemma S:
S'(m)= Z J. —logZ,).
By Proposition B.1 (Appendix B):
S'(w)=S(w). Q.E.D.
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Appendix A

Here we prove Proposition 1 (i): i.e. the equivalence of our definition
of entropy with the ordinary one for normal factor states.

Let ¢ be a positive trace-class operator on a Hilbert space #°, and
A an infinite separable Hilbert space, o = ) 4,E,, the spectral decom-

position of ¢; (¢,), ((p,),) an orthonormal basis of # (#");
Q=Y 1 0,Qp,e X QA" .

Then for all bounded operators 4 on #, denoted by #(#)
TroA=(RQ|A®1Q). (A1)
Define the projection E, on # ® # ' by
E,=1®E

Yn
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The E, are minimal in {® #(#") and ) E, =1, (Q| E,Q) = /,, and hence

~Trologo=— Y (Q|E,Q)log(2Q|E, Q). (A.3)

n

Let (F,), be any sequence of pairwise orthogonal minimal projections
in 1@ #(#")such that ) F, = 1. Then F, is of the form F, = 1 ® H, where

r
H, is minimal projection on #"; let (z,), be the orthonormal basis

corresponding to (H,), then

(QIF, Q)= 7 Hywy) = 3 2|l 1,1 -

By the convexity of the function — x logx for x >0:

- Y (Q|F,Q)1og(Q|F,Q) 2 = Y 2,logl,=—Trologo. (A4)
P n

Now we prove a proposition, which seems to be known:

Proposition A.1. If ¢, and g, are positive trace-class operators on a
Hilbert space # , then:

—Tr(ey +0,)logle, +0,) £ —Tro, logg, — Tro, loge, .

Proof. Take a Hilbert space #" as above, let 2, and 2, be the vectors
of # ® #" such that (see A.1)

Tro, A=(Q|4®19)
Tro, A=(Q[A®1Q,), AcB(AH).

Let (E,), and (E;), be the sequences of minimal projections in 1@ #(# )
such that (see A.3):

—Tro, logg, = Z Q,|E, Q) log(Q,|E, Q)

—Tro, logg, = — Z (Q,]En Q) log(2,] E; Q)
Form #"=#"@H', then A QH " =H QA DA RH and form
0=0,®Qe#Q#" Then

Tr(o, +0,) A= (QAD 1 Q) AeBH).
The projections EL and EZ are minimalin 1 @ #(#" )andz EL+E)=1,.
By (A.4)
—Z(Q|EiQ)10g(Q|E,1,Q)—Z(Q|E,2,Q)log(Q|E£Q)

n

—Tr(e, +0,) log(e; +0,).
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But (Q|E}Q)=(Q,|E}Q)), (2| E2Q)=(Q,|E}Q,). Hence the result.
Q.ED.

Proposition A.2. Let @ be a normal factor state on <7, then
S(w)= —Tr,ologo.
Proof. As w is normal, =Y u,, where w, are pure states; w,

induces the GNS-triplet ([1,, #, , Q,); as w is a factor state, all II, are
equivalent, [T =I1I, for all n. Let (E,), be the set of one dimensional pro-
jections on . such that

w(A)=Tr,E,[I{(A), Ae
w(A)=Troll(A)

then

where 9= ) p,E, is the unique density matrix induced by w. From
PropositionnA.l :
—Trologg = — Tr(u, E,) log(u, E,) = — X, logu, .
This is true for any decomposition of w, hence:
—Trologo < S(w).
To prove the contrary inequality, let o= > 4, E,, be the spectral decom-

n
position of the density matrix o, then also w=) 1,0, and

Wn

S(w)< =Y J,logh, = —Trologg, hence the result. Q.E.D.

Appendix B

We prove Proposition 1 1ii), i), i.e. we prove that our generalized
definition of entropy satisfies the same kind of inequalities as the ordinary
definition of entropy for a factor state.

Proposition B.1. Let (w,), be a countable sequence of normal states
on o, w=Y) j,m, a convex combination of the w, (0 S ELY 2, = 1)
then " "

S(U)) g Z /:Vn[S(wn) - log)t’n] N

The equality sign holds if the states w, induce factor representations two
by two disjoint.
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Proof. Let w,= )Y Zhwhbe a decomposition of m, in pure states, then
p
B s L . ) .
w= 3% i is a decomposition of w in pure states, hence o is
n.p
normal and
S(w)< =Y A2 logh, ==Y 1, (Z i log /;',) = i, log,.
n,p n P n

Since the decomposition of the w,, is arbitrary
S(w)< Y 2,[S(w,)—logi,] .

If the states w, induce factor representations two by two disjoint, then
w= Y J,m, is a unique decomposition in this sense. It follows that all
n

decompositions of w in pure states are obtained by all decompositions of
the w, in pure states, and the equality holds. Q.E.D.

Proposition B.2. Let ®; and w, be normal states, and o= /lw,
+ (1 —=2)w, where 0= A< 1, then

AS(w)+ (1 —=24) S(w,) ES(m).

Proof. Letw;= ) Lol i=1,2,be the decomposition of w; and w,
pel,
into disjoint factor states;
K is the set of indices pe I; such that the representations /1, are
disjoint from all subrepresentations of w,;

L is the set of indices p € I, such that I1,, is quasi-equivalent with
some subrepresentation I1,,, induced by w,;

M is the set of indices p € I, such that [T, is disjoint from all sub-
representations induced by m,.

Then
w=Y iioy+ Y (I=Diiop+ Y (A +(1=0)i)o,,
pekK peM pel
where
1

w

— 1.1 _ i 2 ] 2
= U,;, 0= )vfp [/Mpa)p +(1—=27) /np/u)np] , peL
1s the unique decomposition of o in disjoint factor states.
From Proposition B.1
S(w)= 3 22,[S(wy)—logid, 1+ Y, (1=7)72[S(w})—log(l —2)i2]

pekK peM

+ Y A (=2 22 ) [S(@,,) — log(A2) + (1= 1) 22)].

peL
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As the states w, and o] are quasi-equivalent factor states (see [4] p. 27)

S( ~[1S()) + (=25, 5(03,)]

p n )__
14 i 4_ 1 _
ind // (1—7) 22
NEEYDY ;.;,[S(w;,)—logz;]ﬂl—;;) S 22[S(@?)—log2].

pely pels

Using proposition B.1
S(w)z2S(w,)+(1—=4)S(w,). Q.E.D.
Proposition B.3. S(w)=0if and only if w is a pure state.

Proof. Follows immediately from the definition of S(w) and from
Proposition B.1. Q.E.D.
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