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Abstract. Invariant S17(3) octet tensors are constructed in terms of λ matrices and
applied to the problem of forming tensors from a single octet used repeatedly. Next a similar
problem but with two octets is considered which demonstrates that different outer products
of invariant tensors may be related. Finally, a theorem is proved which shows that the
number of invariant tensors is essentially finite, and that relations of ranks greater than six
exist on outer products of these tensors.

I. Introduction

The octet representation of SU(3) appears to be of considerable
significance in the consideration of symmetries of strong interactions,
in that many of the stable particles correspond to this representation.
Consequently, in many theories involving Lagrangians, for which 5(7(3)
or S£/(3)(x)S(/(3) are exact or approximate symmetries, octet fields arise,
and it is frequently necessary to combine these fields to form scalars,
vectors or tensors. This often occurs when considering non-linear
realisations [1] of the chiral group or when constructing in a non-linear
manner particular forms of symmetry breaking Lagrangians [2-4];
in many of these problems, however, it is not always a trivial matter to
deduce just from simple observation either whether the most general
form of a certain tensor has been found or, alternatively, whether certain
tensors are linearly independent.

In an earlier paper [5] (hereafter referred to as (I)) we have made use
of independent sets of invariant 8 ® 8 (x) ® 8 tensors to construct sets
of independent tensors out of given finite numbers of octet fields. In this
paper we proceed further with our considerations of these numerically
invariant 5(7(3) tensors, our analysis splitting broadly into four sections,
which can be summarised as follows. First, in Section II, we show how
the invariant tensors are just products of traces of products of λ matrices.
In the next section we apply this to the problem of constructing the most
general tensor formed from a single octet field to all orders in this field.
This had been attempted previously [6, 7] by other workers in this field
who required the form of the most general second rank tensor formed
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from a single octet. Using intuitive reasoning, they obtained a form for
this second rank tensor but, as they themselves point out, this falls
somewhat short of a proof; we shall prove in this section, however, that
their tensor was indeed the most general one. The case of two octets used
repeatedly is considered in Section IV, using similar techniques. There
exists an additional problem in this case and the solution is made con-
siderably more complicated, so we merely outline the method and quote
the result for scalars. This result is then used to illustrate an interesting
phenomenon concerning independence of products of independent
scalars. This leads us to consider independence of outer products of
invariant tensors and in Section V we prove a theorem which shows (a)
that all invariant tensors are outer products of a small finite set of
tensors and, (b) that relations exist between outer products of these
tensors, these relations being of rank ^ 7.

We point out that, although we restrict our considerations here to
SU(2) and SU(3), our techniques apply equally well to any SU(n).

II. A Spanning Set for Invariant SU(3) Tensors

As in (I) we shall consider coupling SU(3) octet vectors by means of
invariant tensors. A vector A{ transforms by the law

where the Qt are the group generators, and the invariant tensors Hjk q

satisfy
Hk^t = Q. (2)

Suppose that A{ is an SU(3) octet vector, then by the usual procedure
we can construct a corresponding traceless 3 x 3 matrix

Af = A&M. (3)

We shall use the well known relation

λiλj=jδίj + (dijk + i f i j k ) λ k (4)

which, together with the fact that the λt are traceless, leads immediately
to the following

(5)

jμk, (6)

j/ / c. (7)
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Eq. (5) can be used to invert Eq. (3) yielding

. (8)

Now consider trying to form scalars out of the octets AΛ

β, . . . , G/. When
combining these matrices in a group covariant manner to form scalars,
the only allowed operations are contractions with the tensors δj, εaβy

and εΛβy and we must keep account of upper and lower indices. For the
greek labels are quark (or antiquark) labels, and the problem amounts
to reducing out all the singlet representations from an outer product
of quarks (and antiquarks). It is well known that symmetrising and
antisymmetrising does totally reduce such an outer product of basic
representations. So, by contracting with δ and ε tensors, we are sure to
find all the available scalars. But the ε tensors must always appear in
pairs because we have equal numbers of upper and lower indices to
saturate. Consequently we may make use of the identity

λμv __

λ

Zλ zμ ?v

°β °β °β
(9)

and deduce that the only way to make scalars out of the octets AΛ

β . . . Gy

δ

is to saturate with sums of δ tensors. Hence, a spanning set for the set
of scalars formed out of the octets Aa

β . . . Gy

δ consists of the terms of
the form

(δs

t...δu

v)AΛ

β...G7

δ (10)

where the indices on the δ's take all possible combinations of the indices
α, jβ, . . . , 7, δ, with proper regard still being paid, of course, to the lower
or upper nature of these indices. Using Eq. (3) the terms (10) may be
written as

...(λ^δAi...Gk (11)

which can be simply re-written as

[Tr (;,... ;j...Tr(^...Ap)]Λ . .^ (12)

where the square brackets contain all possible products of traces of all
products of the / matrices λ{ . . . λk. We conclude from this that a spanning
set for the invariant octet tensors consists of all such products of traces
of products of λ matrices. Note that we do not also have to consider
products of traces of /Γs of the form
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where indices are contracted between trace terms. Such invariant tensors
are implicitly included in our set. Repeated applications of Eqs. (4)~(7)
lead quickly to the result that the trace of a product of λ matrices is either
δtj or the sum of contracted products of d and / tensors. Therefore, we
also conclude that a spanning set for the invariant tensors consists of
inner and outer products of <5, d and / tensors.

This result can be applied immediately in Si/(2) with regard to
forming tensors out of a single vector used repeatedly. For SU(2) the dijk

tensors are zero and the structure constants are είjk. The most general
Si/(2) invariant (triplet) tensor is therefore a product of ε and δ tensors.
For an even rank tensor we may eliminate all the ε tensors in favour of
(5's using the identity (9), and for an odd rank tensor we may eliminate all
but one. Consequently the general even rank tensor is simply a product
of δ tensors, and the most general odd rank tensor a product of a single
εijk with repeated δ tensors. Now, if we saturate these tensors with an
S t/(2) vector, like, say, the pion field π, , we arrive at all the familiar S U(2)
results. For example, the most general second rank Si/(2) tensor of even
order in pion fields is [1]

/(π2)^ + #(π2)π;π7.. (13)

Unfortunately it is impossible to proceed with corresponding problems
in St/(3) in the same way. This is because the general contracted product
of / and d tensors does not obviously reduce to simple outer products
of low order tensors as was the case with Si/(2). Instead we are obliged
to resort to induction proofs.

III. Tensors Formed from a Single Octet Used Repeatedly

Suppose we are forming tensors from the octet A{. We shall use the
notation

X = AiAi, (14)

Y = dijkAiAjAk. (15)

Then A satisfies its own characteristic equation giving [6]

^Y = 0. (16)

The general scalar formed from A{ is found by contracting all the indices
on the general invariant tensor against the vectors At. The previous
section tells us, therefore, that it consists of sums of products of the
terms Ύτ(As). But

Ύτ(As) = X Ύτ(A&~2) + f Y Ύτ(A&- 3) (17)
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using (16). Also

Therefore a simple induction argument tells us that the general scalar
is simply a function of X and Y. Similarly we see that the general vector
takes the form

AjAk (18)

also a spanning set for the second rank tensors formed from At consists of

λjB1) and Tr^-^Tr^-^) (19)

to within functions of X and Y. The latter terms are just outer products
of the vectors given in (18) and the former reduce down to

using Eq. (16). Evaluating all these terms leads to the ten second rank
tensors found by the authors of Ref. [6] and [7], and is thus a justification
for their choice.

IV. Scalars Formed from Two Octets

Applying the approach of the previous section to the question of
forming tensors out of two octets At and Bj is far more complicated. We
illustrate the problem for the case of scalars. The method of Section III
quickly leads to the result that the general scalar from Ai and Bj is a
sum of products of terms like

Ύτ^B* ...ApBq):s,t,...,p,q = l or 2 (20)

to within A{A{, BtBh dijkAiAjAk and d^B^jB^
The added difficulties are now apparent; these terms may contain

arbitrarily large numbers of couples A1 Bm and although for any given /
and m we can use the characteristic equation for AlBm this is still not
sufficient to reduce us to a finite set. However, we may make use of the
identity

[AB, BA] = 2(dϊjkAiBjBk}A - 2(dijhAiAjBk)B + (B^A2 - (A^B2 (21)

to show that the general term (20) is equivalent to a term of the form

τγ{(A2B2)...(A2B2)(AB)...(AB)((AB2))n} where n = 0 or 1. (22)
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Again this is most easily seen by setting up an induction argument.
At this stage the characteristic equations for A2B2 and AB can be
applied to reduce us to a finite set, and this can be reduced still further
by means of Eq. (21). We deduce finally that the general scalar formed
from At and Bj is built out of the following terms:

AiAh AiBt, BtBi9 dίjk AtAjAk, dίjk AtAjBk ,

dijk AiBjB,, dίjk BtBjBk9 Cf C f, dijk Q CJ Ck

where for brevity Ci = dijkAjBk. The need for all the nine terms in (23)
can be checked using the results of (I). In that paper we have shown that
the number of scalars formed from A{ and Ep each being used just three
times, is the frequency of the trivial representation in the decomposition of

(8®8®8)5®(8®8®8)s (24)

and this is easily found to be six. Using the set (23) we can form only

AtAtAjBjBkBk

CίCίAjBj (25)

"ijfe i J fc

and this therefore shows that dijkCiCjCk, for instance, is not dependent
on the others. We can continue checking in this way for scalars formed
from p vectors At and q vectors Bp and, for values of p and q less than
six, the numbers of scalars found by the method in (I) agree exactly with
the counts of products of the terms (23). However, when p and q are both
six we find a discrepancy. There are forty three different products of the
terms (23), but the method of (I) says that only forty two of these are
independent. This implies that, although the nine terms in (23) are all
independent, in the sense that no single one of them can be written as a
sum of products of the others, there exist relations between them at
higher orders.

V. Relations between Outer Products of Tensors

The relationships between products of scalars indicate that there
exist relationships between outer products of invariant Si/ (3) tensors.
The aim of this final section is to show how such outer products arise,
and as a result of this investigation we shall deduce that the number of
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invariant tensors is essentially finite, for any invariant tensor can be
written as a sum of outer products of a finite set of tensors.

In Section II we remarked that the invariant tensors are simply pro-
ducts of traces of products of λ matrices. Consequently, any relations
which exist on the invariant tensors arise either through trivial relations
among the traces of products of matrices, or through non-trivial relations
on the λ matrices themselves. Effectively, the only relations at our
disposal are Eq. (4) and the requirements that the λt are hermitian and
traceless. Applying Eq. (4) to the trace of a product of λ matrices, however,
serves only to convert this factor into its equivalent of contracted fijk

and dijk tensors. Clearly, to obtain relations between outer products of
the trace factors, we must use relations on λ matrices involving no
contractions. Such a relation is obtained from Eq. (16) by removing the
vectors A,:

i j k + t k λj + λj λk λi + λj λt λk + λk λt λj + λk λj λi

= 2(<5fμk + δjkλt + δ k i λ j ) + 4dίjk. (26)

It seems likely that all other outer product relations on the λ{ can be
deduced from Eq. (26), since this is the statement that any (not necessarily
traceless) 3 x 3 hermitian matrix satisfies its own characteristic equation.
If, however, by some chance, there should exist other independent
relations, the theorem which follows will be unaffected, since it does not
depend on the particular form of these relations. Hence, without loss of
generality in the following, we shall be able to assume that Eq. (26) is
the only uncontracted relation on the λt.

Theorem, (a) All invariant tensors are outer products of members of
a small finite set of tensors. This set consists of certain contractions of
dijk and fίjk tensors up to sixth rank.

(b) There exist relations on uncontracted products of members of
this set at seventh and higher ranks.

Proof. (1) Suppose we have constructed sets of independent invariant
tensors up to the kth rank. Some of these will be written as outer products
of tensors and some cannot; call all the ones that cannot "primitive
invariant tensors" (primitives).

(2) Assume that there exist no identities of up to /cth rank on outer
products of the primitives we have found of rank less than k.

(3) Consider the (k -f l)th rank tensors. A spanning set for these is
all traces of (k+ 1) /Γs (let us call these Ίΐ(λ(k+1}) terms), together with
all outer products of the primitives we have found up to kth rank. We try
to pick the independent ones out of these by writing down sets of relations
using Eq. (26).
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(4) There is no point in applying Eq. (26) to the outer products of
primitives. This would merely give us relations which we have used at
rank less than (k -f 1) to pick the primitives we have. Consequently we
apply Eq. (26) in all possible ways on the Tr(/l(7c+1)) terms, and obtain
constraint equations on our spanning set.

(5) If there are not many independent constraints, we can eliminate
some of the Tr (λ(k+1}) terms in favour of the others and the outer products
of lower primitives. As a result we (a) pick new independent primitives
of rank (k + 1), (b) obtain no (k + l)th rank identities on the outer products
of lower primitives. In this case we may proceed to the next rank; our
assumptions (1) and (2) hold for k replaced by (k + 1).

(6) But Eq. (26) may impose so many constraints that all the Ύr(λ(k+1})
terms are constrained away and we obtain no (k -f l)th rank primitives.
In this case we may also obtain relations on (k + l)th rank outer products
of primitives of rank ^(k— 1). Then this will be the lowest rank constraint
on outer products of primitives, because of assumption (2).

(7) If part (6) holds, then all Tr(λ") terms with n ̂  fe + 1 may also be
written as sums of outer products of lower rank primitives. For

Λ

..λ l,) + (d9rt + i/ β Γ f )Tr(A i . . .λ l ,λ t ) .

This completes the first part of the proof, which may be summarised as
follows. If, at a certain rank, there exist invariant tensors which are not
outer products of lower rank tensors, then outer products at this rank are
all independent. But, if there exists none, there exists none at any higher
rank.

The second part of the proof is then simply a combination of the
counting method described in (I) and the results above. We present the
final answer in the following Table.

Rank No. of independent
tensors

2 1
3 2
4 8
5 32
6 145
7 702

>7

No. of outer
products

0
0
3

20
130
812

No. of new
primitives

1
2
5

12
15
0
0

This completes the proof of the theorem. It is clear that any invariant
octet tensor can be written as a sum of outer products of 35 tensors.
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It is also clear that at ranks ^ 7 there exist relations on outer products
of these. We are, of course, familiar with this situation in SU(2), where
there exist relations such as Eq. (9) or

δipεjqr + δiqZjrp + δirεjpq = δij^pqr (28)

We conclude by discussing one further point which now arises. We have
found that the general scalar formed from one octet must be a function
of X and 7, the two basic scalars defined in Eqs. (14) and (15). But the
work of the last two sections raises the following question. Can we be
really sure that there does not exist some high order identity relating
powers of X and Y? If the answer is no, we may have to rethink a lot of
the earlier work on S £7(3) and S (7(3) (x) S (7(3). We can easily see, however,
that the answer to this question is yes. We simply go through the proof of
our theorem when it is applied to this particular case. First note that
when we totally contract any equation on outer products of λ matrices
with vectors Ai we arrive at Eq. (16). This is because (for general vectors)
f(ξ) is the minimal polynomial of A and hence divides any polynomial
g(ξ) satisfying

g(A) = 0. (29)

Then to the terms Tr(Λ.(k+1)) there corresponds only one term, namely
Ίΐ(A(k+l}). So at each order we have only one constraint and this just
eliminates the one possible primitive at this order but places no constraints
on the products of X and Y.
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